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Abstract— A new ANN-based approach to adaptive noise can- 
celling and separating slow-varying signals is introduced. The net- 
work's weights are continuously modified using a fast nnsupervised 
competitive learning rule, called Fast Boundary Adaptation Ride 
or FB AR, performing adaptive scalar quantization of the input sig- 
nal. The rule maximizes information-theoretic entropy and yields 
a non-parametric model of the input probability density function. 
Contrary to classic uusupervised competitive learning, our system 
adapts its own learning rate, and hence does not require a "cooling 
scheme." Furthermore, contrary to most of the other noise can- 
celling approaches, our system does not require a priori knowledge 
or an explicit model of the joint noise and signal characteristics. 

INTRODUCTION 

Signal separation and noise cancelling are widely researched topics in signal 
processing since their application increases the performance of e.g. pattern 
recognition in speech and image processing. Signals received by microphones 
and antennas typically comprise unknown mixtures of several signal sources. 
Sensors often are multisensitive: the signal provided by a sensor can be an 
unknown superposition of signals emitted in its neighborhood. In addition, 
sensors are noisy and their characteristics may change over time. A major 
field of applications are the so-called smart sensors. In these sensors, an inte- 
grated microcomputer is used for performing dynamic correction of changes 
in sensor characteristics and in environmental conditions [1]. 

Signal separation was introduced in the Artificial Neural Network (ANN) 
field by Herault and co-workers [2,3]. They proposed a fully connected re- 
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cursive ANN in which the weights are adapted so as to model the mixture 
process. Their method performs a blind separation of sources by assuming 
that they are statistically independent; it is also assumed that the transfor- 
mation matrix describing the linear mixture is invertable. The separation 
relies on the computation of higher-order statistical moments in order to 
achieve signal independence. Hence, their method is not suited for separating 
slow-varying signals such as signal drift. Furthermore, it requires a separate 
filtering stage to obtain zero mean estimates of the reconstructed signals. 

Noise cancelling is another prime application of signal processing research. 
The signals received by an actual system are often corrupted by additive 
noise. In most cases, the noise is non-stationary and of an arbitrary proba- 
bility density function (p.d.f.) type. Furthermore, since the source signal is 
non-stationary, the signal-to-noise ratio changes momentarily. Kaiman filter- 
ing [4] is a well known procedure for noise cancelling, however, the dynamics 
of the source signal must be linear d'aussian and a priori known. Several 
attempts have been undertaken in order to overcome these limitations (e.g. 
[5]) but they often lead to complicated solutions. W id row and his co-workers 
were among the first to introduce adaptive filtering into the ANN field. They 
developed an adaptive filter system for noise cancelling [6] that is very similar 
to a single ADALINE-unit but without the threshold. The system requires 
a separate noise channel containing noise that is correlated with the noise 
added to the signal; the filter weights are adapted so as to minimize the 
power of the reconstructed signal. Recently, other ANN-based approaches 
have emerged and used e.g. for speech enhancement purposes: a multilayer 
perccptron is trained using samples of noisy speech at its input and clean 
speech at its output [7,8]. In another proposal, not the speech sample itself 
is input but a set of parameters obtained from (classical) statistical speech 
and noise models [9]: the network is trained to perform nonlinear spectral 
estimation by representing the shape of the distribution of speech and noise 
spectral parameters. The estimated spectral magnitude of the clean speech 
signal is then combined with the phase of the noisy speech to produce a clean 
signal estimate by means of overlap-and-add resynthesis -a computationally 
heavy procedure. 

In this article, we propose an ANN-based system for performing signal sep- 
aration and noise cancelling of slow-varying signals. The weights are modified 
"on line" using a fast, unsupervised competitive learning rule maximizing 
information-theoretic entropy. The rule, called Fast Boundary Adaptation 
Rule or FBAR [10,11], performs adaptive scalar quantization and yields a 
non-parametric model of the input p.d.f. by its N quantization levels. Con- 
trary to the aforementioned approaches, our system operates in an unsuper- 
vised mode and hence, does not require a priori knowledge or an explicit 
model of the (joint) noise and signal characteristics. Furthermore, contrary 
to other ANN-based approaches, our system does not require a training mode 
or a "cooling scheme." Instead it uses two FBAR-based ANNs: one adaptive 
and another non-adaptive. The latter is used as a reference for adapting 
the former. Both ANNs are identical and differ only in their learning rates. 
Finally, since our method does not rely on filtering, it is ideally suited for 
separating slow-varying signals such as sensor drift and 1// noise sources. 



FAST BOUNDARY ADAPTATION RULE 

An TV-point scalar quantizer can be considered a function which maps a 
scalar-valued input signal x into one of TV quantization levels ?yi,»/2, ••-,2/JV- 
The quantizer is specified by the values of these quantization levels and the TV 
disjoint quantization intervals fli, ß2, •••, ß/v- An adaptive scalar quantizer 
is intended to capitalize on the structure underlying the input signal distri- 
bution p(x) with a minimal overall distortion due to quantization. Many 
distortion measures have been proposed in literature [12] but the most com- 
monly used are the mean squared error (MSE) distortion and the mean 
absolute error (MAE) distortion: 

MAE = Y^ /       \*-Vi IPOO  
rf*> 0) 

with ar,_i and x,- the boundary points of interval ß,-, and with x0 = —oo and 
xw = oo for an unbounded p.d.f. p(x). In case of high-resolution quantiza- 
tion, TV is very large and the quantization interval lengths are small so that 
p(x) is roughly constant over the individual intervals. Hence, p(x) m pi in 
interval /?,,-, and p,- = p(ft,-)/A,-, with p(/?.,•) the probability of x 6 Ä; and 
with A,- = x.i — Xi-\ the size of interval /?.,• = [x,-_i, x,); if x0 is infinite, then 
Ri = (xQ,xi). Suppose that with probability nearly one, x takes on values 
in a finite interval [a, 6), hence, eq. (1) can be approximated as: 

MAE « Y, H(M f'   | x - m |  dx, (2) 

with x0 = a and XN = 6. Under the high-resolution assumption, the centroid 
of each interval can be approximated by its midpoint ?/,■ « x'~'2 

r' and 
substituted for in eq. (2). The necessary condition for minimizing MAE in 
the high-resolution case is then obtained by taking the derivatives of the 
substituted equation with respect to the a;,'s and setting them equal to zero: 

p(/V,) = p(/?j+1),    i = l,...,TV-l. (3) 

The latter implies a maximization of the information-theoretic entropy: 

N 

' = -$>(fy)   logiP{Rj), (4) 
i=i 

irrespective of the type of input p.d.f. 

The necessary condition eq. (3) is realized by our Boundary Adaptation 
Rule (BAR) as follows. Assume that at time step t, x € Rj. We then modify 
R.j by increasing a.'j_i and decreasing x.j, or in the general case: 

Ax.j = i)(ActRj+1 - AclRi),    j = 1,..., TV - 1, (5) 

with i] the learning rate, a positive scalar, and with Actnj the code member- 
ship function of interval Ry. 

A .    i  \      /   1    if« € Äj 
AclRi(x)=\ 0    if*£ß- 



defined with respect to the boundary points at the previous time step. The 
proof of convergence towards equiprobable quantization intervals is given in 
[11]. At convergence, the expected noise intensity of the boundary points 
equals i)2jj- The speed of convergence, in case the p.d.f. is bounded and 
the boundary points are initialized outside its range,  is on  the order of 

^(yv(N-i))- 

The fastest rule, called Fast BAR or FBAR, is found by updating all 
boundary points each time an input, is presented: 

^=^^-1^1    J=l «-'• (6) 
Jt=j+1 J k-\ J 

At convergence, the expected noise intensity of the boundary points equals 
if ,N]_ •■)•, and thus for j = N/2 with N even, ty2;^?; the convergence speed 
is now on the order of O(jf^). Hence, contrary to BAR, average boundary 
point dynamics and noise intensities are approximatively independent of N 
if i) increases proportionally with A'. Or, for the same N and ?;, FBAR 
is N times faster than BAR. Previously, the quantization performance of 
FBAR was assessed and compared with that of five popular unsupervised 
competitive learning rules and that of the standard Lloyd I algorithm [10]. 

NOISE CANCELLING AND SIGNAL SEPARATION 

In this article we will limit ourselves to the suppression of zero-mean additive 
noise, in which case the input signal can be written as: 

x[t] = s[t] + d[l] (7) 

where s[t] denotes the signal and d[l] the noise. The aim is to reconstruct s[t] 

from noisy observations x[t] by separating its estimate s[t] from the estimated 

noise contribution d[l]. This way, noise cancelling is considered here to be 
a limiting case of signal separation. This will be done by estimating the 
possibly non-stationary p.d.f. of d[l] with FBAR, and using this information 
for subtracting d[l] from a:[/]. Hence, noise cancelling will be performed in 
the signal magnitude domain, based on p.d.f. estimation instead of spectral 
magnitude estimation as in the classical case. The basic assumption is that 
the p.d.f. of s varies on a slower time-scale than that of d; the validity of this 
assumption will be assessed in this section. 

Before further elaborating on our application, we first show the perfor- 
mance of FBAR in estimating non-stationary p.r/./.s in general. Consider 
the speech example in Fig. 1 (top left); the signal originates from TIM IT, 
a popular speech database. The signal is quantized with N = 32 intervals 
(5 bit quantizer) with 7/ = 0.02. We observe that the boundary point traces 
shown in Fig. 1 (top right) seem to keep track of the speech signal by per- 
forming only a single update of the boundary points per time step. The 
corresponding codebook utilization {p{Act[(i) | 1 < ;' < k) is shown in the 
bottom part of Fig. 1: it shows that, notwithstanding the signal is highly 
non-stationary, the necessary condition eq. (3) is satisfied on average. 
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Figure 1: Top left : Example speech signal comprising a silence, a consonant 
and two vowels (i.e. the word /she/). Time units are expressed in 0.625 
milliseconds. Top right: Temporal evolution of boundary points using FBAR 
with i) = 0.02. Bottom : Codebook utilization. 

The previous p.d./.-estimation property of FBAR can now be used in sev- 
eral ways, the simplest being the subtraction of the estimated p.d.f. median 
from x. Indeed, since FBAR provides us with an estimate of the p.d.f. using 
equiprobable quantization intervals, the trace of boundary point xj±, with 

2 

N even, represents the trace of the p.d.f. median. Now since it is assumed 
that the p.d.f. of s[t] varies slower than that of d[t], the estimated p.d.f. 
approximates that of r/[/] and hence, the trace of its median provides us with 

the desired estimate s[t]. We will now verify this assumption with a syn- 
thetic, signal comprising Gaussian white noise, with zero mean and standard 
deviation 0.1, added to a sampled sine wave of magnitude 0.5 and frequency 
10 p00 Hz.   The noise cancelling performance is assessed by calculating the 

MSE distortion between s[t] and s[t] on the last 10,000 samples, and plot- 



Figure 2: Noise cancelling performance of FBAR on (iaussian white noise added 
to a sine wave. Top left : MSE distortion plotted as a function of /,, for 7; = 0.1 
(thick line) and adaptive (thin line). Vertical bars represent standard deviations. 
Top right : Evolution of iiadaptive ** a function of time for f, = 0 (thin line) and 
100 (thick line).  Bottom : Example of noise cancelling in case of /.. = 50. 

ting the calculated MSE as a function of/.,. The result is shown in the top 
left portion of Fig. 2 (thick line) for i) = 0.1 and N = 8. We observe that 
for /, = 0.001 to 10, the MSE is almost the same and that starting from 
/, = 10 it rises sharply. In the former case, the error is due to the switching 
nature of FBAR; in the latter case, the sharp increasing error is clue to the 
fact that the basic assumption, the negligible influence of the signal's p.d.f., 
fails and FBAR looses track of the exact evolution of s (though the result 
may still be proportional to the clean signal). Note that the MSE between 

.1 and s and between d and d are identical, as is easily verified. Hence the 
results in Fig. 2 (top left) also show the performance in estimating d. Now 
since ('iaussian white noise was used for d, we conclude that FBAR is not 
a filtering procedure, and hence due to this feature, we conjecture that it is 
ideally suited for separating slow-varying signals. 



LEARNING RATE ADAPTATION IN 
UNSUPERVISED COMPETITIVE LEARNING 

One obvious way to circumvent the aforementioned shortcomings, is to make 
7] adaptive: for low /,,, i) should decease so as to produce a low quantization 
error; for high /,, 77 should increase in order to keep track of the. signal as 
much as possible. At first sight, this seems unfeasible in an unsupervised 
learning setting. However we can use some valuable a priori information: 
FBAR is aimed at producing an equiprobable codebook utilization. Hence, 
any divergence from this can be detected and used for adjusting /;. The 
codebook utilization at time / can be estimated by the codebook utilization 
in the last T time steps using a moving average estimate: 

T 

CIJ = {p(ActR„t,T) = £ ^T ' l ~ l~ N]- (8) 

The problem is then reduced to interpreting a given divergence in 
equiprobable codebook utilization in terms of a change in ?;. A robust, 
yet simple solution is to use two FBAR quantizers running in parallel on 
the same input signal x: one with a fixed learning rate called preference, 
and another with a variable learning rate, called i)adaptive- The first one is 
used as a reference against which the learning rate of the second is adapted. 
As a measure of divergence in codebook utilization, the MAE between the 
present codebook utilization and an equiprobable one is taken. The MAE is 
determined for both the reference and the adapted quantizers: MAEq(CU), 
with q £ {reference, adapted). The procedure for modifying i)adaPtive is as 
follows: 

If   \1}adaptive   ^   preference) 

if   {MAEadavttve(CU)   >   MAEreference{CU)) 

decrease i)aday>tive\ 
else 

increase i}adaptive', 

else 

if   (MAEadaptiveiCU)   >   MAEreJerence(CU)) 

increase i]adaptivel 
else 

decrease i]adaptive', 

The actual update is done with a leaky integrator equation: 

1)adaptive{t] = ai)adaptive[t - 1] + (1 - n)l]base (9) 

with a a constant and ijbase equal to 0.001 in case ijadaptive is to decrease, 
and 1.0 in the opposite case. In order to obtain robust estimates, i)adaptive 
is adapted only if the abovementioned conditions on MAE also hold for the 
previous two time steps. 



As an example, consider again the previous synthetic signal. We take 
Vrejerence = 0.3, a = 0.9999 and T = 256. Every simulation was repeated 
20 times. The average result is shown in the top left part of Fig. 2 (thin 
line). We observe that the residual MSE is dramatically decreased for low 
f,. The evolution of i)adaptive for a typical run is shown in the top right part 
of Fig. 2 for /, = 0 (thin line) and 100 (thick line). We see that i)adaPtive 
for /, = 0 at first increases (the starting value = 0.05) and then gradually 
decreases to a low value. The first increase is interesting since it is used for 
rapidly positioning the boundary points within about 1,000 time steps. The 
evolution in case of/, = 100 shows a fast increase in i]adaPtive- The maximum 
range in average i}adaptive thus achieved equals more than 20 times the lowest 
average. The bottom part of Fig. 2 shows a sample of the original signal x 
(thin line), the sine wave s (thin line) and its estimate s (thick line). In the 
case of /, = 0, the MSE value equals 1.1 ~4 and the signal-to-noise ratio 
19.6 dB on average. This can be further improved by increasing T, e.g. for 
T = 1024 we obtain 29.4 dB, but then the MSE performance for higher fs 

values decreases: since the adaptive quantizer then considers both the d and 
s signals as belonging to the same p.d.f., inference, "cools down" to a low 
value for all cases. On the other hand, in case signal separation is not the 
issue, it also signifies that this property can be used as an automatic "cooling 
scheme" for adjusting the learning rate over time. 

Finally, we have re-applied the previous scheme on the signal shown in 
Fig. 1 (top left). Note that the role of noise and signal are now reversed. 
The MSE of the reconstructed speech signal equals 1.8 10~3 for /, = 0, 
2.8 10-3 for /, = 1, 5.9 10"3 for /, = 10, and 9.0 10~2 for /, = 100. The 
clean speech signal variance equals 1.9 10__. 

DISCUSSION 

In this contribution, a fast unsupervised competitive learning rule was intro- 
duced for cancelling additive noise and seperating slow-varying signals. The 
rule called FBAR performs scalar quantization and yields a non-parametric, 
model of the input p.d.f. by maximizing the information-theoretic entropy of 
the quantizer's codebook. We believe that entropy maximization offers four 
important advantages: 1) By maximizing entropy, the network's weights es- 
timate medians rather than means and the former are well-known to be less 
sensitive to input signal outliers. 2) The maximum entropy principle often 
serves as a criterion to select a priori probability distributions when little or 
nothing is known: for a given amount of data, the distribution which best 
describes our knowledge is the one that maximizes information-theoretic en- 
tropy, subject to the given evidence as constraints. 3) Entropy maximization 
has been succesfully applied to obtain an optimal mapping of continuous onto 
discrete random variables [13]. 4) Since entropy maximization corresponds 
to an equiprobable quantization, the desired (optimal) result is known in 
advance. As a result of the latter, we were able to increase the rule's perfor- 
mance by using two identical configurations, one with a fixed and another 
with a variable learning rate. The first was used as a reference for adapting 
the second. This way, an explicit "cooling scheme" was not needed. 
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Abstract. In this paper, a growth criterion is derived using statis- 
tical inference for model sufficiency. This criterion is developed for 
recursive estimation or sequential learning with neural networks. A 
growing Gaussian Radial Basis Function (GaRBF) network trained 
by the extended Kaiman Filter (EKF) algorithm on-line, named In- 
cremental Network is developed. Incremental Network is similar to 
the resource allocating network (RAN). The criterion for growth is 
based on the network prediction error and the expected uncertainty 
in the network output. The criterion is computed within the EKF 
estimation and hence no additional computations are required. This 
is in contrast to the need for search in the RAN formulation. The 
Incremental network performance on a function interpolation prob- 
lem is shown to be superior in convergence speed and approximation 
accuracy than the RAN networks and a fixed size RBF network. 

INTRODUCTION 

Feedforward artificial neural networks (ANNs) are a class of models that may 
be used to model some unknown system or process having an unambiguous 
input - output mapping. The network size, often measured by the number 
of hidden units in a single hidden layer network, reflects the capacity of the 
network to approximate an arbitrary function. The problem is therefore to 
estimate the network parameters and its size. 

The need for determining the optimal architecture or network size is due to 
the conflicting feature of the modelling task. Firstly, a sufficiently complex 
or large model is needed to ensure that the network is capable of providing 
an adequate approximation to the underlying process generating the obser- 
vations. Secondly, an unnecessarily large model will suffer from 'over-fitting' 
where the network reproduces the observations but will perform poorly to 
unseen data. 
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Finding the suitable network size for a given problem invariably involves a 
search over all possible sizes, a computationally exhaustive process consider- 
ing the training times involved for each of the networks. In general, a trial 
and error approach is adopted in finding the suitable network size and the 
search is terminated as soon as a satisfactory performance is achieved. 

Theoretical tools such as Decision theory have been used to determine an 
approximate rule of thumb in choosing the network size for learning a given 
number of observations [Baum & Haussler, 1989]. Recently, Bayesian statis- 
tics has provided a general framework or procedure, namely Bayesian model 
comparison for determining the most probable network among those inves- 
tigated [MacKay, 1992]. For all the above procedures, the data must be 
available en-bloc and rely on the arbitrary selection of appropriate sizes for 
investigation. A form of limited search over different network sizes combined 
with model selection based on Minimum Description Length (MDL) was also 
developed [Smyth, 1991]. The task of finding the optimal network size is even 
more difficult in a recursive or sequential estimation problem. 

These observations have led to investigations into dynamic architecture net- 
works, where, instead of searching over different size networks, a network is 
constructed as part of the training procedure. The two approaches of network 
construction are 

• Choose a large network and prune it by deleting units, eg. Skeletoniza- 
tion [Mozer & Smolensky, 1989], optimal brain damage [LeCun, Denker 
& Solla, 1990], weight elimination [Weigend, Rumelhart & Huberman, 
1991]. 

• Choose a small network and grow it by adding units, eg. Cascade cor- 
relation [Fahlman & Lebierre, 1990], resource allocating network [Platt, 
1991]. 

The growth criteria in most of these approaches are based on heuristics, such 
as the increase or decrease in the approximation error by addition or deletion 
of units. In optimal brain damage [LeCun et al.,1990], however, the deletion 
of the units are based on the Hessian of the error surface with respect to the 
network parameters. Except the RAN, all the other networks require all data 
to be available together. 

In this paper, we provide a criterion for growth based on the statistical in- 
ference of model sufficiency. The notion of model sufficiency is that "the 
model with given size is deemed to be sufficient if the prediction error on the 
data is within a certain level of confidence exhibited by the network". For 
example, if the uncertainty in the network parameters are high, the network 
may exhibit large prediction errors which are within the expectations of the 
network and hence no new units will be added. The estimation is carried out 
using the extended Kaiman filter (EKF) which also provides an estimate for 
the network uncertainty. 
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THE GROWTH CRITERION 

Consider an interpolation problem where for the input - output observation 
set {(x„, yn)\n -1 N},xne$tM and yn € ft, 

yn = /.(xn) + 77 (1) 

where 77 is a zero mean Gaussian noise with variance a\t and /«(.) is the 
underlying function. Let the network chosen to approximate the underlying 
function provide an input - output mapping described by /(x; p), where p is 
the vector consisting of network parameters being adapted. 

For a trained network where the parameter p has been estimated along with 
its error covariance matrix, the network output uncertainty can be deter- 
mined. The measure of uncertainty is the variance of the network output, 
given by, 

<rv
a(x) = Var[/(x;p)] (2) 

Under Gaussian assumptions, the network output can be described by the 
Gaussian probability distribution with mean /(x;p) and variance <r?(x). 

If the network used to interpolate the underlying function is of sufficient 
size, under Gaussian assumptions, we would expect the interpolation error 
or the prediction error to lie within a bound determined by the network 
uncertainty and noise variance for a certain percent of the data, with a certain 
level of confidence. The null hypothesis for the statistical inference of model 
sufficiency is stated as follows: 

Ho : -T=FJ^L=== =     .      ^ < za       for a% of data      (3) 
y/Var\f{x;p) + rj\      ^rg(x) + a*, 

where za is the value of the ^-statistic at a% level of significance and e is 
the prediction error for the observation (x,y), given by, 

e = y- /(x;p) (4) 

If the condition for Tio is violated, the null hypothesis that the model is 
sufficient is rejected. The rejection implies that the network complexity must 
be increased to match the complexity of the underlying function, and hence a 
new unit or basis function is added to the model. The addition of a new unit 
increases the complexity of the network so that its capacity to be a sufficient 
model is increased. Note that a criteria for pruning the network has also 
been suggested from statistical inference, based on the estimated parameter 
uncertainties [Buntine & Weigend, 1992]. 

RECURSIVE ESTIMATION 

Recursive estimation (sequential or on-line learning) with ANNs requires a 
posterior estimate of the underlying function to be obtained from its prior 
estimate and the current or new input - output observation. For a network 
of fixed number of parameters being adapted, this becomes a problem of 
estimating the parameters recursively. Recursive parameter estimation fits 
into the Bayesian statistical framework naturally. 
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Consider the Gaussian radial basis function (GaRBF) network whose input 
- output mapping is given by, 

K 

/(*; P) = 2 «»*»(*; «*) = bTw (5) 
*=1 

IT where w = [u»i,..., wjc]T are the linear coefficients, b = [..., 6fc(x; uj.),. 
are the K basis functions constructed at the hidden layer and u*. = 
[uki,...,ukM]T is the ifeth RBF unit centre. The basis functions are 
parametrised through ufc. In general, the output of an ANN can be writ- 
ten as a linear combination of a set of basis functions as given in (5). The 
basis functions in the GaRBF network have the form, 

&fc(x;ujb) = exp |-^l|x - ufc||
2| (6) 

en 
= yn - /(xn; Pn-i) = Vn - b^ 

wn = w„_i +e„kn 

Ry = [Än+b^Pn-lbn] 

k„ = Ä^lPn-lb» 

Pn = [i-knb^]p„_i + g0i 

If we choose to adapt only the linear coefficients w, under Gaussian assump- 
tions, the prior and posterior probability distributions for w can be described 
by Gaussian distribution. Let the prior be a distribution with mean wn-i 
and covariance matrix P"^, the posterior with mean wn and covariance ma- 
trix P"1 and the likelihood distribution for the observation y be with mean 
b£w„_i and variance Ä» = *',■ where bn = [..., bk(xn;uk).. ]

T. Applying 
Bayes' theorem, expressions for wn and Pn

: can be obtained. This is in fact 
the Kaiman filter algorithm [Candy, 1986], where, 

(7) 
(8) 

(9) 

(10) 

(11) 

where Q0 Js a scalar that allows a small random variation to the parameters 
being adapted. This random walk model allows the parameters to continue 
adapting to new observations. The subscripts (n) and (n - 1) denote the 
posterior and prior estimates respectively. The vector kn is the Kaiman gain. 

The matrix P represents the uncertainty in the estimated parameters while 
Ry reflects the uncertainty in the expected output for the given input obser- 
vation, ie., 

Ry = Var[f(x;p) + v] (12) 
The growth criterion proposed in the last section has to be modified for 
the recursive or sequential estimation problem, where there is access to only 
the current observation. The model is deemed sufficient "if the prediction 
error on the new observation is within that expected by the network with a 
certain level of confidence", so that sufficiency is determined from the current 
observation alone. Substituting for the output uncertainty from (12), the null 
hypothesis of model sufficiency is now: 

Ho : J^= < za (13) 
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The terms en and Ry are computed as part of the Kaiman filter estimation 
algorithm and hence there is no computational overhead in testing for model 
sufficiency. 

The estimation and growth criterion of the model with nonlinearly appear- 
ing coefficients, such as uk in the GaRBF network, can be extended where 
estimation is carried out by the extended Kaiman filter (EKF) algorithm and 
model sufficiency tested similarly. The only difference in the computation 
is the replacing of w and bn by p and the vector dn respectively, where 
dn = Vp/(xn;p) is the gradient of /(.) with respect to p evaluated with 
Pn-i- This is equivalent to approximating the probability distributions to be 
Gaussian around the estimates. 

THE INCREMENTAL NETWORK 

The growth criterion developed above is independent of the model structure, 
even though it was demonstrated on the GaRBF network, and hence is appli- 
cable to any type of model. Now, the question of what type of basis function 
to be added, if the model is deemed insufficient, has to be addressed. In a 
block estimation environment there will be no restriction on the type of basis 
function. However, in a recursive estimation problem, the addition must be 
a localised basis function, which while ensuring localisation of the current 
observation is also nearly orthogonal to the existing basis functions. It was 
shown that GaRBF functions, specifically the basis functions allocated by 
the RAN, was observed to exhibit these properties [Kadirkamanathan 1991; 
Kadirkamanathan & Niranjan 1993]. 

The network based on the statistical inference growth criterion and the RAN 
basis function allocation, is named Incremental Network (IncNet). The In- 
cNet incorporates the advantages of using EKF for near optimal estimation 
and the growth criterion that detects model insufficiency. It is essentially a 
Gaussian RBF network whose coefficients (w), unit means (uk) and variances 
(rjb) are estimated. When the model sufficiency null hypothesis is rejected for 
the nth observation, thenew (Ä"+ l)th basis function allocated is a Gaussian 
RBF, whose parameters are assigned as follows (similar to RAN): 

*>K+I = en        ujc+i = xn        rK+1 = r0 (14) 

with r0 being an appropriate constant. The EKF estimation algorithm has 
to be modified to accommodate the increase in parameters. The parameter 
vector pn simply tags the new parameters to the existing ones, 

Pn=[Pn-i,wK+1,u%c+1,rK+1] (15) 
and the parameter error covariance matrix becomes, 

Pn  = n 
Pn-1 0 
0 Pol (16) 

where P0 is an estimate of the uncertainty in the initial values assigned to 
the parameters and I is an identity matrix of dimension (M + 2) x (M + 2), 
where M is the dimensionality of the input space. 

Its operation can be summarised as follows: 
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• Given (xi, yi), Choose the first basis function with parameters lüi = j/i, 
ui = xi, ri = ro and Po = Pol with dimensionality (M + 2) x (Af + 2). 

• For each data (xn,yn), n = 2,..., iV, use EKF estimation to determine 
Ry = d^Pn_idn + Rn. Also determine the predicted error en = yn — 
/(x„;p„_i). 

- If |e„| < zay/R^, continue with EKF estimation to determine pn 

and Pn. 
- If |en| > zas/R^, add a new hidden unit with tujr+i = en, UJC+I = 

xn, fK+i = ro and the dimensionality of Pn_i is increased by M + 2 
rows and columns with diagonal elements of Po and 0 elsewhere. The 
EKF estimation is then applied to determine the posterior pn. 

The difference between the IncNet and the RAN is mainly in the growth 
criterion. The RAN decides to add a new unit based on the novelty of the 
current pattern [Platt, 1991]. The novelty is determined by the two criteria: 
|en| > emin and ||xn — uo|| > en> where emi„ is a measure of the desired 
accuracy, uo the nearest Gaussian centre to xn and en is decreased with time 
allowing the network to form finer and finer approximation. Finding the 
nearest Gaussian centre involves a search which adds to the computational 
overhead. 

IncNet on the other hand, adds a new unit if the prediction error is not 
within the statistical expected bounds. As a result, new units are added 
only if the existing parameters have been estimated with high confidence 
and the network complexity is not sufficient to make the errors sufficiently 
small. Unlike in the RAN, the IncNet growth criterion on the prediction error 
bound begins at a high value and decreases with training and increases after 
the addition of new basis functions. A new unit will also be added if the 
observations do not contribute to the basis functions keeping bn sufficiently 
small, ensuring a novelty detection similar to the RAN's second criterion. 

The RAN also uses LMS algorithm to adapt the parameters when a new unit 
is not added. The convergence of RAN can be increased by the use EKF, this 
extended network referred to as RAN-EKF. [Kadirkamanathan & Niranjan 
1993]. Note that we can choose to adapt either only the linear coefficients 
w or the parameters p = [w,..., uj,,...] for the IncNet depending upon the 
application. 

EXPERIMENTAL RESULTS 

The performance of the incremental network (IncNet) was compared to the 
different forms of the resource allocating network, namely the RAN [Platt, 
1991] and RAN-EKF [Kadirkamanathan 1991]. The problem chosen for the 
investigation is the Hermite function interpolation problem given in [MacKay, 
1992], where the underlying function generating the observations are 

/♦(*) = 1.1(1 -x + 2x2)exp{-|x2} (17) 

The training data comprises of 40 observations generated randomly in the 
interval [-4,-1-4].   During training, the samples were presented one by one 
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and repeated for 20 cycles. The test data contains 200 observations sampled 
uniformly in the same interval. The accuracy of the approximation achieved 
by the networks were measured by the root mean square error (RMSE) over 
the test data. Noise was added only to the training data. For details of the 
network parameters and training algorithms for RAN and RAN-EKF, refer 
to [Kadirkamanathan & Niranjan, 1993]; The IncNet parameters for the EKF 
algorithm are the same as for RAN-EKF with za = 2, r0 = 1.0. 

In the first experiment, the RAN, RAN-EKF and the IncNet were trained 
on a noisy data and their on-line performance are shown in Figure 1. The 
results clearly show the fast convergence achieved by the IncNet while RAN- 
EKF converged faster than the RAN. This is to be expected since RAN uses 
the LMS adaptation which is computationally simpler in comparison to the 
RAN-EKF which uses the computationally complex EKF algorithm. Note 
also that the growth pattern for the RANs differed significantly from that of 
IncNet. 

In order to investigate the robustness of the incremental network, varying 
levels of Gaussian noise were added to the training data, where the noise 
variance was increased from 0.0001 to 0.1. Since RAN-EKF performs better 
than the RAN, the RAN was not used in this second set of experiments. A 
fixed size Gaussian radial basis function (GaRBF) network of 16 hidden units 
was used in these tests to evaluate the advantages of using growing networks. 
This GaRBF network was trained using the EKF algorithm and is denoted 
by RBF-EKF. 

Figure 2(a) shows the network sizes achieved by the networks with increasing 
noise variance while Figure 2(b) shows the network approximation error in 
finding the underlying function. The results clearly demonstrate the supe- 
rior performance of the IncNet over the RAN-EKF which in turn performed 
better than the fixed size RBF-EKF. The IncNet formed fewer units while 
achieving the best approximation amongst the networks. It should be noted 
that with high level of noise, the IncNet and RAN-EKF parameters (R„, and 
emin respectively) should be modified accordingly, but was not done in the 
experiments - hence the relatively poor results at high noise. The results 
however demonstrate that to some degree, an overestimation of the noise 
level is unlikely to affect the final network size for IncNet and RAN-EKF. 

CONCLUSIONS 

A growth criterion has been developed from statistical inference of model 
sufficiency. Its application to the recursive estimation or on-line modelling 
problem led to the development of the Incremental Network. This Gaussian 
radial basis function network is similar to the RAN in allocation of new units 
and to its extension RAN-EKF in using the extended Kaiman filter algorithm. 
The growth criterion however is different for IncNet. 

Performance on a function interpolation problem demonstrated the ability of 
the Incremental Network to form compact network with good approximation. 
It is evident from the experimental results that the Incremental Network was 
able to use its basis functions effectively, whereas the RAN failed to use 
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the statistical information and hence assigned more basis functions than was 
needed. The approximation error was also higher for RAN. The comparison 
with RBF-EKF of 16 units also show that the growing networks provide a 
better approximation while determining the appropriate complexity. 
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Figure 1: On-line performance of INet, RAN-EKF, RAN: (a) Growth Pattern 
(b) Approximation Error. 
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Abstract 

The expectation-maximization (EM) algorithm is a suc- 
cessful statistical approach for maximum likelihood estima- 
tion of incomplete-data problems. The performance of an 
EM algorithm highly depends on assumptions made about 
the probability density function (commonly, the multivari- 
ate Gaussian) of the multivariate data. When the EM algo- 
rithm is used for classification applications, it is commonly 
done by replacing the missing values based on the estimated 
probability density function of the same class for getting the 
maximum likelihood labeling without jointly considering the 
discrimination among classes. In this paper, we propose an 
EM procedure based on a neural network inversion technique 
for improving the training accuracy using incomplete data 
sets and the classification accuracy in testing new incomplete 
data. Our approach relaxes the assumption made about the 
probability density function, and more importantly, the miss- 
ing value replacements take into account of the discrimination 
among classes. 
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1     Introduction 
Real-world regression and classification tasks may involve high dimensional 
data sets with arbitrary patterns of missing elements. Take for examples, in 
remote sensing applications, there has been a large set of satellite brightness 
measurement data (e.g., SSMI remote sensing measurements) with their cor- 
responding experimentally measured geophysical parameters (ground-truth 
data) being available [1], Unfortunately, a lot of these ground-truth data 
have one or several missing elements and thus make them infeasible for use 
as valid training data in regressing the nonlinear function of the scattering 
environment. Another example of such an incomplete data set is the "heart- 
disease" data set from the UCI machine learning database where 920 records 
in total are available for 5 categories of heart diseases with 14 attributes each. 
There are only 299 of the records are complete, the others have one or several 
missing attribute values (11% of all values are missing). 

The expectation-maximization (EM) algorithm is a very general itera- 
tive algorithm for maximum likelihood (ML) estimation in incomplete-data 
problem [2, 9]. Given the observed elements x(°) of an incomplete datum 
x = [x(°),x(m)], the EM algorithm acquires the missing elements x(m) by 

1. estimating the distribution parameters 8 (e.g., the mean vector and 
the covariance matrix) of the presumed multivariate probability density 
function P(x\6) based on the set of complete multivariate data {x} 
(and/or the available observed elements of the incomplete data); then 

2. conditioned on the estimated distribution parameters 6, replacing the 
missing elements with conditional expectation values x(m) = .E[x'm'| 

x(°),ö]; further 

3. combining the originally complete and the newly completed data to 
reestimate the distribution parameters 6; and then 

4. replacing the missing elements with new conditional expectation values 
based on the newly reestimated distribution parameters, 

and so forth, iterating until convergence. 
The performance of an EM algorithm highly depends on assumptions 

made about P(x|0) (commonly, the multivariate Gaussian) of the multivariate 
data. To relax this critical performance sensitivity to the presumed distribu- 
tion, multivariate mixture Gaussian formulations have also been proposed as 
a more general model-free estimation of density function for EM applications 
[7,4]. 

When the EM algorithm is used for classification applications, where 
the training/testing data to be trained/classified contain missing elements, 
it is commonly done by replacing the missing elements based on the esti- 
mated probability density function P(x\0k) of the same class, say fc-th, to 
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get the maximum likelihood labeling without jointly considering the discrim- 
ination among classes. More specifically, in the training phase, the missing 
elements of an incomplete datum with the known class are replaced based 
on the reestimated distribution parameters 0i_ of the corresponding class. 
These two processes iterate until convergence and the distribution functions 
{P(x|öfc), k = 1,2,..., K} can thus be used directly in a maximum likelihood 
(ML) classification framework. If a deterministic classification framework is 
preferred, then the converged and missing-element replaced incomplete data 
as well as the originally complete data can be used to train a deterministic 
classifier (e.g., a neural network) for future classification. The above proce- 
dure (either for a probabilistic or deterministic classifier) is called in our paper 
as EM training with incomplete data. After a classifier is built and ready for 
testing, the new inputs might contain missing elements. In this case, we no 
longer reestimate the distribution parameters during the process of replacing 
the missing elements. We simply test the hypothesis of the incomplete data 
being created from one of the distribution functions (i.e., one of the classes) 
and replace the missing elements based on the corresponding distribution 
functions. This procedure is entitled as EM testing with incomplete data 
in our paper. Note that in the above discussions, the EM training/testing 
procedures seldom consider the interactions of data among different classes 
in either reestimating the distribution parameters or replacing the missing 
elements. 

In this paper, we propose the EM training and the EM testing procedures 
based on a neural network inversion technique for improving the training 
accuracy using incomplete data and the classification accuracy in testing new 
incomplete data. A similar approach based on exhaustive search of missing 
values instead of our proposed systematic network inversion method has been 
proposed [12]. Our approach alleviates the great sensitivity of the classifier 
performance to the assumption made about the probability density function, 
and more importantly, the missing value replacements take into account of the 
data interaction (discrimination) among different classes. Section 2 will give 
a brief review of the neural network inversion technique and its relationship 
to the maximum a posterior (MAP) estimation of the missing elements. The 
application of the proposed EM training and EM testing procedures to the 
classification of IRIS data is presented in Section 3. Finally, in Section 5, the 
concluding remarks are given. 

2     Network Inversion of an MLP 

The forward system dynamics in the retrieving phase of an X-layer feedfor- 
ward multilayer perceptron (MLP) can be described by the following iterative 
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equations (for 1 < i < Ni+i,    0 < / < L — 1): 

N, N, 

i = i ;'=o 

Oi(l + l)     =     /(iü(/+l)) (1) 

where a,j(l) (uj(l)) denotes the activation value (net input) of the jth neuron 
at the Ith layer; 6j(l) (or wi0{l)) denotes the bias of the jth neuron at the Ith 

layer; WiAl) denotes the weight value linked between the ith neuron at the Ith 

layer and the jth neuron at the (/— l)th layer; and / is the nonlinear activation 
function (usually sigmoid). The inputs x are denoted as {aj(0),Vj}, and the 
outputs y are denoted as {oi(L),Vi}. 

2.1     Back-Propagation Network Learning 

The learning phase of an MLP uses the back propagation learning rule, an 
iterative gradient descent algorithm designed to minimize the mean squared 
error E between the the desired target vector {U} and the actual output 
vector {oi(L)} [11]: 

dE 
«y(0«=««(0-'iä^ (2) 

where 

NL ,    NL 

2 

1     NL NL 

E = E({Wij(l)}, {Oi(0)}) = «  £ ft - <L)f = - £ (U - yi)
2.     (3) 

t=i 

2.2     Network Inversion of an MLP 

The inversion of a network will generate the input vector x = {oj(0)} that 
can produce a desired output vector. By taking advantage of the duality 
between the weights and the input activation values in minimizing the mean 
squared error E (see Equation (3)), the iterative gradient descent algorithm 
can again be applied to obtain the desired input vector x [8, 5]. 

dE dE 
Oj(0)^aj(0)-^^^ = xj-^—,      V* (4) 

The idea is similar to the back-propagation algorithm, where the error sig- 
nals are propagated back to tell the weights the manner in which to change in 
order to decrease the output error. The inversion algorithm back-propagates 
the error signals to the input layer to update the activation values of input 
units so that the output error is decreased. In order to avoid the input acti- 
vation values, {o,(0)}, from growing without limits, a small modification of 
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the updating rule was usually made; 

dE 
„,.(<»<= „,.(<»-„ 5^,      V* (5) 

where Uj(0) = /-1(a;(0)) is a "pseudo" net input created to allow flexible 
gradient descent search without limiting the dynamic ranges (e.g., usually we 

assume 0 < o,-(0) < 1). 

2.3    Maximum A Posterior (MAP) Classifier Training 

In a classification application, it is normally assumed that the input vector, 
x £ Hn, belongs to one of K classes, Ck, 1 < k < K. The main objective 
of a classification task is to decide to which of the K classes the vector x 
belongs. The decision can be made based on some forms of deterministic 
discriminant function, e.g., the Euclidean distance measure. A more general 
decision rule is based on the probabilistic decision, such as the maximum, 
a ■posteriori (MAP) approach which guarantees the minimum classification 
error. In a MAP approach, for each of the classes one requires to estimate 
the posterior probability, P(Ck\x), which is usually computed via the Bayes' 

rule: 

P(C*|x) = P(X'pffiC° « P(*\Ck)P(Ck) (6) 

where P(x\Ck) is the conditional distribution (also known as likelihood) and 
P(Ck) is the a priori probability of the class Ck. 

Since P{Ck) is relatively easier to compute, most conventional pattern 
recognition literatures have been focusing on the research of estimating the 
likelihood P(x\Ck). On the other hand, when an MLP is used for this classifi- 
cation task, there is usually an input layer of n neurons corresponding to the 
n-dimensional input vector x, one or two layers of "appropriately chosen" hid- 
den neurons, and one output layer of K neurons with each one representative 
of one of the K different classes (e.g., the desired binary output vector for 1st 
class is t = [1,0,0,...,0], for 2nd class is t = [0,1,0,..., 0], etc.). It has been 
shown that the continuous-valued output activations y = (2/1,2/2, ••■> VK) of 
an MLP trained by the standard back-propagation learning, which minimizes 
the mean squared error (MSE) between the actual outputs y and the desired 
binary targets t, can be directly interpreted as a least squares estimate of the 
posterior probabilities {P(C*|x), k = 1,...,K} [10, 13]. 

2.4    Maximum A Posterior Estimation of Missing Ele- 
ments from Network Inversion 

In a neural network based classification task, to find the missing elements 
x(m), given the observed elements x(°> and the hypothesized class Ck of 
the incomplete data x, the network inversion algorithm can be applied in 
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a straightforward manner. Basically, we perform the gradient descent search 

on the missing elements x(m) = {as!-    }: 

J.m) (»0 

ox)-   ' 

while keeping the observed elements x(°) intact during the iterative inversion 

of the missing elements {E:-    }• 
It is interesting to note that simply performing the iterative inversion 

of the missing elements maximizes the posterior classification probability 
P(Cfc|x) = ,P(CJfc|x(m),x'0',)I but not actually maximizing the posterior prob- 
ability of estimating the missing elements P(x(m)|x(°), Cj.). More specifically, 
it can be easily shown by Bayes rule that 

P(x(m)|x(°),CJt) aP(Ci|x(m),x(o)) P(x<m)|x(°>). (8) 

Therefore, the iterative inversion search can be regarded as a MAP search of 
the missing elements x^m> under the approximate assumption that P(x(m)|x'0') 
is uniform. On the other hand, the standard EM algorithm finds the con- 
ditional expectation values E[x^m'\x^°',Ck] for the missing elements. In the 
case of the Gaussian distribution, this replacement can be regarded as being 
estimated via a maximum likelihood (ML) criterion. 

A more correct MAP approach to the estimation of x(m' would be the 
maximization of the product term of Eq. (8), where an adequate and differ- 
entiable formulation of P(x(m'|x(°)) is required. 

3     EM Testing and Training via Network In- 
version 

We used in our simulations the IRIS data set [3], the best known database 
in pattern recognition literature, which contains 3 classes of 50 4-dimensional 
instances each, and each class refers to a type of IRIS plant. 

3.1     EM Testing of IRIS Data 

We trained an one-hidden layer MLP (4 inputs, 2 hidden units, and 3 outputs) 
with 90 IRIS complete training data (30 data for each class). The accuracy of 
this network reached 98.3% after 1000 sweeps of training when tested on the 
remaining 60 complete data (20 data for each class). Based on the trained 
neural network, we then tested on data with missing elements of size one or 
two created from these 60 complete data. To have a statistically significant 
testing, "all" possible missing patterns were generated. For examples, in case 
of one missing element, we generated 240 data (4 possible missing patterns 
for each testing data); while in case of two missing elements, we generated 
360 data (6 possible patterns for each testing data). 
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Classification Accuracy Standard EM Inversion EM 

No Missing (60 data) 98.3 % 98.3 % 
One Missing (240 data) 96.5 % 96.5 % 
Two Missing (360 data) 83.0 % 86.0 % 

Table 1:  Comparative simulation results (percentages of classification accu- 
racy) for IRIS data classification using EM testing. 

Two approaches were used in the comparative studies for EM testing. The 
first one is the standard EM testing, where the missing elements were replaced 
by the conditional expectations .Z?[x(m'|x(0', C*] of all three classes k = 1, 2, 3. 
The joint data distributions P(x|Ct) are assumed to be single-mode Gaussian 
distributed (it is also possible to use mixture Gaussian distribution [4] or 
more sophisticated nonparametric density estimator, e.g., projection pursuit 
density [6]), i.e., 

P(x|Ct) = P(x(m\x(°)|Ct) = N(ßk, SO,      k = 1,2,3, (9) 

where the mean vector pi and covariance matrix Sjt were pre-estimated based 
on the 30 complete training data for k-th class (no further reestimations based 
on the incomplete data were done). 

After the missing elements were replaced, we then tested the newly com- 
pleted data for classification. In our simulations, we sent the data to the 
trained neural network to perform a maximum a posterior (MAP) classi- 
fication, i.e., selecting the one with largest output activation value yt = 
P(Cjfc|x(m),x(0'). We could also send this newly completed data to the pre- 
estimated density function (e.g., Gaussian distribution) for an ML classifica- 
tion, selecting the one with largest likelihood P(x^m\ x'°'|C^). 

The second approach was based on the proposed neural network inversion 
technique to obtain the estimation of the missing elements (see Eq. (7)). After 
the inversion process converged, trained neural network directly reported the 
classification posterior probabilities y* = P(Ck\xSm\ x(°)) for each individual 
class. 

The comparative performance of these two approaches is shown in Table 
1. Note that, our proposed inversion EM achieves better performance when 
two missing elements are present. For one missing element case, due to the 
highly separated class distribution of IRIS data, both methods can recover the 
missing elements and perform the correct classification without difficulties. 

3.2     EM Training of IRIS Data 

For the EM training, we started with training an one-hidden layer MLP (4 
inputs, 2 hidden units, and 3 outputs) with 30 IRIS complete training data (10 
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data for each class). This partially trained neural network was supplemented 
in training by additional 30 incomplete data (also 10 data for each class) with 
one or two missing elements of random pattern for each data. 

Two approaches were again used in the comparative studies for EM train- 
ing. The first one is the standard EM training, where the missing elements 
were "iteratively" replaced by the conditional expectations 2?[x(m)|x(°), Cj] 
of its own class Ck- The distribution parameters 0jt, k = 1,2,3, were also 
iteratively updated based on the originally 30 complete data and the newly 
completed 30 incomplete data. We again assume the joint data distributions 
of 3 classes are single-mode Gaussian distributed as given in Eq. (9). After 
the iterative replacements of the missing elements (of 30 incomplete data) 
converged, we combined this set with the originally complete data to retrain 

the neural network. 
The second approach was based on the proposed neural network inversion 

technique to iteratively obtain the estimation of the missing elements (see Eq. 
(7)), starting from the neural network trained with only 30 complete data. 
After the inversion replacements of the missing elements (of 30 incomplete 
data), we then combined this set with the originally complete data set to 
retrain the neural network (in our case, 10 training sweeps were tried each 
round). Based on the retrained neural network, another round of inversion 
replacements of the missing elements was carried out, and another round of 
neural network training was then be performed. This process iterated (usually 
10 to 20 rounds) until convergence. 

The comparative performance of these two approaches for 90 independent 
and "complete" testing data is shown in Table 2. The reported classification 
accuracy was computed based on the average over 10 trials using different 
random missing patterns. Note that both EM training methods (standard 
and inversion) with one missing element can achieve the same performance 
94.4% achieved when using 60 complete data without any missing element, 
and the performance is better than trained with only 30 complete data alone 

88.6%. 
Interesting enough to see that the inversion EM training slightly outper- 

forms the standard EM with two missing elements, and both of them achieve 
better performance achieved when using 60 complete data without any miss- 
ing element. This is possibly due to the outlier suppression capability of EM 
procedures, which replace the (noisy) missing elements with clean conditional 
expectations or network inversion values. 

4     Conclusion 

We propose EM training and testing procedures based on a neural network 
inversion technique. Our approach relaxes the assumption made about the 
probability density function, and more importantly, the missing value re- 
placements take into account of the discrimination among classes.   Simula- 
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Classification Accuracy Standard EM Inversion EM 

60 complete 94.4 % 94.4 % 

30 complete and 
30 incomplete (missing one) 94.4 % 94.4 % 

30 complete and 
30 incomplete (missing two) 94.8 % 95.6 % 

Table 2: Comparative simulation results (percentages of classification accu- 
racy) for IRIS data classification using EM training. 

tion results for classifying the IRIS data indicate the potential superiority of 
the inversion EM over the standard EM. Simulations of the proposed inver- 
sion EM is to be tested on a larger set of heart-attack data to be classified. 
Comparison with mixture Gaussian joint distribution and more exact MAP 
estimation of the missing elements will be carried in the near future. 
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Abstract— In this paper we present a constructive training algorithm for 
supervised neural networks: OSA (Oil-Spot Algorithm). It builds a two-layer 
neural network by involving successively binary examples. Its main learning 
rule, based on topological theorems on the cuts of a binary hypercube, is 
discussed. A convenient treatment of real-valued data is possible by means of a 
suitable real-to-binary codification. For binary target functions that have 
efficient halfspace union representations, the constructed networks result 
optimized in terms of number of neurons with respect to other constructive 
algorithms, as shown. 

INTRODUCTION 

Constructive training algorithms for supervised neural networks [1-10, 14-1<J] 
have been recently proposed in technical literature to circumvent the well- 
known problems of Back-Propagation, and related approaches (critical choice a 
priori of the architecture, local minima in the utilized gradient descent 
techniques and computational cost). In the case of two-class problems, several of 
them are based on the idea of trying to classify, at each step, as many example 
of one class as possible, keeping all the examples of the other class correctly 
classified. Also in the present case we apply this approach. However, with 
respect to the algorithms proposed in technical literature, we will mainly rely 
on graph theory solutions rather than learning in the usual neural sense (i.e., 
using local information and a simple learning rule). Namely, OSA (Oil-Spot 
Algorithm) is a constructive algorithm characterized by directly controlling the 
separating hyperplanes of the decision region. This result is obtained by relying 
on a topological approach, based on the representation of the mapping onto the 
binary hypercube of the input space and on the application of a learning rule 
derived by topological theorems. Our method yields the separating 
hyperplanes, taking account of both the training set and a smoothing 
generalization rule for covering the unspecified part of the mapping. 
Consequently, the separating hyperplanes are strictly related to the mapping of 
interest and they are introduced, as necessary, step-by-step under the strategy of 
separating at each step the maximum number of vertices. Therefore, the number 
of neurons, which coincides with that of these hyperplanes, is optimized. 
However, it is important to point out that this optimization only holds for 
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target functions that have efficient (small) halfspace union representations (a 
counter-example is the Parity function) [10]. 

DEFINITIONS AND ARCHITECTURE OF THE NEURAL NETWORK 

Representation of the Mapping onto the Binary Hypercube 

The problem of interest is described by a training set of M examples Pr 

(r=l,2,..,M). The r-th example Pr is an input-output pair identified by N values 

Xi(r)={0,l} (i=l,2,..,N) of the input variables and the corresponding desired 
output or={0,l}. The mapping is therefore represented in the input space by an 

N-dimensional binary hypercube CN={(Xi,X2,..,XN)e (0,1}N), whose vertex Vr 

(which correspond to example Pr) is labelled with the value of the r-th desired 
output or. From a topological point of view, CN is a connected graph where the 
nodes correspond to the vertices and the arcs to the edges. We assume that the 
training set has no internal conflicts (different outputs for the same input). Since 

CN has 2N vertices and in general M<2N, M vertices of CN will be labelled 

with a value '0' ('negative') or '1' ('positive'), while the remaining 2^-M ones 
will be 'd' ('don't care') vertices. 

Classification of the Hypercube Edges 

A vertex Vr is represented by a vector having as components the N coordinates 
Vr(i)={0,l} (i=l,2,..,N). An edge of CN is the closed line segment joining two 
contiguous vertices Va and Vb, whose coordinates differ by only one component. 
The orientation of the edge from Va to Vb (Va->Vb), that can be either positive 
or negative, is measured by: 

v,*=i[v»(o-v,«-)]. 
(=1 

Two edges are parallel if the corresponding pairs of vertices differ by the same 
component. Two parallel edges are congruent if their orientation coincides. We 
classify the edges of CN in nine types. The edge of type 1 joins a '0' vertex to a 1' 
vertex; we denote it by '0-»l'. Similarly: 'd-»l', '1->1', 'l->0', l->d', 'd-H>0', 
'0->d', '0-»0' and 'd->d' are respectively types 2, 3, 4, 5, 6, 7, 8 and 9. 

On the Positive Cuts of the Hypercube 

An entirely specified mapping is represented by a complete Boolean function 
/:BN->{0,1}. In this case all the vertices of CN are labelled with '0' or 1'. When 
a neural network is able to solve the given mapping, we define its decision region 
to be DR={XeBN//(X)=l(. DR corresponds in the hypercube CN to the set of 
positive vertices. Usually, the given training set specifies only partially the 

mapping, i.e. 2N-M vertices of CN are labelled with 'd'. Let V=V+UV"UVd be 
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the set of hypercube vertices, with V+, V and V" respectively the set of 
positive, negative and don't care vertices (thus, the cardinality of the set V is 

equal to 2^ and that of the set V+UV" to M). We define a positive cut of CN to 

be a subset of V+UV", which can be strictly separated by a hyperplane from its 
complement, i.e. the set of the remaining vertices. The previous hyperplane is 
the boundary of the cut. Let us call boundary edges those connecting vertices of 
the positive cut to vertices of its complement. We remark that type 3 ('1—>1') 
and type 8 ('0—>0') can never be boundary edges. Each positive cut is therefore a 
binary halfspace region that contains only positive or don't care vertices. 
Topologically, it is a connected subgraph of Cj\f. 

Implementation of a Generalized Decision Region with a Two-Layer Net 

The union of all the positive cuts regarding a mapping defines a topological 
region that contains all the positive, several don't care, but none negative 
vertices of Cjsj. We will denote this region as the generalized decision  region 

GDR = {Xe ßN//(X)=l or d), since it incorporates don't care vertices as a 
consequence of the adopted generalization rule. 

Figure 1: 
Architecture of the two-layer feedforward neural network. 

We consider a single hidden layer feedforward net, where all neurons are 
perceptron-like units (see fig. 1). There is a direct correspondence between 
hidden neurons and hypercube cuts. In fact, each hidden neuron implements a 
decision region that is the halfspace WX+O>0, where W is the vector of 
connection weights, © the threshold and X the input vector. The boundary of this 
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halfspace is the hyperplane WX+0=O. The single neuron of the second layer has 
the task of grouping the halfspace regions of the hidden neurons by an OR 
operation, in order to form the desired topological region. Therefore, the neural 
network implements the GDR if its hidden neurons realize all the positive cuts 
required by the mapping. 

RATIONALE OF THE OIL-SPOT ALGORITHM 

The goal of the algorithm we propose is to determine all the positive cuts 
(halfspaces) which constitute the generalized decision for the given problem. 
For achieving this result the algorithm mainly relies on four topological 
theorems on the cuts of a binary hypercube: Lemmas 1, 2 and 3 of ref. [11] and 
Lemma 7 of ref. [12]. Lemma 1 states that a boundary hyperplane can be always 
relocated in order to remove a vertex from a halfspace to include it in the 
complementary one. Lemmas 2 and 3 yield the conditions which guarantee for a 
set S of vertices the existence of a hyperplane HP which separates it from its 
complement CS. Lemma 7 has been utilized in the study of the decision regions of 
multilayer perceptrons and resumes the previous Lemmas. In summary, it states 
that any two parallel edges which cross a boundary hyperplane must do so in 
the same direction. 

The described Lemmas give us the possibility to draw up the learning rule 
which is the basis of the oil-spot algorithm. It is constituted by two conditions: 

1) All the vertices in a halfspace S must be the nodes of a connected subgraph of 

CN- 
2) Any two parallel boundary edges of S must be congruent.  

Y.: 011 a 

Vv:001 
b 

V. : 111 a. 
V : 110 

P : 101 

(a) 

V :010 V.: Oil a 

V :100 

Vv:001 

y : 100 

Figure 2: 
The vertices of C3 marked with black dots correspond to T vertices, 
the others to '0'. In this case all the boundary edges in figure are of type 
1. 
(a) It is possible to determine a positive cut which contains all the four 
1' vertices. 
(b) A halfspace that contains all the four 1' vertices does not exist. 
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Let us comment this rule with two intuitive graphical examples, where we 
want to determine if some vertices of a cube C3 are contained in a positive cut S 
(see fig. 2). 

In the first case (fig. 2.a) the halfspace which contains the vertices Vc, Ve, Vg 
and Vh can be strictly separated. In fact, they lie in a connected subgraph of C3 
and the three pairs of parallel boundary edges (Vd->Vn and Va^>Ve; Vf->Vn 

and Va->VC; Vd->VC and Vf-»Ve) are congruents (Vdh = Vae=100; 
Vfh=Vac=010; and Vdc=Vfe=-001). 

In the second case (fig. 2.b), instead, a hyperplane that separates Va, Ve, Vg 

and Vh does not exist, because the two parallel boundary edges Vf->Vn and 
Vc->Va are not congruents (in fact: Vfh=010 and Vca=-010). 

THE OIL-SPOT ALGORITHM (OSA) 

Procedure for Determining a Positive Cut 

A convenient strategy for determining a positive cut is to construct step-by-step 
a set of vertices, initially composed by only one positive vertex, controlling that 
the growth meets the two basic conditions of the learning rule. 

Step 1. We choose a vertex with label '1' which will be denoted as a candidate 
vertex. It can form with the contiguous vertices three types of edges which are 
oriented towards the considered candidate. More precisely: type 1, type 2 and 
type 3 edges ('0-41', 'd->l', and '1-41'). We call critical edges those of type 1 
('0-»l'). The critical edges can be only boundary edges, i.e. there cannot be 
critical edges inside a positive cut. If the chosen vertex has only '0' contiguous 
vertices, we can directly conclude that there exists a positive cut containing only 
it (in fact, a hyperplane that strictly separates a single vertex of a hypercube 
always exists). 

Step 2. In agreement with the first basic condition, we add to the previous 
vertex a further contiguous one with label T. The new candidate vertex is also 
characterized by three types of critical edges. When a critical edge of the new 
candidate is parallel to a previously considered one, the two edges must be 
congruent in agreement with the second basic condition. Only in this case the new 
candidate is accepted as a member of the set we are determining, otherwise it 
must be rejected. Since the rejected candidates must remain outside the set, 
during a positive cut determination we relabel them with '0'. 

Step 3. Excluding the vertices already visited, we repeat recursively Step 2. In 
this way, the candidates propagate as an "oil-spot". 

Step 4. The oil-spot propagation terminates when all the last considered 
candidates have only '0' or rejected contiguous vertices. The output of the entire 
process is the set S which meets the two basic conditions. 
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Adopted Generalization Rule 

It consists in considering as '1' all the 'd' vertices which have at least a 
contiguous one with label T, so that the unspecified part of the mapping results 
as smooth as possible. 

From a Positive Cut to a Hidden Neuron 

The coefficients of the linear equation representing the hyperplane HP which 
separates S from CS can be determined by a geometrical method. We consider a 
system of coordinates with their origin at the center Co of the hypercube Q\f. 
Let Q be the unknown vector with the origin in Co and orthogonal to HP. Q is 
characterized by being as close as possible to the vertices in S and as far as 
possible from the remaining vertices. Consequently, Q is the centroid of the 
vertices in S. The connection weights of the k-th hidden neuron to be determined, 
coincident with the coefficients of the hyperplane HP, are therefore given by: 

Wik=[?vi(lHi(0)]ß i=l,2,..,N; (1) 
where Ä-i(y) is the number of vertices in S which have the i-th component equal 
to y (y={0,l}) and ß is an arbitrary positive constant. The last parameter to be 
determined is the threshold 0 of the neuron. This quantity is characterized by 
the property that the neuron must go "on" when the input corresponds to one of 
the vertices of S and "off" otherwise. If the quantity entering the activation 
function of the neuron when the input corresponds to the vertex Vr is: 

the previous condition requires: 
zr>©k when Vre S 
zr<G>k otherwise. 

Since the set S can be separated by a hyperplane, it is sufficient to choose: 

Sk = min (z r) - -mini W ik | ® 
Vr*S 2    i 

Rarely it happens that some vertices of S lie on HP together with some 
vertices of CS. For these vertices it results zr=0]<, consequently they are not 
strictly separated by HP. In this case OSA removes them from S and considers 
them as not visited. The resulting S' is properly a positive cut. 

Network Construction 

In general (nonlinear problem), after the construction of the first neuron several 
"1" vertices of C^ do not belong to the determined positive cut (rejected or not 
yet visited). In that case, starting from them, OSA repeats the construction of 
further hidden neurons until all the "1" vertices are enclosed in a positive cut. At 
the end of the constructive process, OSA adds the second layer neuron that 
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implements the OR operation (i.e., the output neuron). We remark that, given 
the same problem, if we change the first candidate vertex OSA constructs a 
different network. We have experimented by simulations that, in these cases, 
the number of hidden neurons is slightly affected. 

Network Robustness 

Since during the successive determinations of positive cuts only the first 
candidate must be not visited, a vertex can belong to more than one cut (i.e., an 
example can be satisfied by more than one neuron). 

Convergence to Zero-Errors 

The determination of positive cuts terminates only when all the T vertices 
are visited, i.e. when all the given examples are satisfied. 

Computational Cost 

OSA considers as "1" the minority output in the training set. Therefore, the 
number of "1" is at the most M/2. The main operations of OSA are visits in a 
graph and algebraic additions (no multiplications). In the worst case, for 
determining a positive cut, the number of operations is NOPw =(M/2)(N- 
l)((M/2)-l). In practice, the number of operations for each constructed neuron is 
much less than NOPw- In the case of small halfspace unions, OSA constructs 
optimal size networks, hence the total computational cost can be considered 
polynomial. 

APPLICATIONS AND COMPARISONS 

4-Cube Cuts. The problem to be solved regards the 4-cube non-isomorphic cuts 
[11] (fig. 3). For all the topological configurations that can be strictly separated 
by one hyperplane, OSA constructs a single-neuron network. 

"t=!* 

^i=3>. 

^J 
(a) (b) 

Figure 3: 
An example of two non-isomorphic cuts of the 4-cube. 
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Random Boolean Functions. In this case the problem to be solved regards a 
Boolean function of 6 variables; we have generated at random 100 Boolean 
functions of this type. As expected, a single hidden layer network is always 
sufficient. The average number of hidden neurons found is 8.02+1.98, which is 
quite close to the one obtained by Marchand et al. [6] (7.28±0.82) and 
significantly better than the results presented in ref. [14] (20.5+3.9) and [15] 
(about 18 units in 4 layers). 

Parity Functions. In the case of Parity functions (tested from N=2 to N=8), OSA 

constructs networks with 2v^~l) hidden neurons. This result is in agreement with 
the well-known property which states that an exponential number of neurons is 
required by networks based on halfspace unions for solving Parity. 

Circular Region. The problem regards in this case the approximation of a 
circular region of 12 pixels inside a 6x6 grid (36 pixels). The X-Y coordinates of 
each cell are preliminarly converted from real to binary notations; therefore the 
inputs are 6. OSA constructs a neural network with only 4 hidden neurons, 
simpler than that obtained with other algorithms, as for instance the BLTA [8]. 

Twin spirals. The twin spirals problem (separating 194 pixels from two 
interlocking spirals, see fig. 4.a) is an extremely hard problem for algorithms of 
the Back-Propagation family to solve [13]. By means of OSA we obtain a 
solution with 44 hidden neurons. We preliminarly transform the real-valued 
input data into binary form by a suitable codification, which preserve the 
neighborhood of data (i.e., two pixels which are contiguous in the real input 
space are coded into two contiguous vertices of the N-cube). The number of inputs 
is consequently 16 instead of 2. The resulting decision region is shown in fig. 4.b. 
It is satisfactory. The time required for building the network (with a 486-based 
computer) is less than ten seconds. We note that a solution of the same problem 
with Upstart [2] and Cascade-Correlation [4] requires about ten minutes of 
elaboration time in the same conditions. Finally, we remark that the only other 
solution to twin spirals using a single hidden layer architecture, that we are 
aware of, requires 50 hidden units [16]. 

(a) (b) 
Figure 4: 

(a) The twin spirals problem training set (194 pixels in a 32x32 grid); 
(b) The resulting decision region obtained with a 44 hidden neuron  net. 
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CONCLUSIONS 

OSA is characterized by a learning rule which relies on a topological 
approach. It operates with binary data directly in the input space (binary 
hypercube). A suitable codification, that preserves the contiguity of data, can be 
adopted with good results in real-valued problems. As illustrated in 
simulations, the constructed nets are often simpler than those obtained with 
other methods. It is moreover important to note that OSA does not need of 
specific parameters to set or stopping criterion to use during training. Finally, we 
remark that in simulations the elaboration time required by the algorithm 
turned out to be lower than we expected. Further work in progress regards the use 
of the algorithm to more significant examples related with actual applications 
and its extension to the multiple output case. 
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Abstract. Architecture optimization is a fundamental problem of 
neural network modeling. The optimal architecture is defined as 
the one which minimizes the generalization error. This paper ad- 
dresses estimation of the generalization performance of regular- 
ized, complete neural network models. Regularization normally 
improves the generalization performance by restricting the model 
complexity. A formula for the optimal weight decay regularize!- is 
derived. A regularized model may be characterized by an effective 
number of weights (parameters); however, it is demonstrated that 
no simple definition is possible. A novel estimator of the average 
generalization error (called FPER) is suggested and compared to 
the Final Prediction Error (FPE) and Generalized Prediction Er- 
ror (GPE) estimators. In addition, comparative numerical studies 
demonstrate the qualities of the suggested estimator. 

INTRODUCTION 

One of the fundamental problems involved in design of neural network mod- 
els is architecture optimization aiming at high generalization performance. In 
this paper the generalization measure is defined as the average generalization 
error, i.e., the expected squared error averaged over all possible training sets 
of size TV, with TV being the number of training samples. The average gener- 
alization error, T, can be decomposed into three additive components [2], [8]: 
r = cr2 + MSME + WFP, viz. the inherent noise variance, the mean square 
model error, and the weight fluctuation penalty1. The inherent noise variance 
is caused by noise on the data which - per definition - cannot be modeled. 

'The MSME and the   WFP arc related to the squared bias and  the variance, 
respectively.  See [2] for a definition of bias and variance. 
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Presence of MSME reflects the lack of modeling capability of the neural net- 
work for modeling the current data, i.e., the network is an incomplete model 
of the data generating system. Finally, the WFP reflects the increase in av- 
erage generalization error caused by fluctuations in the estimated weights, 
which stem from the fact that the weights are estimated from a given finite 
training set. 

Architecture optimization can be viewed as a bias/variance trade off [2], 
[11] or equivalents a MSME/WFP trade off: The MSME is reduced when 
increasing the network complexity2 while the WFP typically3 increases. The 
literature provides a variety of methods for performing this trade off, in- 
cluding architecture pruning and growing schemes, as well as regularization 

techniques. 

TRAINING AND GENERALIZATION 

Consider modeling the data generating system: 

y(k)=g(x(k))+e(k) (1) 

where k is the discrete time index, y(k) is the scalar output signal, g(-) con- 
stitutes a nonlinear mapping of the p-dimensional input signal x(k) (column 
vector), and e(k) is an inherent noise signal. 

Assumption 1 The input signal x(k) is assumed to be a strongly mixing4 

strictly stationary sequence and the inherent noise e(k) is assumed to be a 
strictly stationary sequence independent on the input, white, with zero mean, 

and finite variance, cr^. 

The neural network model of the system in Eq. (1) is given by 

y(k)=f(x(k);w) + e(k;w) (2) 

where f(-;w) defines the mapping of the neural network parameterized by 
the m-dimensional weight vector w, and e(k;w) is the error signal. 

Assumption 2 The model is assumed complete [8, Def. 6.3], i.e., there 
exists a true weight vector, w°, so as to 

\fx :     f(x;w°) = g(x) (3) 

In general, only little a priori knowledge of the data generating system is 
available, i.e., most neural network models are incomplete, which result in 
non-zero mean square model error. However, a multi-layer perceptron neural 

2This statement is only true for nested families of network architectures. More- 
over, MSME may remain unchanged when adding irrelevant complexity. 

3It should be emphasized that it is possible to give simple examples where the 
WFP actually decreases when adding extra complexity [8, Ch. 6.3.4]. 

4Loosely speaking, i.e., the dependence of x(fc) and x(k + r) vanishes as |r| —► oo. 
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network with many hidden neurons is capable of approximating a large class of 
functions, thus MSME may be small relative to a~ + WFP, and the model may 
be regarded as quasi-complele. When dealing with cases where the complete 
model assumption is dubious, it is suggested to estimate the generalization 
performance by using the GEN estimator [7], [8]. 

Define the training set of Ar samples by T = {x(k); y(k)}, k = 1, 2, • • •, N. 
The model is estimated by minimizing a cost function being the sum of the 
usual mean square cost and a weight decay regularizer5: 

CN{W) = SN(w) + wTRw (4) 

where SN(w) = N'1 ^=1 e2(k;w) = A^1 ^=] [y(k) - f(x(k);w)f is the 
mean square cost and R is a ??? x m symmetric, positive semidefinite regu- 
larization matrix. Standard weight decay regularization is obtained by using 
R — KI, where K > 0 is the weight decay parameter and I the identity ma- 
trix. The presented theory is not restricted to the chosen cost function, thus 
analogous results can be obtained when e.g., using log-likelihood cost func- 
tions and more general rcgularizers, r(w;n), where ?'(•) is a regularization 
function parameterized by K. 

The weights of the estimated model are denoted the eslimated iveights, 

i.e., 
w = arg minCV(u)) (5) 

w 

Also define the expected cost function: 

C(w) = E {CN(w)} = E {e2{w)} + wTRw (6) 

where E{-} denotes expectation w.r.t. the joint input-output probability den- 
sity function. Under mild regularity conditions (see e.g., [8, Ch. 5], [12]) 
limAf-^co CJV(IV) = C(w), and the estimated weight vector w becomes a con- 
sistent estimate (A^ —> oo) of the optimal weight vector: w* = arg min^ C(w). 
Since the model is assumed complete w* is identical to w° when omitting 
regularization. However, regularization imposes a bias of the optimal weights 
towards 0. 

The generalization error of the estimated model is defined as the expected 
squared error on an test sample, [:r;j/], independent on the training samples, 
i.e., 

G(w) = E {e2(w)} = E {[}/ - f{x- w)f) (7) 

It turns out (see e.g., the discussion in [8, Sec. 6.3.2]) that G(w) is not neces- 
sarily a reliable measure of the model quality since it depends on the actual 
training set through w. In addition, it is not possible to obtain estimates 
of G(w) without perfect knowledge of the joint input-output distribution. 
Hence, the appropriate model quality measure is the average generalization 

error, e.g., [8], [11]: 
r = ET {G(w)} (8) 

sT denotes the transpose operator. 
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where Er{-} denotes expectation over all training sets with N samples. That 
is, averaging is w.r.t. fluctuation in w due to different training sets. Define 
Tx = {x(k)} and % = {e(k)}. As the noise and the input are assumed 
independent, the expectation w.r.t. T is carried out as6: 

ET{G} = ETX{ETAG\TX}}} (9) 

ESTIMATING THE AVERAGE GENERALIZATION ERROR 

The objective of this presentation is to obtain an estimate of T defined in 
Eq. (8) calculated in terms of quantities derived from the estimated model. 
From a statistical point of view it is possible to set different quality require- 
ments on the estimator. Here the following requirements are made: 

Definition 1 The estimator starched for, T, is required to be consistent, and 
unbiased to order 1/N, i.e., T —> T as N —»■ oo, and ET{T} = T + o(l/N), 
where o(-) is the order function. 

The basic tool for deriving an estimator are second order Taylor series ex- 
pansions of the average training and generalization errors, as follows: 

ET{SN(w)}   »   ET {SN{W
0
)} + ET\ 

dS"(™°} At 
I    dw 

+Er{AwTHN(w")Aw} (10) 

ET{G(w)}    «    ET {G(W°)} + ET ( 9GK) Aw\ 
{   dw J 

+ET {AW
T
H(W°)AW} (11) 

where Aw is the weight fluctuation Aw = w — w°, HN(W) is the Hessian 
matrix of the mean square cost function, i.e., 

1 rfi <?    I     \ 1    _^_ 
HN{W)

 
= 2 dwdZ   =N^ ^ W)^T^ w) ~ *(*■> w)<k'w)    (12) 

k=i 

defining tj) as the instantaneous gradient vector of the model output, if)(k;w) = 
df(x(k);w) I dw. Finally, # is the second derivative matrix of the model out- 
put, #(&; w) = dij)(k; w)/dwT. Similarly, H(w) is the Hessian matrix of the 
generalization error, given by 

H{W) = \Wh^ = E{^{w)i,T{w)-^{w)e{w)} (13) 

In order to ensure the validity of the Taylor series approximations it is required 
that Aw is sufficiently small. As mentioned above w is a consistent estimate 

6Note that expectation over the training set, T = {x(k);y(k)}, equals expecta- 
tion over input and inherent noise samples, cf. the model definition Eq. (2). 
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of io*; however, w* does not. collapse onto w° unless R — 0. Consequently, 
it is expected that the Taylor series are valid for sufficiently large N and 
sufficiently small R. 

The appendix below provides a brief evaluation of the individual terms of 
Eq. (10), (11). The result is: For N > 2mi - m2, 

ET{SN(w)}    =    ^(l-2"V?"2)+M' + °(1/yV) (14) 

T    =    a'i(l + ^)+M + o(l/N) (15) 

where ni\, m2 defines two different effective number of weighis : 

mi = tr [Hiw^J-^w0)] , m2 = tr [H(W
0
)J-

1
(W

0
)H{W°)J-

1
(W

0
)}   (16) 

J(w) = H(w) + R is the Hessian matrix of the expected cost function which 
is assumed to be invertible, and tr[-] is the trace operator. 

M' = (w°)T RJ-\w°) (H(W°) + ~2Kl^K2) J-H™°)Rw°       (17) 

with K\, K> being 4th order moments, as shown by8: 

Kx    =    E{(W,
T
-H) J-

1
(W

T
-H)} (18) 

K2    =    ^{(^V'T-H)j-1fTJ-1(^T-H)} (19) 

M equals M' except that the term K\ is absent. In general, M and M' are 
negligible compared to the remaining terms in Eq. (14), (15) when 1) using a 
rcgularization matrix close to the optimal setting Eq. (24), and when 2) the 
signal-to-noise ratio, V{g(x)}/a'^, is reasonable large. 

Neglecting M, M' and eliminating of in Eq. (14), (15) leads to: 

f =        7V
0
+m

|
2 ET {SN(W)} ,     N > 2mi - m2 (20) 

N — 2mi -f m2 

which is unbiased to o(\/N). Notice that elimination of cr'j introduces terms 
proportional to TV--7, j > 1. This seems inconsistent; however, for practical 
purposes the form is convenient since T typically is an underestimate of T 
on the average. In the case of a complete linear model which is estimated 
without regularization [3] and [8, Theorem 6.10] support this statement. 

The suggested estimator may be viewed as an extension of the classical 
FPE estimator [1], FPE = ET{SN(w)}(N + m)/(N - m), in which the 

7If. is easily shown that m\ > mo > 0 thus 2r7i! — m2 > 0. Moreover, 
1) mi = 77(2 = m. for R = 0 and H(w°) non-singular, and 2) mi — 0, rri2 —>■ 0 as 

||R|| ^ oo. 
8Ki, K2 are of order one, and limited by assumption. Further note that all 

involved quantities are evaluated at w°. 
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number of weights m is replaced by the different effective number of weights, 
m2 and 2m\ — m2. Moreover, the estimator can be interpreted as a special 
version9 of the GPE estimator [10], [11] where the inherent noise variance is 
estimated by: of = Er {Sjy(w)} N/(N — 2m\ + 1712)- In order to construct 
a T-estimator from observable quantities, estimation of the noise variance is 
indeed important. This problem is not directly addressed in [10], [11]. The 
estimator suggested in [10] reads: of = Er {SN(W)} N/(N — mi), which 
obviously differs from the one derived from Eq. (14). In conclusion - as 
suggested in [9], [11] - it is not possible to define a single quantity mi which 
expresses the effective number of weights in the model, since of should be 
estimated from 2mi — m.2 rather than mi effective weights. 

For practical purposes the quantities in Eq. (20) are estimated from ob- 
served quantities. An unbiased o(l/N) estimator within the second order 
Taylor series expansion Eq. (10), (11) is the the Final Prediction Error esti- 
mator for Regularized models, as shown by: 

FPER = Ar  
N

nt TO2 ~   SN(w),    N>2fh1- m2 (21) 
N — 2mi + m2 

where 

mi = tr [jBTjv(*&)J^1(«i)] , m2 = tr [HN(w)J^(w)HN(w)J^(w)]    (22) 

and JN(W) = HN(W) + R is the Hessian matrix of the cost function which 
is assumed to be invertible. 

OPTIMIZING THE WEIGHT DECAY REGULARIZATION PA- 
RAMETER 

For simplicity, consider simple weight decay regularization, i.e., R= KI where 
K is the weight decay parameter. As mentioned in the introduction, trading 
off weight fluctuation penalty ( WFP) and mean square model error (MSME) 
leads to an optimal setting of K. In [6] this problem was addressed for linear 
models and the following may be viewed as an extension of this work. 

Inspecting Eq. (15) it turns out that10 M = MSME and WFP = <r^m2/N. 
The optimal value, K0pt, is found by solving: 

dWFP     dMSME     n 

^- + -l^- = 0 (23) 

As expected, limjv->oo WFP = 0, since it measures the contribution due 
to a finite training set. Consequently, in order to reach the minimal aver- 
age generalization error r = of the restriction limjv-foo MSME = 0 should 
be met.   The «-dependence of the individual elements of K\ is (A; + K)"

1 

9Notice that this coincidence is based on various important assumptions, e.g., 
the model being complete and the negligibleness of M. 

10Notice when determining an optimal n, M is not neglected in Eq. (15). 
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where A; is the i'th eigenvalue of H(w°). For K2 the element dependence is: 

n?-i(^i»+K)-1- *n summary, M is a sum of addends which «-dependence are 

given by: K
2
 Y\Li(Xir + «)_ V G {2, 3, 4}. That is, to fulfill the requirement 

limTv-K» MSME = 0, limjv-oo « = 0 should be imposed. The solution to 
Eq. (23) can therefore be expressed as: nopt = n'opJN + o(l/N). Expanding 
the addends of Eq. (23) to first order in K and \/N and solving for K gives: 

«- = f, -l"X\ -+°(1/'v) ,24) 
•<v     (ur)   lfT(u; jw 

where iT+(w0) is the Moore-Penrose pseudo inverse. Suppose the eigenvalues 
of2f(w)°)obey: Ai > • ■ • > An > 0 and A; = 0, Vi G [n+l;m]. The associated 
eigenvectors are assembled (as column vectors) in the matrix Q. The pseudo 
inverse then reads: H+(w°)i = Q diagfAj;1, • • •, A"1, 0, • • •, 0] QT. 

Notice two facts concerning Kopt: First, it is proportional to the inherent 
noise variance. If no noise is present WFP = 0, thus one should not introduce 
MSME by employing a non-zero n. Secondly, Kopt is inversely proportional 
to the length of the optimal weight vector weighted by the elements of the 
Moore-Penrose pseudo inverse Hessian matrix. This is due to the fact that 

we regularize against the zero weight vector. 
Since the optimal weights w° are unknown, it is impossible to calculate 

Kopt directly; however, in [4] adaptive regularization is studied for a linear 
one-dimensional model, and [5] presents an adaptive regularization scheme 
for the purpose of designing compact time series models. In addition, it is 
possible to show that the average generalization error is reduced when using 

0 < K < 2Kopt. 

NUMERICAL EXPERIMENTS 

To substantiate the qualities of the suggested FPER estimator Eq. (21), nu- 
merical comparisons with the FPE and GPE estimators11, 

FPE = ^^SN(w)     GPE = ^±^SN(w) (25) 
N — m N -mi 

is - for convenience - performed for a linear model. The linear data generating 
system (dimension m = 15) is given by: 

y(k) = xT (k)w° + e{k) (26) 

where x(k) is an i.i.d. Gaussian distributed sequence with zero mean and, the 
elements of H - E{xxT} are selected randomly, resulting in an eigenvalue- 
spread approx. equal to 900. The optimal weights are drawn independently 
from a standard Gaussian distribution.   The inherent noise is a Gaussian 

11 As regards the GPE estimator, the noise variance estimation suggested in [10] 
is employed. 
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zero mean, i.i.d. sequence which is independent of the input with variance 

of = 0.25■ EUxT(k)w°)2\ = 0.25 ■(w°)THw0. That is, the signal-to-noise 
ratio equals approx. 6 dB. 

Q = 2.4T04 independent training sets of size N in the interval [15; 35] were 
randomly generated, and the weights of the associated model were estimated 
using a simple weight decay regularizer with K = 2/£opt- 

The "true" average generalization error was estimated by To — (G(w)) 
where (•) denotes the average w.r.t. the Q training sets, and 

G(w) = E {[e + xT (ID
0
 - £)]2} = a] + (w° - w)T H (w° - w)     (27) 

The quality of the estimators12, f (T) G {FPER, FPE, GPE), is quantified 
by three different measures: 

r(T) - rG 

NB = r^T2    TG
 • 100%       NRMSE = -L: _ '- . 100%  (28) 

TG TG 

n (f) = (fi ( |f (T) - f G| - |fP^(T) - f G| ) ) (29) 

iV5 is the normalized bias, NRMSE is the normalized root mean square error, 
and n is the probability that FPER is closer to the true estimate, TQ, than 
another estimator, T. Here fi(-) denotes the step function. Fig. 1 shows 
plots of the considered measures. NB of FPER is smallest for all training 
set sizes; however, as the training set size approaches infinity all estimates 
becomes identical as K0pt —+ 0. For N = 35 NB(FPER) is approx. half the 
NB(GPE). The NRMSE's of and GPE are approx. identical, thus one could 
claim that the normalized bias improvement of FPER relative to GPE is lost 
at increased variance13. However, the probability that FPER is closer than 
GPE to the true T is around 0.65; consequently, FPER should be preferred 
to GPE. FPE shows extremely bad performance in all figures and moreover, 
FPE is negative, possibly infinite when TV < 15. 

CONCLUSION 

This paper presented an consistent and o(l/JV) unbiased estimator of the av- 
erage generalization error for a complete neural network model, called FPER. 
The network is trained by using a cost function which is the sum of the mean 
square error and a quadratic regularization term. The estimator may be 
viewed as an extension of the FPE and GPE estimators [1], [10]. It turns out 
that the complexity reduction obtained by using regularization is expressed 
in terms of two distinct effective number of weights, unlike defining a single 

12Notice, the dependence on the particular training set, T, is emphasized. 
13 That is, mean square error the minus squared bias. 
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Figure T. Comparison of FPE, GPE and FPER. The FPE curves are not calculated 
for N < 15, and the upper panels are cutoff at +100%. The bottom right panel 
shows the average effective number of weights (mi ), (T7?2 ) as well as 2(mi ) — (rri2 }. 
quantity reflecting the effective number of weights, as suggested in [9], [11]. 
Moreover, an expression for the optimal weight decay parameter is presented 
and discussed. The potential of the FPER estimator was demonstrated by 
comparative numerical studies. 
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APPENDIX 

Evaluation of the terms in Eq. (10), (11) is based on two observations: First, 
8CN{W) j dw = 0 since w minimizes CK(W). A first order Taylor series 
expansion of öCN(W) j dw reads14: 

dCN(w°)     d2CN(w°) 

dw 
+ 

dwd 
Aw = 0 

w ' 
(30) 

14 Expanding beyond first order result in 3rd and higher order derivatives of the 
cost function which already are assumed to be negligible. 
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Subsequently, a few algebraic manipulations result in: 

N 

Aw = J^iw0) ±-Y,Tl>(k;W°)s(k)-Rw° 
N
k 

(31) 

where JN(W°) is the non-singular Hessian matrix of the cost function. 
The second observation is an expansion of the inverse Hessian obtained 

by repeatedly using the matrix inversion lemma [8, App. A,B]. The result 

is: Jjr1 (w0) = J~\wO) - A^1 • J-^w^OJ-^w") + ■■■ , where 0 = 
HN(w°)-H(w°). 
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Abstract—The sparse feedback in reinforcement learning problems 
makes feature extraction difficult. We present importance-based 
feature extraction, which guides a bottom-up self-organization of 
feature detectors according to top-down information as to the im- 
portance of the features; we define importance in terms of the 
reinforcement values expected as a result of taking different ac- 
tions when a feature is recognized. We illustrate these ideas in 
terms of the pole-balancing task and a learning system which com- 
bines bottom-up tuning with a distributed version of Q-learning; 
adding importance-based feature extraction to the detector tuning 
resulted in faster learning. 

INTRODUCTION 

In reinforcement learning problems the feedback is simply a scalar value 
which may be delayed in time. This reinforcement signal reflects the success 
or failure of the entire system after it has performed some sequence of actions. 
Hence the reinforcement signal does not assign credit or blame to any one 
action (the temporal credit assignment problem), or to any particular node 
or system element (the structural credit assignment problem). 

Since the reinforcement feedback is not an error signal for individual system 
elements, it gives little guidance for feature extraction, the on-line develop- 
ment of the system's input representation. Acting properly depends on both 
identifying the current context as well as selecting an action appropriate to 
that context, but the scalar feedback signal does not indicate which of these 
processes is at fault. It does not indicate whether the system should tune 
its feature detectors, or the weights placed on the outputs of those feature 
detectors, or both. 
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IMPORTANCE-BASED FEATURE 
EXTRACTION 

We consider reinforcement learning as the composition of two subproblems: 
feature extraction and "action learning" (correlating the success of actions 
with their context). Our approach is to solve these two subproblems with 
modules which are separate but loosely-coupled. The feature extraction mod- 
ule tunes detectors by a kind of competitive learning, and the performance 
module learns the value of the system actions in terms of the emerging fea- 
ture detectors. A unique feature of our approach is that the detector tuning 
is guided by information from the performance module regarding the "im- 
portance" of the detectors. 

We define "important" features to be those which enable the system to rec- 
ognize situations where one action is preferable over another. One action is 
preferable over another if it is likely to lead to better reinforcement than the 
other. If the system is designed to model the input space, all areas of the 
space may be equally important. In contrast, if the learning task is a control 
task, then the only important features are those which distinguish between 
contexts that require different behaviors. Therefore, important areas of fea- 
ture space are those for which the values of the system's actions differ greatly. 
Regions of feature space for which the system's actions have the same values 
are unimportant, no matter how frequently these regions are encountered. 

In many domains the important features will occur frequently, so that feature 
extraction based on frequency will act much like importance-based feature 
extraction. But when there are important features which are infrequently 
seen or frequent features which are unimportant, importance-based feature 
extraction will enable the system to focus on the features which it needs to 
guide its behavior. Therefore we expect that importance-based feature ex- 
traction will outperform frequency-based feature extraction when frequency 
is not a reliable indicator of importance. 

THE LEARNING SYSTEM 

The learning system receives four inputs which indicate the system state: the 
position and velocity of the cart on its track, and the angular displacement 
and velocity of the pole. The system monitors the highest and lowest values 
of these inputs and automatically scales them; the result is that each input 
appears to the detectors to have the same size range. The scaled inputs 
feed into a layer of feature detector nodes, which in turn feed into a layer of 
effector nodes which represent system actions. 

In the detector layer, the system enables the N detectors closest to the current 
input, and normalizes their outputs; the remaining detectors are set to 0. The 
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effector nodes simply calculate a weighted sum of the feature detectors. The 
winning effector triggers the associated system action, unless the effector 
values are very close, in which case the choice is made randomly. 

The detectors are tuned by moving the "closest" detector toward the current 
point in input space. Our system is unique in defining "closest" according 
to a rule which combines the Euclidean distance and the importance of the 
detector. This results in a kind of importance-based feature extraction, but 
ordinary frequency-based feature extraction results as a special case when the 
importance parameter is set to 0. For the pole-balancing problem we define 
importance according to the difference between the two effector weights for 
a given detector. If these weights arc equal, the detector contributes equally 
to the effector nodes for "push left" and "push right." Such a detector is 
judged "unimportant" because it has no influence on the system's behav- 
ior; therefore, our system gives precedence to retuning these unimportant 
detectors. 

The weights between the detectors and effectors are then updated by a fuzzy 
version of Q-learning [9], In our system, the output value of an effector 
represents a Q-value: the predicted reinforcement for taking that action from 
the current system state. Therefore, an important detector is one which 
predicts very different reinforcement values according to which effector node 
activates. Such detectors are valuable because they detect features which are 
directly relevant to choosing the best action in order to satisfy system goals. 

The following sections describe the components of the system in greater de- 
tail. 

Input Scaling and Detector Initialization 

The learning system automatically compensates for the fact that the inputs 
have different ranges. During the first learning trial the system acts randomly 
and limits its learning to finding the extreme values of its input components. 
As learning progresses, the system updates these values so it can scale each 
input accordingly. The scaling factor used in the detector's distance calcula- 
tions is ßk = 2/(highk — lowk), where highk and lou'k are the extreme values 
seen for input component x^. 

The feature detectors are initialized as a lattice within the hypercube 
[—0.1,0.1] , where M = 4 is the dimensionality of our feature space for 
the pole-balancing problem. 
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Feature Detection Module 

Each detector node, i, computes its Euclidean distance to the current input 
vector according to 

e-disti= J^^liPk - xk)2 

Here x = {x1,x2, x3, x4) is the vector of system inputs, and c = (clt c2, c3, c4) 
is the center for detector i. (ik is the scaling parameter described above for 
input component k. 

The output of each detector is simply the reciprocal of this Euclidean dis- 
tance, truncated to the range [0, 1000000]. The system then inhibits all but 
the top N detectors, and scales their output values so that the sum of their 
squared values is normalized to unity. 

The tuning rule for detector i depends on the importance of i, as well as 
detector i's closeness to the current input vector. We define importance in 
terms of the weights witl and w;,2, which are the weights from detector i to 
the effector nodes for "push left" and "push right," respectively. Thus 

impi = 0.5 | Witi - Wj-,2 | 

which is in the range [0, 1], since wtj is in [-1,1]. We define closeness in terms 
of the Euclidean distance and the importance: 

closei = e.disU(l + A imp,-), 

with the importance factor A > 0. Note that with A = 0, the system just 
tunes the closest detector according to the Euclidean distance; we call this 
frequency-based feature extraction. 

Then detector i's center is tuned by 

i _ j  (1 - a)c' + ax    if closet = minfc{closek} 
c  — 1   c* otherwise 

The idea of frequency-based feature extraction can be expressed in differ- 
ent ways, but an advantage of the simple tuning rule used here is that it 
allows direct comparison of importance-based and frequency-based feature 
extraction by simply changing the value of the parameter A. 

We used N = 10 in our simulations, producing a fuzzy representation of 
classification. Note that N = 1 causes the feature representation to be a 
partition of disjoint regions. 
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Effector Module 

Each effector value represents a distributed version of a Q-value: 

effj(t) = Yiu>ij(t)deti(t) 
i 

where eß) is the output value of effector j, deti(i) is the output value of 
detector /, and «),-/(<) is the weight on the link between i and j. 

The system evaluates its state according to two quantities: 

goodness(1) — max{e/ffc(tf)} 

r(t.) =   reinforcement from environment at time / 

The weights «•,■,■ from detectors to the winning effector j are updated as 
follows: 

_ /   «-WO + lMeti(t)(r(t + 1) " goodmss(l)) if i- ^ 0 
Wij(1+\) - |   ^^ + ji(let.(t)(. g00dn,ss{t + 1) - (joodncss(t))    otherwise 

where - £ [0. 1] is a discount factor. The weights to the other effectors are 
not updated. Note that this algorithm may be regarded as a fuzzy version 
of Q-learning. Indeed, if the input representation is a partition (i.e., exactly 
one detector is active for each input, state), the predicted values, effk, are 

exactly those of Q-learning. 

POLE BALANCING 

The pole balancing task has been studied by Barto, Sutton and Anderson 
[3], Anderson [1] and others. The task involves a wheeled cart on a track, 
with a pole hinged to the top of the cart. At each time step (0.02 second 
interval) the controller must decide whether the cart should apply a force to 
the left or to the right, in order to keep the pole balanced vertically. The 
trial is judged a failure when the pole falls too far (> 12 degrees) to either 
the left or the right, or when the cart falls off the track (cart position, in 
meters, outside the range [-2.4,2.4]). The controller's input consists of five 
values: the four system state variables described above, and a reinforcement 
signal of-1 when a trial fails. The output of the controller is a binary value 
indicating a push on the cart either to the left or to the right. 

RESULTS 

We implemented the pole and cart dynamics according to the equations given 
in [2], The criterion for a successful run was learning to keep the pole balanced 
for a trial of 100000 steps, which represents slightly more than half an hour of 
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Figure 1: Number of trials vs. lambda 

balancing in real-time. For each experiment, we made 15 runs with different 
random initialization seeds. In the first experiment, we set the value of 
the importance parameter, A, to 1.0 (importance-based feature extraction). 
All the runs were successful, with an average of 458 failed trials until the 
successful trial; the standard deviation was 260 trials. The second experiment 
was set up like the first, but with A = 0 (frequency-based feature extraction). 
Results were similar; all runs converged after an average of 537 trials, with a 
standard deviation of 188 trials. 

For our second set of experiments we modified the simulation to initialize the 
pole to a six degree tilt, with the direction of tilt chosen randomly. Otherwise 
the experiments were set up exactly as before. Figure 1 shows the perfor- 
mance of the system as a function of the parameter A. The solid line plots 
the average number of trials that were needed to meet the success criterion 
for each value of A; the dotted lines indicate one standard deviation above 
and below the average. We note that with A = 0 the system took nearly 
twice as long to learn to satisfy the success criterion as it did for A = 1.0. 

Figure 2 shows the final distribution of the detectors in (cart position, pole 
angle) space after two successful runs. The detector set on the left used 
frequency-based tuning, and the set on the right used importance-based tun- 
ing. We observed that our importance-based tuning created a fairly even 
spread of detectors through the feature space, while the frequency-based fea- 
ture extraction (A = 0) resulted in more clustering of the detectors about the 
extreme values of the inputs. As a result, the system may have had more 
difficulty achieving a tight control of the cart, because the detectors were 
optimized for states close to failure. A possible explanation for this effect is 
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Figure 2: Distribution of detectors in (cart position, pole angle) space. The 
left figure shows the detector set after a successful run using frequency-based 
tuning. The right figure shows the detector set after a successful run using 
importance-based feature extraction. 
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that small pole angles can be important but are not very frequent at first, 
since the system is failing often. Frequency-based feature extraction methods 
aim to cluster detectors according to the probability density function of the 
system inputs, so they may be led to give undue attention to detecting these 

failure points. 

Our system performed input scaling, feature extraction and action learn- 
ing on-line, and successfully learned the pole-balancing task. We feel that 
our results show the promise of combining importance-based feature extrac- 
tion with temporal-difference methods such, as Q-learning. In our system, 
importance-based feature extraction resulted in lower learning times. These 
results are for the simplest type of importance-based tuning, which simply 
selects detectors based on their importance. We are currently extending 
these ideas to algorithms which actively tune detectors to regions of greater 

importance to the system. 

RELATED WORK 

Most research in reinforcement learning explores feature extraction either 
purely in terms of the top-down feedback, or totally as a result of bottom-up 
self-organization. Importance-based feature extraction combines elements of 
both approaches. We propose that feature extraction be done by a bottom- 
up competitive interaction among feature detectors, but that it be guided by 
top-down information as to the importance of the features. 

Barto, Sutton and Anderson [3], Sutton [7] and others have constructed learn- 
ing systems composed of a critic module and an action module; the critic 
module learns to predict the reinforcement feedback, and the action mod- 
ule learns to perform the task based on feedback from the critic module. 
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Our approach differs from theirs by separating feature learning from action 
learning, since we feel that feature extraction is a separate problem, which 
requires additional information. Anderson [1] reports results for a similar sys- 
tem which used back propagation to learn features in the pole-balancing task. 
This system required around 5000 failed trials before the feature detectors 
emerged, with learning proceeding quickly after that point. In comparison, 
our importance-based feature extraction system never took more than 1000 
failures to reach a successful trial in the original pole problem. Whereas An- 
derson's back-propagation system tuned features according to the top-down 
feedback, our system merely uses top-down information to guide a bottom-up 
competitive learning which tunes the detectors. Our position is that detector 
tuning requires optimization of some kind of importance measure, which is 
absent in typical gradient-descent tuning. 

Holdaway [4] used competitive learning for feature extraction, but for a su- 
pervised learning task. His feature extraction module was trained off-line and 
used Kohonen's SOM [5], which produces a feature set based on the frequency 
of the input data points. We note that a similar kind of frequency-based fea- 
ture extraction is a special case of our algorithm, obtained by setting the 
importance parameter, A, to 0; however, this differs from Kohonen's SOM 
by not decreasing the learning rate or tuning window with time, since our 
system is designed to be able to continuously adapt to changing conditions. 
Wang and Hanson's tuning rule [8] is similar to ours, but uses a "win-rate" 
parameter instead of our importance parameter. Their aim is to make the 
detector set correspond more closely to the probability density function of 
the inputs by equalizing the winning rates of the detectors. In contrast, our 
aim is to make the detectors relevant to the system's actions and goals by 
retuning those detectors which are unimportant. 

CONCLUSION 
We feel that constructing good input representations is one of the impor- 
tant problems in neural network learning. A common approach is to use 
top-down feedback with gradient-descent to produce feature detectors in a 
hidden layer of nodes. This strategy works poorly for reinforcement learning 
problems because of their sparse, delayed feedback signals. Our work suggests 
that combining top-down feedback with bottom-up self-organization may be 
a more effective technique for feature extraction in reinforcement learning, 
when the effect is to guide feature extraction by the importance of features, 
rather than by their frequency. The simplicity of our model shows that such 
mechanisms need not be complex in order to be effective. We conclude that 
importance-based feature extraction is a promising basis for further studies 
in reinforcement learning. 
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Abstract 

This paper describes a design algorithm that has been developed to 
calculate the number of hidden nodes required and compute a good set of 
starting weights for the Multilayer Perceptron (MLP). There are significant 
advantages to being able to calculate the number of hidden nodes required. 
The proper choice of the number of hidden nodes results in shorter training 
times, better generalization, and simpler computations in implementation. 

This method is then used to design an efficient, effective MLP for multiple- 
class decision using these simplified binary-decision neural networks. The 
resulting algorithmic structure has an efficient pipelined implementation. 
Simulations describe the application of the design algorithm and parametric 
classification of a transient signal. A modified wavelet feature 
representation is introduced as an input to the neural networks associated 
with arrival time discrimination. 

1 Introduction 

Neural networks have been used to solve a number of difficult problems and these 
networks arc particularly useful when the statistics associated with a mapping of 
received inputs to a desired output are not completely known and/or are nonlinear. 
The Multilayer Perceptron (MLP) yields a simple feedforward network that 
accomplishes this mapping. 

Although a popular method for training the MLP, the backpropagation algorithm [1] 
is often criticized for the length of time it takes to converge (if it converges) and the 
potential for settling into a local instead of global minimum. There have been a 
number of techniques proposed to improve the backpropagation algorithm by 
optimizing parameters, speeding up the gradient descent, pruning unnecessary 
weights, and using clustering algorithms to define the structure. 

0-7803-2026-3/94 $4.00 © 1994 IEEE 61 



The general mapping formulas in the literature generally lead to more nodes than 
necessary and longer training times. The structure of the network is critical to 
successful implementation, but often the number of hidden nodes in an MLP is 
chosen arbitrarily and modified by trial and error. Too few nodes do not properly 
characterize the mapping and make convergence difficult. Too many nodes will 
improve performance on the training set but will reduce the ability of the network to 
generalize to new examples [2J. The design method described here computes the 
number of hidden nodes required and the starting weights. 

2.       MLP Design Algorithm 

2.1      Using Singular Value Decomposition (SVD) for Design 

Let us consider the transformation from an input vector to the set of the hidden-layer 
node outputs as an approximate projection from the input space onto a subspace. 
From this point of view one suspects that the SVD can provide some insight into a 
better starting point for weights in Multilayer Perccptron learning algorithms. 
Reference |3l describes the motivation for using the SVD and the development of a 
test statistic [4] to consider the binary classification of a signal vector between two 
subspaccs in the presence of white Gaussian noise. The hypotheses arc: 

H]: Signal present in S: S + N (signal subspace) 
H(j: Noise only A: N (alternate subspace) 

The Generalized Likelihood Ratio Test can be written as 

tl^l ~  tl^l  <    ^ (1) 
energy in S      energy in A       threshold 
 „ ■ 

teat statistic 

where Ps is the projection operator for S and PA is the projection operator for A. 

This test statistic is characterized in terms of the covariancc matrices corresponding to 
the signal subspace (represented by R$) and the alternative subspace (RA) and the 
likelihood ratio test is written as 

test statisticT threshold 

(2) 

62 



We use the following S VD of the covariancc matrix product 

RA"1RS = UXVT (3) 

where U is a unitary matrix and X is the diagonal matrix of singular values of 

RA
_1

RS- The test statistic is then written as a sum 

T = X»i>|2 (4) 

where d; are the diagonal elements of X and ujj the jth column of UT. This 
representation of the GLRT provides a useful tool for designing and training the MLP 
and computing a starling point for the weights. 

2.2     Calculating the Number of Hidden Nodes 

If the input-to-hidden-layer weights are viewed as approximately performing the same 
projection operation, the same covariancc matrices can be used: 

Rs = E [SST] 

RA = E [AAT] (5) 

where S is a matrix composed of only examples from the Hj class and A is a matrix 
composed of the Ho class patterns. 

The SVD of the correlation matrix product: 

RA"1RS = UXVT (6) 

yields a diagonal matrix X. Modeling the falloff of the singular values as a simple 
exponential curve allows us to determine a representative time constant by taking the 
natural log and rearranging terms. This value is approximately the number of hidden 
nodes (N) required. Regardless of the technique used, the rank N of X can be taken to 
be the necessary number of hidden nodes. The rank N is less than K where K is the 
dimension of the input and the size of the R square matrices). 

This procedure has been successful for a class of problems where there is a single 
output node. For the binary hypothesis test, the form of the likelihood ratio shows 
that only this one output node is needed. With the input layer defined by the input 
data, the hidden nodes calculated above, and the specification of one output, the 

architecture is now defined. 

63 



Neural Netwo* ROC: 2MB 
1 

0.9 

—i  i,—•*• i 1 1—      i         i   \ 1  

0.8 

07 .<-'' 

9    0.6 
.0 

/ 

|    0.5 •   1   / 
3 
°«    0.4 1/                      « Competed Starting Weights 

0.3 
f                         — » Random Starting Weights 

0.2 -/ 

0.1 j 
0  1 1 1 i i i i i_...      i 

0      0.01     0.02    0.03    0.04    0.05     0.06     0.07     O.C 0.09     0.1 

P (false alami) 

Figure 1: Improved Performance Using Design Algorithm 

2.3     Computing the Starting Weights 

If only the I'irsl N diagonal elements of X are used, then only the first N columns of U 
arc relevant. Therefore, the matrix U in the SVD result (6) directly reveals the 
starting values for the input to hidden weights. Because U is a K x K square matrix, 
taking the first N columns results in the weight matrix W (IH), which is K x N as 
required: 

W (IH): [U]   u2  ...  uN] (7) 

The likelihood test statistic can be used to define starting weights from the hidden 
layer to the one output node. Using the diagonal elements of I, these starting values 
arc: 

w(H0) = Idj 

l=j 

which produces a matrix W (H()) that is N x 1 as desired. 

(8) 
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Figure 2: Multistage Implementation for Transient Frequency 
Feature Extraction 

3.       Transient Binary Classification Example 

For the first binary classification example [5,6] we test for the presence of a signal 
component is a prescribed cell in the time-frequency sub-region. 

The training set X contains examples of the time-frequency phase sampling and is 
separated into an S matrix comprised of the H] cases and an A matrix with the HQ 

examples. Computing the covariance matrix product and performing the SVD 
described in Equation 6 and the calculations described in the algorithm yields a value 
of 4 for the number of hidden nodes. The first 4 columns of U are utilized as the 
starting weights from the input to hidden layers. The first 3 singular values are 
converted as shown in Equation 8 to the starting weights from the hidden layer to the 
output mode. 

The same problem was addressed with the original training set and random weights. 
A network of the same size would not converge using the PDP software package [7]. 
Weights were added and eventually another layer was added. After extensive 
attempts at training an MLP the best performance was realized with a network with 
two hidden layers (6 nodes in the first hidden layer and 4 nodes in the second). Using 
fewer layers with fewer nodes in each layer yielded better performance. 

65 



Figure 3: Multistage Implementation for t=1 and f=7 Example 

The test blocks are applied to both networks and the false alarm, miss, correct HO, and 
correct HI rates arc computed. Figure l shows the resulting ROC curves plotting 
PFA versus PD for the random start case (dashed line) and the design algorithm case 
(solid line). The performance has been improved significantly and the network now 
has fewer hidden nodes. 

4 Extension to Multiple Classes 

A multistage structure is constructed to cascade binary neural networks [8]. This 
allows the use of smaller and simpler networks which provide for more efficient 
training and implementation. The pipeline architecture with parallel computations is 
conducive to a VLSI implementation. The design goal is to be able to train with 
examples that only contain one signal, but use the architecture to resolve the 
components of multiple signals. 

The coarse stage is responsible for detecting the presence of a signal in a relatively 
large portion of the Time-Frequency space and transforming the input data into a 
more desirable form for further processing. This transformation includes the 
calculation of the various wavelet representations of the input signal at successive 
resolutions and their corresponding spectral components. 

In the fine stages, only those networks associated with a detection in the coarse stage 
arc implemented. If multiple signals are identified at the coarse stage, all of the 
necessary regions will be processed further. If a coarse region is classified as having 
no signal, no further operations will be performed on that area. 
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Figure 4: One Signal Performance 

For both the time and frequency decision, quadrature mirror fillers are used to 
represent the signal in the form of the Mallat wavelet transform implementation [9]. 
This technique has been chosen as a means of reducing the input feature size (and 
therefore the network sizes) from stage to stage. The filtering also removes many of 
the unwanted regions of the time-frequency region making the network training and 
implementation easier and allowing for the analysis of multiple signals with the same 
networks that were trained with examples of one signal. In addition, for the arrival 
time discrimination, the modified wavelet representation makes use of the property 
that the onset of the transient will line up across different scales [10,11]. The 
development of the modified wavelet feature vector is described in reference [3]. 

The implementation of the multistage architecture for the frequency feature extraction 
is shown in Figure 2. The first stages split the frequency band into two parts based on 
the network computation of the spectrum of the input signal. If a signal component is 
detected, the next stages uses the next resolution as its input features. Because of the 
decimation at each stage of the wavelet packet generation, the networks at each stage 
are smaller. Each network is trained separately, but the smaller network are easier to 
train. Also, the smaller networks use fewer weights and therefore simplify the 
computation during implementation. An example of the multistage implementation 
for t = IT and f = 7F is shown in Figure 3. Random seeds are chosen to ensure that 
the test examples are different than the training examples. Test results for two of the 
64 cells are shown in Figure 4. 

Where the network is shown to generalize for different signal to noise ratios. The 
percent correct results for the two cases described at 21 dB are plotted for 24, 18, 15, 
12 and 9 dB SNR levels. The dotted lines represent the 95% confidence intervals for 
these measurements. The performance degrades as expected at lower SNR levels, but 
as in the simple case the neural networks are only presented with examples having 21 
dB SNR and generalize for the other cases. 
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Abstract- We present a new approach for the problem of estimating 
the parameters which determine a mixture density. The approach 
utilizes the principle of maximum entropy and statistical mechanics analogy. 
The EM process which is well known as a maximum likelihood esti- 
mation method is reformulated as the minimization problem of ther- 
modynamic free energy. Unlike stochastic relaxation or simulated 
annealing, the minimization is deterministically performed. Moreover, 
the derived algorithm, unlike the conventional EM algorithm, can 
estimate the parameters free of initial parameter values. 

INTRODUCTION 

Finite mixture densities consist of a mixture of finite component densities and 
mixing proportions. Such densities appear as fundamental models in areas of 
statistical pattern recognition and classification [1][2]. In particular, Gaussian 
mixture model plays an important role in continuous density Hidden Markov 
Models [3]. The method of maximum likelihood has been regarded as the best 
approach for parameter estimation problems during the past three decades. 
However, for mixture density problems, likelihood equations become nonlinear 
and therfore we can not obtain an analytical solution. In other words, we 
should seek an approximate solution by an iterative procedure. 

Dempster, Laird and Rubin proposed an iterative procedure, called EM 
algorithm, to numerically approximate maximum likelihood estimates [4]. The 
EM algorithm has been applied to a wide variety of mixture problems because 
of its advantage of reliable global convergence, low cost per iteration, economy 
of storage and ease of programming [5]. However, since maximum likelihood 
equations for mixture models usually have multiple roots, the EM algorithm 
suffers from a local maxima problem. Namely, the algorithm is highly sensitive 
to the initial parameter values. Indeed, the EM algorithm should be applied 
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from a wide choice of starting values according to some ad hoc criterion. 

The local maxima problem is one of the important issues in the mixture 
density problem. Nevertheless, as far as the information from our literature 
survey, no published paper has explicitly given a technique for this problem. 
Although several algorithms for approximating maximum likelihood estimates 
have recently been found in Neural Networks [6] [7] [8], they do not deal with 
this problem. 

To overcome the problem, we adopt the principles of statistical mechanics. 
By using the principle of maximum entropy, the thermodynamic free energy 
is defined as an effective cost function depending on the temperature. The 
maximization of log-likelihood is done by minimizing the cost function. Un- 
like stochastic relaxation (or simulated annealing) [9], where random search is 
performed on the given energy surface, this cost function is deterministically 
optimized at each temperature. 

Recently, such deterministic annealing has been adopted by several re- 
searchers [10][11][12]. However, in these studies, the formulation is not for the 
mixture density estimation problem, but for vector quantization or cluster- 
ing design problem. In this paper, we first propose a deterministic annealing 
variant of the EM algorithm for the mixture density estimation problem. 

THEORY OF MIXTURE DENSITY ESTIMATION 

In this section, as the basis of our annealing EM approach, we will briefly 
explain the theory of the EM algorithm for the mixture density estimation. 

Mixture Density Models 

A parametric family of finite mixture densities consists of a finite given 
number, say C, of components, u>i,---,uc, in some proportions ai,---,ac, 
respectively, where 

c 

]T}a,- = l    and    a, > 0       for t = 1,.. .,C. (1) 

Therefore, the probability density function (pdf) of a finite mixture is repre- 
sented as: 

c 
P(*|ö) = S«,p(*k,Ö,),        x = {xu...,xd)t £Rd, (2) 

t=i 

where p(x\wi,6i) is the conditional pdf corresponding to the component w,. 
The vector, G = (au • • •, ac, 0\, ■ • •, 6^)*, consists of unknown parameters as- 
sociated with the parametric forms adopted for these C component densities 
(t denotes vector transpose). For example, in the particular case of multivari- 
ate Gaussian component densities, 0, consists of a mean vector /i, and the 
elements of the covariance matrix 27,. 
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Maximum Likelihood Estimation via EM Algorithm 

In maximum likelihood estimation, the unknown parameter 0 is estimated 
so that the log-likelihood (the natural logarithm of the likelihood) of the mix- 
ture pdf of (2), given by 

L(6>) = 5>gp(*|6>), (3) 
x 

is maximized by using a set X of observable samples drawn independently 
according to the probability p(x\0). Accordingly, an estimate of 0 can be 
obtained as a solution of the likelihood equation given by 

dL(0)/d0 = 0 (4) 

Unfortunately in mixture models, likelihood equations are usually nonlinear, 
which means that the general analytical solution of the log-likelihood equation 
does hot exist. 

In a mixture density estimation problem, an observed sample x is incom- 
plete because the information w,- which indicates the component from which 
the sample originates is unobservable. The EM algorithm for the mixture den- 
sity estimation problem is best regarded as a specialization of the general EM 
algorithm for obtaining maximum likelihood estimates from incomplete data. 
Let Lc(0) denote the complete data log-likelihood. In the mixture density 
given in (2), we can specify the complete log-likelihood as: 

Le(0) = \ogaip(x\ui,0i). (5) 

Note that in this context, the original log-likelihood, L(0), is referred to as 
the incomplete data log-likelihood. 

For given X — {x\, •• ■, x^}, the purpose of the EM algorithm is to max- 
imize the incomplete data log-likelihood L(0) by using the complete data 
log-likelihood Lc{0). In the EM algorithm, the parameter 0 is iteratively 
estimated by using two steps, E (for Expectation) and M (for Maximization). 
The E-step computes the conditional expectation of the complete data log- 
likelihood given X, 0^-k\ 

Q(6>,6><*>)    =   E{Le(0)\X,0^} 

=  ££^l*,®(fc))iog«,p(*k,0,)- (6) 
X      i 

In this equation, 0^k' is an estimate value of the parameters at the ib-th 
iteration. The M-step maximizes this Q(0,0^k') function with respect to 0 
to estimate the new parameter value 0^ +1': 

6>(*+1) = argmaxQ(0,0^). (7) 
0 

The above two steps are repeatedly performed until a certain convergence cri- 
terion is met. From the maximization in the M-step, the following constraints 

71 



are derived [3]: 

X 

YlP(ui\*,0?))^ogp(x\Ui,8i) = 0. (9) 
SB 

An increase in Q implies an increase in the incomplete data log-likelihood. 
Hence the incomplete data log-likelihood (or the original log-likelihood L(G)) 
is monotonically increased, that is, L(©^t+1^) > L(G^), which means that 
L(0(k') converges to a local maximum. 

P(ui\x,0\k') denotes a the posterior probability that x belongs to the i- 
th component w,- and plays an important role on calculating Q-function. In 
the mixture density problem, recall that we cannot obtain the information 
from which component the observed data originates. We must estimate the 
missing information according to the posterior probability. However, since the 
posterior probability is calculated by the Bayes rule as 

p<u,-\» a^\ -    aJ*)p(a!k.glt)) (XQ\ 

its reliability highly depends on the parameters a) ',6\ ', and goes back to 

<*i ,&i • Therefore, the performance of the EM algorithm is sensitive to an 
initial parameter value 0^°\ It is, in general, extremely difficult to set a good 
initial parameter value and hence, the EM algorithm will be often trapped by 
local maxima. 

DETERMINISTIC ANNEALING APPROACH 

In this section, we present a new approach for attempting global maximiza- 
tion of the complete data log-likelifood in the EM process. 

Statistical Mechanics Formulation 

Let P(x G w») be the probability that x comes from the component w,. 
Using P(x G w,), we rewrite —Q-function as follows: 

J5 = £5>(*ew,-)/e0r,fl,-), (11) 
X      i 

where    lc(x,8i) = -log atp( x |WJ,0,). (12) 

Note that /c(a;, 6i) is equivalent to —Lc{0) and is always nonnegative. Clearly, 

(—E) is also the expectation of the complete data log-likelihood. However, it 
is different from Q in that the expectation is taken with respect to P(x G w,) 

instead of P(u>,-|x,0[fc)).   Therefore, if P(x G w.) = P(wi\x,e\k)), then the 
maximization of Q is equivalent to the minimization of E. 
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Since originally we do not have a priori knowledge about P(x Go;,), we 
apply the principle of maximum entropy to specify the probability. That is, 
P(x G u>i) may be obtained by maximizing the entropy, H, given by 

# =-££>(*€".) log P(*Gw,), (13) 
X      i 

with respect to P under constraints 

£p(xew,-)=l    and    ££P(x €<*)/„(*,»•■) = £. (14) 
«' X      i 

Then the augmented objective function to be maximized becomes 

Ha = H + A(£ P(x G «,-) - 1) + /?(£ X) ^(* € w,)/c(x, 9i) - E),    (15) 
< X     t 

where A and ß are Lagrange multipliers. Computing dHa/dP = 0, we have 

P(x G «,) = exp{l - A - /?/c(x, »,-)}• (16) 

From £,: P(x G «<) = 1, 

exp{l - A} = l/^2exp{-ßlc(x,ei)}. (17) 
i 

Thus, by sbstituting (17) into (16), we obtain the Gibbs distribution, 

P(x G Ui) = -±- exp{-/?/c(x, 0,)}, (18) 

where Zx is the partition function: Zx = EJ
exP{-/?/c(x,öJ)}. From the 

above derivation, one can see that the parameter ß corresponding to the La- 
grange multiplier is determined by the value of E. From an analogy of the 
simulated annealing approach, l/ß corresponds to the "computational tem- 
perature". Since each sample x G X is drawn independently, the partition 
function for X is 

Z{&)    =   l[Zx 
x 

= nE^pH^O"'*')}- (i9) 
x    « 

Once the total partition function is obtained explicitly, using a statistical 
mechanics analogy, we can define the free energy as an effective cost function 
depending on the temperature: 

F{0)   =    -±\ogZ(0) 

= -ÄElo«Eexp{-^(x,0O}- (2°) 
P   X i 

73 



Minimizing Thermodynamic Free Energy 

At equilibrium, it is known that a thermodynamic system settles into a con- 
figuration that minimizes its free energy. Moreover, statistical physics states 
that maximizing the entropy at a fixed temperature (= 1/ß) is equivalent to 
minimizing the free energy. Hence, consider the following minimization prob- 
lem: 

Mimimize   F{0) = -— ]>^log^exp{-/?/,;(a;,#<)}    with respect to 6>, 
P   x i 

subject to    2ja, = l. (21) 
i 

To solve the above problem, consider the augmented objective function given 
by 

Fa(0) = F(0) + \(£/ai-l), (22) 
» 

where A is a Lagrange multiplier.   Setting the partial derivative of Fa with 
respect to c*j to zero, 

dFa      ^    exp{-ßlc(x,8j)}    dlc(x,9j) 

fci    VEi«p{-Ä('.»-')}    ö«' 

On the other hand, 

dle(x,8i) d 
9a, 9a, 

1 
a, 

log a,-p( as |wj,0,-) 

(24) 

Note that p{x\ui,8i) does not depend on a,-. By subsutituting (24) into (23) 
and by using (18), (23) becomes simpler as follows: 

0j = lVp(xe4 (25) 
Ä  x 

Moreover, since ^,-a, = 1, 

1 = TEE^^') 
A    ,      X 

X 

Therefore, 

=    j5> (26) 

X = N. (27) 

By substituting (27) into (25), we have 

«.• = -|f !>(*€«.•)• (28) 
N   x 
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Next, similarly, by setting the partial derivative of Fa with respect to 0, to 
zero, we have 

J2P(x e m)-£f iogP(*k, ö.) = o. (29) 

Comparing (8) with (9), and (28) with (29), respectively, one can see that 
the same equations as the results of the maximization of the Q-function have 
been derived, except that the posterior probability P(ui\x, Ö.) in (8) and (9) is 
replaced by P(x G w,). Moreover, by substituting (12) into (18 ), it is shown 
that P(x G Ui) is in fact a parameterized variant of the original posterior 
probability: 

v(~c,*\-     (aiP(x\ui>ei))ß (om P(X G Ui) - ^-7 T-j ^-yCj- \M) 

Note that P(x G w,-) with ß = 1 completely agrees with the original posterior 
probability given by (10). 

Annealing Variant of EM Algorithm 

Let Q(&, ©(*);/?) be the conditional expectation of the complete data log- 
likelihood by the parameterized posterior probability P(x G w«), then the 
following deterministic annealing variant of the EM algorihtm can be natu- 
rally induced as follows: 

[Annealing EM algorithm] 

1. Set ß «- ßmin(< 1). 
2. Choose an initial estimate 0^ arbitrarily. Set k *— 0. 
3. Iterate the following two steps until converged: 

E-step: Compute 

M-step: Find 0(t+1) = argmax^^©,©^);^). 
4. Increase ß. 
5. If ß < ßmax, set Jb <— Jb + 1, repeat from step 3. 

An important distinction to keep in mind is that unlike stochastic relaxation, 
the optimization in step 3 is deterministically performed at each ß. The above 
algorithm is the same as the original EM algorithm for the mixture density 
parameter estimation, except that an outer loop for the annealing process 
is added to the original EM algorithm. In other words, if both /?mm and 
ßmax are set to one in the annealing EM algorithm, the algorithm completely 
coincides with the original EM algorithm. 

Consequently, in the case of the mulivariate Gaussian mixture pdf (p(x \0) = 
Yli t*»ff»'(a!l/ii> -Et))> by just replacing the posterior probability in the familiar 
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iterative maximum likelihood estimation [3], which are obtained in M-step in 
the original EM algorithm, by the parameterized posterior probablity, we can 
easily modify the iterative estimation in the M-step as follows: 

X 

„it+1) = £ xP{x e «*)<*>/ £ P(x e Uif>\ 
X X 

X X 

where    P(x € a,)(t) = («|'V«I*W, ^ V/B^Wll'f. ^/V 
j 

DISCUSSION 

What is the effect of the parameter /?? How does the annealing feature help 
to avoid local maxima? The annealing process begins at ß = 0 (P(x € w<) 
becomes uniform) where each x € X equally contributes to all components of 
the mixture. Clearly, at this time, the parameterized Q-function has only one 
(global) maximum. As a result, all components of the mixture converge to the 
same pdf. For example, in the case of a Gaussian mixture, a\ = •• • = ac = a*, 
/ij = ••• = nc = n*, and S\ = ■ ■ ■ = Ec = S*, which means that all 
components completely overlap as one component. 

Then by gradually increasing /?, the influence of each x is gradually local- 
ized. At ß > 0 the parameterized Q function will have several local maxima. 
However, at each step, it can be assumed that the new global maximum is close 
to the previous one. Hence, the algorithm can track the global maximum at 
each ß while increasing ß. As a result, as ß increases, a finer structure, which 
is closer to the true mixture density to be estimated, gradually emerges. The 
parameterized Q-function coincides with the original Q-function when ß = 1, 
therefore ßmax = 1 may be appropriate. 

The proposed algorithm is straightforwardly applicable to learning the 
(Generalized) Radial Basis Function (RBF, GRBF) networks. In fact, Nowlan 
[5] proposes a maximum likelihood competitive learning algorithm for RBF 
networks. In [5], "soft competition" and "hard competition" are experimentally 
compared and it is shown that soft competition can give better performance. 
On the other hand, in our algorithm, the soft model corresponds exactly to 
the case ß = 1, while the hard model corresponds to the case ß —* oo. Con- 
sequently, both models can be regarded as a special case in our algorithm. 
Furthermore, it can be regarded that the deterministic annealing approach 
employs a similar learning strategy to Kohonen's self-organizing feature map, 
in the sense that the influence of neighborhood learning is gradually reduced. 

At present, we are experimenting with the proposed algorithm in a real 
multivariate Gaussian mixture density estimation problem to verify the use- 
fulness of the algorithm. 
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Abstract. Regularization, e.g., in the form of weight decay, is im- 
portant for training and optimization of neural network architec- 
tures. In this work we provide a tool based on asymptotic sampling 
theory, for iterative estimation of weight decay parameters. The 
basic idea is to do a gradient descent in the estimated generalization 
error with respect to the regularization parameters. The scheme 
is implemented in our Designer Net framework for network training 
and pruning, i.e., is based on the diagonal Hessian approximation. 
The scheme does not require essential computational overhead in 
addition to what is needed for training and pruning. The viabil- 
ity of the approach is demonstrated in an experiment concerning 
prediction of the chaotic Mackey-Glass series. We find that the 
optimized weight decays are relatively large for densely connected 
networks in the initial pruning phase, while they decrease as prun- 
ing proceeds. 

INTRODUCTION 

Learning based on the conventional feed-forward net may be analyzed with 
statistical methods and the result of such analysis can be applied to model 
optimization [5, 6, 10, 11, 12]. We have shown how pruning and regulariza- 
tion can be combined to design compact networks for time series prediction 
[11, 12]. Our "Designer Net" framework is based on the Optimal Brain Dam- 
age (OBD) method of Le Cun et al. [7] and we use simple weight decay for 
regularization. The benefits from compact architectures are three-fold: Their 
generalization ability is better, they carry less computational burden, and 
they are faster to adapt if the environment changes. Further, we have shown 
how the generalization error of the network may be estimated - without ex- 
tensive cross-validation - using a modification of Akaike's Final Prediction 
Error (FPE) estimate [1].   The minimal FPE constitutes a useful stopping 

'Present address: Dept. of Computer Science, University of Toronto, Canada. 
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criterion for pruning. However, our previous work has been conditioned on 
the correct setting of several parameters, most prominently the weight de- 
cay parameters. In this contribution we provide the possibility of adapting 
regularization parameters within the Designer Net framework. 

The results obtained can be viewed as a sampling theory alternative to the 
Bayesian or Evidence based techniques for adaptive regularization developed 
by MacKay [8, 9]. An analytical comparison of these two techniques has 
recently been given in [2]. 

LEARNING 

The use of system identification tools for neural net learning has been pi- 
oneered by Moody (see e.g., [10]) who derived estimators for the average 
generalization error. The main source of uncertainty in the learning process 
is the shortage of training data. Other important contributions to uncer- 
tainty are: Lack of fit, noise in the training process, and non-stationarity of 
the data-generating environment. Lack of fit1 was discussed in, e.g., [5], while 
noise in the training process has been discussed in [3]. In this presentation 
we will neglect these three effects. Lack of fit can be minimized by starting 
the pruning process from large enough networks, while noise in the training 
process can be relieved by careful search in weight space. Non-stationarity 
is a hard problem that will be pursued in future work, here we will assume 
stationarity. 

NETWORK ARCHITECTURE AND TRAINING 

The basic network is a tapped delay line architecture with L input units, UH 

hidden sigmoid units and a single linear output unit. The initial network is 
fully connected between layers and implements a non-linear mapping from 
lag space x(k) = [x(k), ...,x(k- L + 1)], (L is the length of the tapped delay 
line), to the real axis: 

y(*) = Fu(x(*))    yen, (1) 

where u = [w, W] is the TV-dimensional weight vector and y(k) is the predic- 
tion of the target signal y(k). The particular family of non-linear mappings 
considered here can be written as: 

FVL (x(fc)) = YJ 
WJtanh   Yl Wiix(k -*-!) + «to ) + Wo, (2) 

j=l \i=l / 

where nn is the number of hidden units, Wj are the hidden-to-output weights, 
while Wij connect the input and hidden units. 

:Lack of fit is also sometimes described as "the teacher does not belong to student 
space" or "incomplete modeling". 
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A simulator based on batch mode, second order local optimization has 
been developed, as described in [11, 12]. The scheme is based on the diagonal 
approximation of the cost-function Hessian (the second derivative matrix). 
We use the sum of squared errors to measure the performance of the current 

network: 

Strain = " £ [j/(*) " *ll(x(*))]2 , (3) 
P k = l 

where p is the number of training examples. To ensure numerical stability 
and for assisting the pruning procedure we augment the cost-function with a 

weight decay term: 

S = Slrain + ^E< + ^EHf, (4) 
ij j 

where Nw, Nw are the numbers of weights and thresholds in hidden and 
output units, respectively. Further, aw,aw are the weight decay parameters 
of the hidden and output layers, respectively. The objective of the training 
procedure is to optimize the networks ability to predict near future values of 
a given time series. Hence, the network weights, u, are trained to recognize 
the short time structure of the training set time series. 

PRUNING 

The OBD method proposed by Le Cun et al. [7] was successfully applied to 
reduce large networks for recognition of handwritten digits. The basic idea 
is to estimate the increase in the training error when deleting weights. The 
estimate is formulated in terms of weight salicncies s;: 

M^ = £,S£  f + ^H <5> 
where u\ is a component of u and the sum runs over the set D of weights to be 
deleted. The saliency definition used here takes into account that the weight 
decay terms force the weights to depart from the minimum of the training 
set error. As in [7] we approximate the second derivative by the positive 
semi-definite expression: 

a2 Strain 2 ^ ( dFu(x(k))\2 

dU2  -pfey   duj   ) ■ K) 

The major assumptions entering the derivation of OBD are: 1) Terms of 
third and higher orders in the deleted weights can be neglected. 2) The 
off-diagonal terms in the Hessian, d2Etra\n /duidui> , can be neglected. Com- 
putationally, the second order (diagonal) terms, eq. (6), are reused from the 
training scheme. We refrain from operations involving the full Hessian, which 
scales poorly for large networks. The recipe allows for ranking the weights 
according to saliency. 
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GENERALIZATION 

The generalization error is denned as the average squared error on an example 
from the example distribution function P(x,y). The examples are assumed 
to be generated by a teacher function of the same form as the model and with 
a set of unknown weights u* and degraded by additive noise: 

y(k) = fu. (x(Ar)) + i/(Jfe) (7) 

where the noise samples v{k) are independent identically distributed vari- 
ables of unknown variance a2. Further, we assume that the noise terms are 
independent of the corresponding inputs. The generalization error of a given 
network is by definition the average error on a random example. A more in- 
teresting quantity is the training set average of the generalization error, viz., 
the average over an ensemble of networks in which each network is provided 
with its individual training set. Using the diagonal approximation for the 
Hessian this error (also referred to as the test error) can be estimated as [6]: 

Et, 

a      v l p     \ij+2aw/p 

Nw / _. w* \ 2 wt 
^   J \   p     Aj + 2aw/p I 

with 
Nw (       Xi-        \2    Nw (        A •        \ 2 

^ = ?U-+wPJ 
+£U+wJ '       (9) 

where the A's are the second derivatives already computed in eq. (6): \{j = 
d2 Etram /dwjj , Aj = d2 EtTam /dW2 . The rest term R contains higher or- 
der quantities and terms that do not affect the estimate of the regularization 
parameters, see [5, 6] for further discussion. The estimate is based on lin- 
earization of the networks as regards the fluctuations in the weights resulting 
from different training sets. 

The generalization error estimates were also used for answering the ques- 
tion of how many weights it may be possible to delete in a pruning session in 
[11, 12]. We applied Akaike's FPE estimate [1] of the test error in terms of 
the training error which reads: 

Etest =  TT-Etrain, (10) 
p — N 

where p is the number of training samples, and TV is the number of parameters 
in the model. The left hand side of eq. (10) is the average generalization error, 
averaged over all possible training sets of size p. 
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The relation expresses the fact that the training and test errors are bi- 
ased estimates of the noise level because each parameter during training has 
"absorbed" noise from the training samples. 

Since we have regularized the training procedure by weight-decay terms 
aw,aw, hence, suppressed the ability of the (otherwise) ill-determined pa- 
rameters to model noise, we need to modify the standard FPE estimate by 
replacing the total number of parameters with the effective number of pa- 

rameters, see [10, 11, 12]-: 

~       __P + Neff . 
•tatest —   TT -C/train, X1-1-) 

P ~ Areff 

With the above tool we can obtain a generalization error estimate for each 
pruned network. By selecting the network with the lowest estimated gener- 
alization error we obtain a stopping criterion for pruning. 

Note that the estimated average generalization eq. (9) error is a function 
of the rcgularization parameters, hence, it is possible to vary these and search 
for minimal test error. In MacKay's Evidence framework a similar strategy 
was adopted, however, with the purpose of maximizing the so-called Evidence. 
We find it more natural to optimize the quantity that is our basic objective, 
namely the test error. It is at present not clear what the relation between the 
Evidence and the generalization error is. Empirically, they have been found 

to be related [2, 8]. 
We use a simple gradient descent procedure for minimization of the gen- 

eralization error: 

/      ,   1\ /   \ dEtest a(n + 1) = a{n) - p —  
da 

(12) 

where p is a gradient descent parameter, and n is the iteration index (one 
epoch). The Designer Net approach is based on the diagonal approximation 
to the Hessian. In terms of the diagonal elements the recursion above reads, 

aw(n + l) = aa(n)+—^— —  3    ■ (13) 
P   if     (Xij+2aw(n)/p) 

A similar expression applies for the hidden-to-output weight decay parameter 
a\y, in fact an arbitrary set of weight decay parameters can be defined and 
estimated using this recipe3. Expression (13) contains two unknown quanti- 
ties: the teacher weights u;,*- and the noise variance a2. The teacher weights 
are replaced by the current estimated weights of the network (see [2] for a 

2In fact, the notion of an effective number of parameters is quite delicate see [6]. 
3In the derivative of the test error we have kept the dependence A2/(A + 2a/p)3 (rather 

than 1/A) providing a stabilizing effect similar to the Moore-Penrose pseudo inverse dis- 

cussed in [6]. 
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discussion), while the noise variance is estimated from the training error in 
the same approximation as in eq. (11): 

= ri-^v1 
?2 =   ( 1 - — 1        Strain- (14) 

EXPERIMENTS 

We illustrate the virtues of the adaptive regularization scheme on two time 
series forecasting problems. The first experiment explores the functional de- 
pendence of the derivative of the estimated test error cf. equation (13). The 
forecasting problem is the sunspot benchmark involving estimation of the 
yearly sunspot activity from the past twelve years activity (see, e.g., [11] for 
a detailed description of the benchmark). To simplify we consider a linear 
model for which the parameters are uniquely determined when using the least 
squares cost function. The sunspot benchmark involves three data sets: A 
training set and two test sets. In figure 1 we show the weight decay depen- 
dence of the two test errors and of the derivative of the estimated test error. 
Note that both test sets have shallow minima at values just below a = 0.1, 
and that the derivative of the estimated test error passes through zero at a 
compatible value. Also note that the particular functional form of the deriva- 
tive implies that the iterative scheme will converge to the zero point of the 
gradient, hence, provide near-optimal regularization with improved general- 
ization errors. To further illustrate the role of adaptive regularization in the 
Designer Net framework we present tentative results on a standard problem 
of nonlinear dynamics, viz. the Mackey-Glass chaotic time series. This fore- 
casting problem was previously studied in [12]. The Mackey-Glass attractor 
is a non-linear chaotic system described by the following equation: 

^-^'TTW^r (15) 

where the constants are a = 0.2, b = 0.1 and r = 17. The series is resampled 
with sampling period 1 according to standard practice. We aim at identifying 
the underlying dynamic model, from this chaotic time series. The network 
configuration is L = 16, TIH = 10, with a total of 181 parameters, and we train 
to implement a six step ahead prediction. That is, x(k) = [z(k — 6),z(fc - 
12), ■■■,z(k-6L)] and y(k) = z(k). 

The errors are computed as: 

£set = -ä-^ £ M*) - ^U(X(*))]2 , (16) 
"total ' Pset h = 1 

where pset is the number of examples in the data (train or test) set in question, 
and <r2otal is the total variance of y(k) on the training and test set. 
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Figure 1: The role of weight decay regularization for a linear model on the sunspot 
benchmark scries. The two upper figures show the errors (see [11] for a definition) 
on test sets both having shallow minima just below a weight decay of 0.1, while the 
bottom figure shows the derivative of the estimated test error as function of weight 
decay. Note that a gradient descent procedure will converge to the zero point. 
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There are several ways of implementing the adaptation scheme; here we 
initially set the weight decays to fixed values aw = aw — 0.005 for 100 
epochs, then the network is trained with simultaneous adaptation of weight 
decay for 8000 epochs using eq. (13) with p = 0.1. After the initial training 
phase, further pruning and adaptation took place with pruning of 2% of the 
remaining weights per retraining round (400 epochs). In line with [12] it is 
seen that the stop criterion is able to select the optimal network. In figure 2 
the normalized training errors, test errors cf. eq. (16), and the corresponding 
FPE error (after the initial training phase) are sketched for a training set 
size of 500 examples and the test set comprises 8500 examples.  In [12] we 

X10"3 Mackey-Glass time series 
1 ' 1 

09  Learn error: 1.72e-0 4 , 
 Test error: 3.83e-04 
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\ \ \ 
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Figure 2: The evolution of training and test errors during pruning for the Mackey- 
Glass time series for a training set of size 500. The FPE estimate of the test error 
is based on eq. (11). The vertical line indicates the network for which the estimated 
test error is minimal. 

compared the performances of pruned networks with those of fully connected 
nets, a linear model, and with a K-nearest-neighbor linear model. It was 
noted that the performance of the networks is similar to the nearest neighbor 
estimate. While the two weight decays previously were set manually we here 
adapt them according to equation (13). In figure 3 the development of the 
two weight decays is depicted as pruning proceeds. Note that the adaptive 
regularization scheme "chooses" relatively high regularization for the large 
network as should be expected. These networks have superfluous resources 
that could potentially harm generalization through overfitting. Eventually, at 
the end of the pruning session the test error estimates are rather biased (the 
network is underfitting) and the adaptive scheme does not provide reliable 
estimates.   We have observed that the scheme in it present form has some 

85 



Mackey-Glass time series 
0.01 

0.009 

I                        1                        1 i                     i 

 Input - Hidden layer: 2.14e-05 

o.ooa -  Hidden - Output layer: 2.55e-03 - 

0.007 - - 
>.0.006 
s 
d> 

2 0.005 :  \ 
j 

s 0.004 \ ■ ■ 

0.003 \ 

 -.~M 0.002 

""    \  
0.001 V. .  , /»■ 

80 60 40 
Parameters in neural network 

Figure 3: The evolution of weight decays during pruning for the Mackey-Glass time 
series. The vertical line indicates the network for which the estimated test error is 
minimal. 

dependence on initialization of weights and weight decays; this is a topic for 
current research. The very low value of the input-to-hidden weight decay 
for the small networks is also in line with our earlier observations, namely 
that one can retrain the optimal architecture without weight decay and get 
slightly improved generalization [11, 12]. 

CONCLUSION 

A scheme has been derived for adaptation of weight decay parameters. The 
scheme is based on asymptotic sampling theory. Two examples were given to 
illustrate the virtues of such adaptation. First, we showed that the functional 
form of the derivative of the estimated test error will provide convergence to 
near-optimal values for a linear model on the sunspot benchmark. Secondly, 
it was shown how the Designer Net framework can be applied with adaptive 
regularization, hence, relieving, manual tuning of these important parameters. 
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Abstract 
New methods for training Multi-layer perceptron network 

for forecasting problems are presented. The first method 
exploits spectral characteristics of time series to get faster 
learning and improved prediction accuracy. A neural net- 
work scheme for real time implementation of this method is 
also presented. The second method suggests the use of two 
new weight initialization schemes which give very fast conver- 
gence besides giving better prediction. The foreign exchange 
time series is used to illustrate the efficacy of the proposed 
methods. 

1     Introduction 

In recent times Multi-Layer Perceptron (MLP) networks have been widely 
used in forecasting problems (see for example [2], [3], [5], [6], [9]). This 
approach has been vigorously pursued for time series where linear meth- 
ods, like the Wiener filter, the Kaiman filter, and their variants, did 
not give satisfactory results. The failure of the conventional methods 
becomes very evident when one is dealing with financial time series. 

For forecasting problems, the MLP network is typically in a Time 
Delay Neural Network (TDNN) structure (Figure 1). From a digital 
signal processing perspective, the TDNN can be viewed as a nonlinear 
filter. Training is done using some past data; for example in case of 
foreign exchange rate time series, one could use previous day's data. 
The most popular training algorithm is the backpropagation algorithm 

[7], [8]. 
Several difficulties are encountered when one uses the raw data for 

training the TDNN. In a practical situation the data is very likely to be 
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Figure 1: Time Delay Neural Network 

noisy, and the MLP may learn the noise along with the signal leading to 
poor forecasting. The presence of noise also makes it difficult to arrive at 
an appropriate size of the network. Small network may not be capable 
of modeling the given system; on the other hand a large network may 
cause poor generalization. From our simulations we found this to be 
a difficult issue to handle. We also found that the use of raw data for 
training leads to slow convergence or no convergence. 

It is known that if the MLP is trained with appropriately prepro- 
cessed data, it may give better1 and faster learning [5]. A further im- 
provement in learning speed and accuracy can be achieved by appropri- 
ately selecting the starting weights. In this paper we suggest methods 
for solving these two problems : 

1. The preprocessing method based on the spectral decomposition of 
the data. 

2. Initial weights selection based on the specific structure of the fore- 
casting problem. 

(a) A fixed unity gain for the path leading from x(n) to y(n) in 

1 Better learning in the sense of low mean squared error 
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Figure 1. 

(b) A Least Mean Square (LMS) filter for one path leading to the 
output y(n). 

The next two sections elaborate on both these approaches, which 
constitute the key contribution of this paper. 

We would like to remark that in all simulations we have used the 
Random Optimization Algorithm (ROA) [1] for training the MLP. The 
reason for choosing it over backpropagation is faster learning; also we 
found it to give a better minima. 

2    MLP Learning with Spectral Decompo- 
sition Technique 

2.1 Proposed Scheme 

The basic idea behind the proposed technique is to decompose the time 
series into many simpler time series and learn each one using a separate 
MLP. We propose to use the spectral decomposition of the data; this is 
achieved by passing the time series through a bank of bandpass filters 
each having different passband frequencies. 

Figure 2 gives the schematic of the proposed scheme. Bandpass filters 
have cutoff frequencies such that the lower cutoff frequency of the next 
filter is same as the upper cutoff frequency of the previous filter. Each 
bandpass filter output is fed into a separate TDNN. Final prediction is 
a combination of the outputs of these TDNNs. The combining filter /(•) 
could be a simple summation, or a linear adaptive filter [4] or a single 
layer MLP (a nonlinear adaptive filter). Adaptive filter for /(■) may 
have an advantage, since it can compensate for difference in prediction 
accuracy of each TDNN. 

2.2 Discussion 

From our simulations we found the spectral decomposition technique 
to give much better prediction accuracy. Moreover, the method gave a 
significant speed advantage typically by a factor of 8. Also, the design 
for each TDNN becomes easier since the knowledge of the frequency 
contents of the respective input time series is known.' In case of foreign 
exchange time series we found that for low frequency, a MLP with large 
number of input nodes and small number of hidden layer neurons is a 
good choice; while for medium frequency a small number of input nodes 
with large number of hidden layer neurons is a better choice. 

In many practical situations high frequency variations are considered 
as noise, and in such cases one can ignore high frequencies. Removal of 
noise makes choosing the network size an easier problem. 
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Figure 2: Schematic of Spectral Decomposition Technique 

We have carried out simulations for forecasting the foreign exchange 
rate. Without spectral decomposition we were unable to train the TDNN 
to give any meaningful results; this was because in most of the cases the 
error obtained was unacceptable. Figure 4 gives simulation results for 
the spectral decomposition technique, using one and two filters. The 
combining filter /(•) used is a simple summation. In both the cases 
very high frequency components were ignored since they are considered 
unimportant in foreign exchange market. 

2.3    Real Time Implementation 

Any real time implementation of the band pass filter would involve a 
certain amount of delay. For example, a P order linear phase FIR (Finite 
Impulse Response filter) would have a delay of (P + l)/2. This delay 
can play havoc in real time forecasting. We propose a scheme wherein 
an approximate implementation of the FIR band pass filter is used to 
achieve zero delay. This scheme is depicted in Figure 3. A band pass 
filter, [BPF k] followed by [TDNN k] block of Figure 2 is replaced by the 
block [GBk] followed by [MLPk] of Figure 3. 

In Figure 3 
Gßk = [ GT

Bhx GBk2 ]Mx(M+P) C1) 

where Gsfcl will be a (P - 1) x (M + P) matrix, and GBk2 will be a 

91 



x(n) 

T 

D 

L 

x(n) 

c(n-l) 

i{n-M-P-\-l) 

Gi 

*'(")     , 

^(n-l) 

g»fo-M + l) 

MLPk ■y(n) 

Figure 3: Schematic for Real Time Implementation of Spectral Decom- 
position Technique 

(M - P + 1) x (M + P) matrix defined as 

Gßjt, = 

1 
bk 
°2,1 

°p-i,i 

0 
bk 
°2,2 °2,1 

bk 
°P-i,P-i bk 

(2) 

Gßk2   = 

r A* 

0 

b\ 
bk 

bk 
Op 

0 

b\ 

b\ 

b\ 

hk 
Op 

As seen from Figure 3, the input to the MLPk will be 

Xn
k = Gj}kXn 

where, 
Xn = [z(n) • • • x(n - M - P + 1)]T 

Xb
n
k = [xb(n)  ■■■ x\n-M + I)]1 

0 
0 

b\ 

(3) 

(4) 

(5) 

(6) 

The specification for the band pass filter corresponds to the specifica- 

■tf.i] the tion of [BPF k] in Figure 2.   The elements [6* j, • • ■ 6* 
FIR coefficient of a (2« + 1) order band pass filter.  On the other hand 
[bk, • •  bp, ■ ■ -bk] are the FIR coefficient of (2P+1) order band pass filter. 

92 



1.665 

1.66 - 

1.655 
Exchange 

rate 
1.65  - 

1.645 

1.64 
0 200       400       600       800       1000      1200      1400 

Time in minute 

(a) 

1.665 

1.66 

1.655 
Exchange 

rate 
1.65 

1.645  - 

1.64 
0   200   400   600   800  1000  1200  1400 

Time in minute 

(b) 

Figure 4: Results with Spectral Decomposition Technique (a) with one 
filter and (b) with two filters 
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3    Very Fast Learning in MLP for Forecast- 
ing Problems 

3.1 Unity Transmission gain for One Path 

Our simulations with financial time series exhibited an interesting char- 
acteristic of MLP learning. When actual and desired output is observed 
after each iteration, we found that learning passes through a phase where 
the predicted value is a delayed version of the most recent input to the 
MLP, i.e. 

y(n) K, x(n) (7) 

The MLP takes a long time to arrive at this situation. Thus the proposed 
scheme is as follows: Select the initial weights for the MLP, so that (7) is 
approximately satisfied. One way to achieve this is to select the weights 
such that the transmission gain between the last input (say x(n) in 
Figure 1) and the output node is near unity. The remaining weights can 
be set to zero. 

Our simulations overwhelmingly justify the proposed scheme for fore- 
casting using TDNN. We carried out extensive simulations using differ- 
ent data sets and networks. In all cases we found 50 to 100 times faster 
convergence as compared to the conventional approach where the initial 
weights are set to zero, as ROA does not require weights to be set to 
a small random value as is the case with Backpropagation. Figure 6 
gives simulation result which uses spectral decomposition technique of 
earlier section along with the above mentioned scheme of selecting initial 
weights. The same data and the network is used for the simulation with 
the conventional approach (Figure 5) and for the simulation with the 
new approach (Figure 6). It can be observed that the error obtained by 
the conventional technique after 9500 iterations is achieved by the new 
scheme in just 200 iterations. With the conventional approach the error 
practically stops decreasing after 9500 iterations and the error is more 
than double as compared to that obtained by the new scheme. This 
suggests that the new scheme is not only faster but also provides more 
accurate prediction. 

3.2 LMS in Conjunction with MLP 

The method of initializing weights as suggested above works well when 
used in conjunction with the spectral decomposition technique. In essence 
this implies the availability of noise free data for the weight initialization 
scheme to work. Thus a major constraint is the real time implementa- 
tion of zero delay band pass filters. To avoid this constraint we propose 
a method where the MLP acts on the raw (noisy) time series but has 
one node implementing a linear adaptive prediction filter. In this paper 
for the purpose of illustration we have used the LMS filter.   Here one 
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neuron in the first hidden layer along with the incoming inputs forms 
the FIR filter, which is trained separately using LMS algorithm. This 
way, for the second hidden layer we have some data which has the noise 
removed by a linear adaptive filter. Note the transmission gain between 
the output of this node to the output layer node is set to one. Once the 
LMS filter is trained, the MLP gives an initial output which is based 
on linear prediction only. After this we train the network in the regular 
fashion using ROA. 

The simulation results for this method are depicted in Figure 7, once 
again for the same financial time series. In this figure the first 200 itera- 
tions corresponds to the convergence achieved using the LMS algorithm. 
It is to be noted that with raw data, the MLP training algorithm based 
on ROA or backpropagation did not give any meaningful results; thus 
they are not reported. 
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4     Conclusion 

We found the combination of spectral decomposition method and the 
above initial weight selection approach to provide the best results both 
in terms of speed and accuracy. Only sample simulations are provided 
due to space limitation. 

Even though the proposed methods are specific to the forecasting 
problem, nevertheless they should be applicable for the general MLP 
training problem. 
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Abstract - A new learning algorithm is introduced to allow interval valued 
inputs. This procedure is based on gradient descendent and error 
backprogation. It has many advantages over the classical Backpropagation 
including the possibility of dealing with missing values attributes. We 
establish a framework especially useful for applications with incertitude in 
the input. We propose a cost function reflecting a trade-off problem between 
the goal of including the target value into the interval valued output, and 
minimizing this interval size. Simulated numerical results are presented. 

INTRODUCTION 

Backpropagation has been widely used in a variety of applications. No other 
Neural Network's paradigm has achieved such success from the practical point of 
view. A major restriction of this classical technique arises from the obligation of 
using real valued inputs. In many relevant applications one needs to train the 
Network by associating the output target to an interval valued input. This 
situation is typical in medical diagnoses problems for instance. In this type of 
applications, one is fact dealing with classification problems where the input 
patterns have a good dose of uncertainty. Another Backpropagation limitation 
appears in the cases when part of input information is not available. 

The management of Neural Networks with missing values attributes as inputs, is 
a very important open problem. Again, this is an everyday occurrence in medical 
among other applications. Suppose that a Neural Network has been trained to 
emulate an automatic diagnosis system by using a data basis composed by vectors 
in 9t". Each of these vectors contains the information of n medical exams the 
patient is supposed to undertake. Suppose that after a successful training section, 
one or more of the n exams could not be applied to a given patient. The question 
then is: How can the system be used in this case? To retrain the Network for n<m 
inputs is not, in general, a feasible solution. The Interval Neural Networks 
(INN), introduced in this paper, provides an adequate solution for these problems. 
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The use of interval arithmetic's in Neural Networks was first suggested by 
Ishibuchi et al [1]. They proposed a classification method for two-group 
discriminant problems where the Network inputs are given as intervals. Their 
method is limited to classification problems, and it can not be directly extended to 
more than two groups. In this paper we propose a much more general approach to 
Interval Neural Networks. 

Our contribution concerns the introduction of a new learning algorithm that is 
able to deal with interval inputs. We believe that our algorithm will find 
application in classification, forecasting, and pattern recognition, among other 

areas. 

PRELIMINARIES 

Let us consider a one hidden layer Neural Network with a single unit in the output 
layer. As it will be notice in the ensuing developments, our results can, after some 
algebraic manipulation, be easily extended to a more general architecture. Assume 
that each input unit receives an interval valued income. 

Notation 
Let us consider the presentation of pattern p. Let e1p and eip , / = 1,2, ,n be 
the lower and upper limits of the n input units. ofp and ofp ,j-\,2,...,m 
denote the lower and upper limits of the outputs of the m hidden units, and 0L

V, 
0% are the lower and upper limits of the network output. The n x m input 
weights are represented by wfi , and the v, are the m weights linking the hidden 
layer to the network output. The network target, for each pattern p, is denote by 
tp. Let Xw be the interval for which the lower and upper limits are XL and Xu 

respectively. 

Basic Definitions 
We define the linear combination of the input intervals, when pattern p is 
presented, as: 

netfp
u = X wjfiff + Qj , for each / = 1,2,....,m , (1) 

while the linear combination of the hidden units outputs is given by: 
JVE^ELv^+e (2) 

where 0; and 6 are the bias terms. 

Our problem is to modify the Network weights such that the cost function 
E = 2 e„ is minimised for all patterns in the training set. The cost due to pattern p 

p 
is defined as follows: 

eP = \a{tp - {Oy + 0L
p)/2]2 + ß(0? - 0L

P) (3) 

This cost function is intended to solve a trade off problem. Its first term pushes 
the centre of the output interval towards the pattern target, while its second term 
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minimises the interval size. This trade off problem is balanced by parameters a 
and ß. Our main goal is to define a gradient descendent algorithm that modifies 
the weights wß and v, for i=l,2,...n , j=l,2,...m such that the cost (3) is 
minimised. 

Preliminary Results 
Let /(ft)  be the set of all closed real intervals. Note that real numbers x e ft 
may be considered special elements [x,x] of /(ft). Let X, Y e 7(9?). The following 
binary operations can be calculated as [2 ]: 

X+Y=[XL + YL,XU + YU] (4) 

X-Y=[XL-YU,XU-YL] (5) 

XY= [xmn(XLYl,XLYu,XuYL,XvYu\ max(XLYL,XLYu,XuYL XUYU)] (6) 
X+Y=[XLXU]  [1/Yu,l/YL] 7 

e^=[e^,e^]  if Xu>0 (8) 

= [ex",exi] otherwise 

Here it is assumed that 0 e Y in case of division. Note that /(ft) is closed under 
operations (4) - (8). Furthermore, it can be proved [2] that one has: (i) 
commutativity and associativity for addition and multiplication; (ii) [0,0] and 
[1,1] are the unique neutral elements concerning addition and multiplication 
respectively; and (iii) /(ft) has no zero divisors. 
Let Ye /(ft) be a point interval, i.e. Y= \y,y] where y e ft , then from (6) one 
gets 

X■ Y = [mm(XLy,Xuy), max(XLy,Xuy)]   VX e /(ft), and so 

yX= [yXL,yXu]   for  m>0     VXe /(ft) (9) 
y-X=\yXu,yXL]   for  m<0      VXG/(ft) 

MAIN RESULTS 

We are now able to establish a proceeding to calculate the weights changes in 
order to minimise the contribution of pattern p, ep ,to the cost function E. Let us 
consider the following Delta rule: 

APVj(k + 1) = TK-a^/av,) + yApVjik) (10) 
ApWß(k +l) = r\(-dep/dyvß) + vApwß(k) 

where T| and y. represent the learning and momentum parameters respectively. 
The remaining hardship is related to the ep partial derivative's calculation From 
(1),(2) and (9) we get: 
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netf" = ^[wjK'wJiEl]+dJ       Vy = l,2,...,m ,    and 

NETF=i[Vjofp,Vjofp]+e 

where 
A = L , B = U  if w,}>0 , and A = U,B = L otherwise, 
C = L , D = U if v, > 0 , and C = U, D = L otherwise. 
Now, concerning the hidden layer units we have that: 

OjP =Anetjp ) 
and for the output unit: 

0^=J[NET^u) 

where the activation function f: I(3i) -»/(9t)   is a generalised logistic function 
i.e: 

flX) = 1/(1 + expHO)   \fX e /(9t). 

Note that this generalised logistic function can be defined because of (4),(7) and 
(8). 
Let us define the auxiliary parameters O, *F, K as follows: 
O = L if Wjj > 0  , O = U otherwise 
y¥=U if wjj>0 , *¥ = L otherwise 
K=l   if v;>0 , K=0 otherwise 

By applying the basic interval computation operations (4) - (7), and the chain rule 
we get: 
(i) For "input to hidden" weights: 

dep _   deP   dOL
P  (dNETL

P  dofp dnefa      dNET1} do# d»<*L 

*">fi ~  dOp-dNET^ doi   dne£ **JI do"   dne£ dwft > + 

dep   W
v

p   .dNErf dofp dnetfp      dNETp1 &# dnet% \ 
and so 

t| = ffi(2tp ~ °" ~ °LpM + ^ + m ~ Ö (11} 
where 

$ = *(1 - 0L
p)0

L
pVjofp(l - o£)e* + (1 - A)(l - 0$Ofyft%{\ - o>* 

G5 = (l-A0(l- 0£)0,V,>(1 - °fP)4 +K(l - OjbO?Vjo%,(l - o£)e*) 
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(ii) For "hidden to output" weights: 

where 

de p OKp dep    dO"   dNETl!  ,   dep   dOL
p   dNETL» 

fy       dO^dNET^    3v> dOL
pdNETL

p    ty 

= (-^(2tp -oy- 0L
p)(n + a) + ß(0 - it) 

n = c%0¥(l-0¥)   and  a = o*0£(l-0£) 

(12) 

By applying (11) and (12) in (10) one can appropriately train the Neural Network 
to minimize the proposed cost function E. 

NUMERICAL RESULTS 

To illustrate our method we simulated a hypothetical medical diagnosis decision 
support system. Let us suppose that four exams are applied to each patient, being 
the first one more relevant than the others. The Network output indicates the 
patient diagnostic. We assume that "0" indicates negative and "1" indicates 
positive, i.e a patient with an output near 1 considered to be with good health. An 
input equal to "1" reflects a positive exam result. For all the following examples 
the Neural Network has two units in the hidden layer. In our first simulation we 
set ß = 0. The following training set was presented: 

Presentation 123456789 10 11   12  13  14  15  16 
Input 1 111111110 

1110    10    0    0    0 

110    0    0    110    0 

10    0    0    110    10 

0    0    0    0    0    0    0 

1110    0    10 

0    1110    0    1 

0    0    11110 

Input 2 

Input 3 

Input 4 

Target 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 

After a training section of approximately 4000 iterations (see figure 1) we have 
got the following outcome corresponding to the 16 training data: 

Presentation 

Outcome 

Presentation 

Outcome 

1 8 

0,9998 0,9996 0,9876 0,0190 0,9996 0,9996 0,9876 0,0004 

16 10 11 12 13 14 15 

0,0007 0,0004 0,0146 0,9833 0,0146 0,0007 0,0146 0,0007 
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1000 2000 3000 
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Figure 1 

Note that real outcomes were obtained, i.e. lower interval bound is equal to the 
upper bound. This result was expected since real inputs were presented. Next we 
recalled the network simulating that the third exam was not undertaken, i.e. input 
= ( 1, 1 , [0,1], 0 ), and we got as outcome [0,9876 ; 0,9996]. This result is also 
coherent since the absent exam is not the relevant one. In contrast, if we omit the 
first exam, i.e. input = ( [0,1] , 1 , 0 , 0 ), we will get outcome = [0,0007 ; 
0,9876], indicating an undefined response as expected. In the next experiment we 
set ß = 0,01 , and used the following training data: 

Present. 1     2     3     4    5     6    7     8     9   10   11   12   13   14   15   16 

Input 1 AAAAAAAABBBBBBBB 

1110100001110010 

1100011000111001 

1000110100011110 

Input 2 

Input 3 

Input 4 

Target 1 1 1 0 1 1 1 1 0 0 0 1 0 0 0 0 

where A = [0.8 , 1] and B = [0 , 0.2]. We trained the network to reach a sum 
squared error of approximately 10~7. This network was recalled with 
input=([0 ; 0,4], 1,1,0), to get as output [0,9988 ; 1,0000]. 
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FINAL REMARKS 

In this paper we introduced a new approach to the classical Backpropagation 
algorithm. This method allows interval valued inputs, producing an interval 
valued output. The main advantages of our approach are the possibility of 
recalling the network even when one has missing or uncertain values attributes as 
input. We presented preliminary simulated numerical results obtain quite fast 
convergence and coherent results. Further research is now been conducted with 
the goal of generalising this approach to interval output targets. 
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Abstract 

This paper presents a new learning algorithm for radial basis func- 
tions (RBF) neural network, based on robust statistics. The extention 
of the learning vector quantizer for second order statistics is one of the 
classical approaches in estimating the parameters of a RBF model. The 
paper provides a comparative study for these two algorithms regard- 
ing their application in probability density function estimation. The 
theoretical bias in estimating one-dimensional Gaussian functions are 
derived. The efficiency of the algorithm is shown in modelling two- 
dimensional functions. 

1    Introduction 
Radial basis function (RBF) neural networks have been used in different 
applications in order to model unknown functions, providing the network 
with a training set [4]-[8]. RBFs have suitable properties to be used for 
function approximation [5], by decomposing a general function in a sum of 
kernels [2]. All the functions in this structure have similar parameters and 
can be embedded in a neural network. 

The first approach considered in this paper is the second order statistics 
extension [7] for Learning Vector Quantization (LVQ) algorithm [3]. However, 
from statistical studies [2] this method is expected to give a large bias in the 
cases when data are long tailed distributed or contain outliers [1, 9]. In order 
to overcome these situations, we use an algorithm based on median type 
learning and called Median RBF (MRBF). Robust estimators are known to 
find the parameters best fitting to the bulk of the data and to identify outliers 
[2]. In the MRBF learning algorithm, we use the marginal median estimator 
in order to find the centers of the Gaussians and median of the absolute 
deviation for the covariance matrix parameters. 
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The RBF network has a feed-forward topology and can be used in un- 
supervised as well as in supervised learning. The network can be fed with 
real TV-dimensional vectors denoted by A and the hidden units implement a 

Gaussian function: 

4>j(X) = cxp [-(,,,- - A")' S^O'i - A')], j=l,...,L (1) 

L is the number of hidden units, // is the mean vector and S is the covariance 
matrix. These weights are associated with input to hidden layer connections 
and geometrically they represent the centers and the shape parameters for the 
basis functions. Each hidden unit has associated an activation region, similar 
with the Voronoi partition from vector quantization. In order to assign a 
new sample to an activation region we have assumed two different metrics: 

Euclidean and Mahalanobis. 
The output layer implements a weighted sum of hidden unit outputs: 

L 

y,t.(A') = 53 Kktj)d>j{X), k = l,...,M (2) 

whore M is the number of outputs. 
The outputs are binary coded and a sigmoidal function is used in order 

to limit the output: 

Yk(X) = — !   .  ,y.v k = \,...,M (3) 
l+exp[-V'*(A)] 

where Yk is the kt\\ output of the network. 

2     Learning Algorithms 

The weights in a RBF network can he found on-line by using a combined 
unsupervised-supervised technique [4], The unsupervised part is derived from 
the. LVQ algorithm and is similar to the adaptive fr-means clustering. 

In the first, stage, the algorithm computes the distances from the given 
pattern to all the existing kernel centers. If we use Euclidean distance: 

If II A,- - /-/,■ ||2 = min || Xi - fik ||2 then A',- G Cj (4) 
k — \ 

where C) is the kernel associated with the given pattern. Only the center of 
the winner class will be updated, according to the LVQ algorithm [3]: 

fij =f'j + — (Xi-f'j) (5) 
Tlj 

for j = 1, . . ., L, where n.j is the number of samples assigned to the cluster 
j. Taking the learning rate equal with the inverse of the number of samples 
associated with that unit we obtain a minimal output variance [10]. 
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A similar method with (5) can be used to calculate the covariance matrix 
elements for each Gaussian neuron [7]: 

*'.*' = ^TTT^*' + ^731 (6) 

for &, / = 1,..., N j = 1,..., L. The estimators in (5,6) are consistent with 
the classical statistical estimators for the first and the second order statistics. 

The Mahalanobis square distance takes into consideration the covariance 
matrix for each hidden unit and can be used instead of (4): 

If (fij - Xi)' tr\ßj - Xi) = min^t - Xi)' t~\ßk - Xi) then Xt G Q  (7) 

In the training stage it is desirable to avoid using patterns which may cause 
bias in the parameter estimation. The LVQ algorithm together with its ex- 
tention in RBF network do not have robustness against the outliers or against 
the erroneous choices for the parameters. Robust estimators are known to 
provide accurate estimates when data are contaminated with outliers or have 
long-tailed distributions [1, 2]. The marginal median LVQ algorithm [9] can 
be used in order to evaluate the reference vectors for each partition region. In 
order to avoid increasing complexity, the samples assigned to a neuron pass 
through a running window W. If the data statistics change in time, then W 
is small. If a better evaluation of the median is desired then W is large. The 
learning rule is given by: 

_   ( med{X0,Xu...,Xi} \ii<W 
P' - \ med{Xi-W,Xi-W+u...,Xi}    iii>W y) 

For the robust estimation of the scale parameter we use the median of the 
absolute deviation (MAD): 

med{|Xi - ßj\,... ,\XW - fij\} 
*iM = ^^ (9) 

where 0.6745 is a scaling factor in order to make the estimator consistent 
for the normal distribution [1, 2]. The cross-correlation components of the 
covariance matrix can be derived from the MAD calculated for Xi(h) + X{(1) 
tmd Xi(h) - Xi(l) [2]. 

In both algorithms, for supervised learning, a second layer it is used in 
order to group the clusters found in the unsupervised stage. The output 
weights are updated as: 

X(k,j) = X(k,j) + V(Yk(X) - F\X))Yk{X){\ - Yk(X))^(X)      (10) 

for k = 1,...,M j = 1,...,L and r] G (0,1) is the learning rate. Fk{X) is 
the desired output for the pattern X and it is binary coded. The formula 
(10) corresponds to the backpropagation for RBF network with respect to 
the square error cost function [8]. 
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3     The Performance Analysis 

Wo consider the case when we have a mixture of one-dimensional normal 
functions N(//j, (Tj): 

f(X) = 

L 

i = i 
ITTCFJ 

exp (X->>j)2 

2er] (11) 

£ Ej — 1 (12) 

where Sj  is the a priori probability for the function j.    In the case of a 
mixture of multivariate normal distributions, the estimation can be clone on 
marginal data. If we consider more complex distribution functions, they can 
1)0 decomposed in sums of mixed Gaussians and reduced to the model (11). 

We estimate the center for the jth Gaussian: 

E\fij) = E[X\Xe[fj,fj + 1)] = 
a^ xf(x)dx 

JTj 

fV1 f(X)dX 
(13) 

where Tj and 7j + i arc the estimates of the separating boundaries for the 
jth Gaussian kernel and f(X) is given by (11). In order to evaluate the 
parameters for one Gaussian from a mixture of normal functions we should 
also consider parts from neighboring functions which are inside the boundaries 
Tj and Tj + i. Replacing (11) in (13) we derive the stationary value of the mean 
estimate, valid for (5). 

The median is located where the pdf of the given data is split in two equal 
areas [1], From this condition the stationary value of the center estimate for 
the jth Gaussian distribution can be obtained by using the median operation: 

^   [—*— =EJ 
rf 

Tj + i - Hi 
erf Tj - Hi 

<?i 

where we consider the definition for the erf function: 

erf(A') = 7=1' '27T J0 

exP 1 -y ) dt 

(14) 

(15) 

The stationary value for the estimate of the variance using the classical 
estimator (6) is given by: 

f^+i 

E[&]] = E[(X - fi?'<">)*\x G [T),fi + 1)] = 
tii+x{X-E\ji?"n]?f{X)dX 

J^x f(X)dX 
(16) 
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where f(X) is from (11) and E[ßfean] is the stationary value of the center 
estimate using the mean estimator. 

From similar properties like those used for (14), for the MAD estimator 
(9) we can derive its expected stationary value from: 

2si = l £i 
erf /e[Ard]-M,+^fAOA _ erf fE[ßrd]-ß,-cE[&r

A- 

= |EL^[erf(^^)-erf(^)] (17) 

where c=0.6745. 
In order to evaluate the parameters for the Gaussian kernels we must also 

evaluate the activation domains V = p),2)+1) for each Gaussian function. If 
the Euclidean distance is used in order to assign a new pattern to an activation 
region (4), we can estimate the boundary Tj between two activation regions 
j and j + 1 as: 

7) = k±B» (18) 

for j = 1,..., L — 1.  The first and the last boundaries are:  T0 = — °o and 
TL = oo. 

In the case when the Euclidean distance is replaced by the Mahalanobis 
distance (7), then the boundary condition in one-dimensional case can be 
found solving the equation: 

(19) 

for j = 1,..., L — 1.   Analytical methods can be used in order to find the 
boundaries as well as the model parameters. 

We consider the following particular examples : 

f(X) = ±N(5,<r) + ±N(lO,<r) (20) 

f(X) = |j\T(3, a) + |JV(5, a) + |jV(10, a) (21) 

We estimate the center and the scale parameter for the distribution N(5, a) 
using both mean and median estimators for RBF centers. The absolute errors 
E[ß]—[i are depicted in Figure la for the distribution (20) and in Figure lb for 
the distribution (21) with respect to the scale parameter a. The comparison 
results in the bias estimation for the scale parameter E[a] — cr are presented in 
Figure lc for the distribution (20) and in Figure Id for the distribution (21). 
The estimation of the class means and scale parameters of (20) corresponds 
to the estimation of parameters of medium-tailed distribution and in the case 
of (21) to a short tailed distribution. All these plots show that in the cases 
when it is occuring a certain overlap in the functions to be estimated, the 
bias given by the robust algorithm it is smaller than that obtained by using 
classical methods. 
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Figure 1: Theoretical analysis for robust and classical statistics estimators in 
evaluating the RBF parameters: a) estimation of the center for N(5,2) in a 
long-tailed distribution and b) in a short-tailed distribution; c) estimation of 
the scale parameter for N(5,2) in the first distribution and d) for the second 
distribution. 

4    Simulation results 

Wc have applied both algorithms presented in Section 2 and analyzed in 
Section 3 to the estimation of the parameters for mixed bivariate normal dis- 
tributions. The first algorithm uses classical statistics estimators for finding 
the RBF parameters and the second uses robust estimators. In these appli- 
cations we have used both Euclidean and Mahalanobis distances in order to 
assign a new corning pattern to a cluster. 

We apply the networks for estimating the following distributions: 
Distribution I: P/(X)=N(2,1;3,1;0)+N(8,7;3,1;0) 

Pf(X)=N(8,2;l,3;0)+N(2,6;l,3;0) 
Distribution II: P//(X)=N(6,0;4,1;0)+N(0,6;1,4;0) 

D
2"(X)=N(6,6;2,2;0) 

Distribution III: P{u(X)=e P/+(l-e)U([-5,15],[-5,15]) 

Distribution IV: P{v(X)=e Pfc
//+(l-e)U([-5,15],[-5,15]) 

where we denote a Gaussian distribution through N(p.\, \xi\ C\, &2] r), r is 
the correlation factor and a uniform distribution through U and k £ {1,2}, 
£ = 0.9. 
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Table 1: Comparison between RBF and MRBF algorithms 

Distribution Method 
Distance Measures 

Euclidean Mahalanobis 
Error (%) MSE Error (%) MSE 

I 
RBF 21.26 13.69 17.17 6.90 

MRBF 17.58 8.65 13.75 2.75 
Optimal 12.13 0.00 12.13 0.00 

II 
RBF 3.89 3.69 2.95 1.24 

MRBF 2.90 1.20 2.61 0.82 
Optimal 2.52 0.00 2.52 0.00 

III 
RBF 26.63 34.22 35.05 48.59 

MRBF 21.11 10.11 18.82 5.74 
Optimal 15.78 0.00 15.78 0.00 

IV 
RBF 15.28 32.36 22.21 39.61 

MRBF 8.78 5.50 7.24 2.49 
Optimal 7.18 0.00 7.18 0.00 

The comparison measures are the miss-classification error and mean square 
error (MSE) between the true functions and those modeled by means of the 
neural network. The problem of multi-distribution estimation is seen as a 
pattern classification task. The optimal network is obtained when its param- 
eters are identical to those of the given Gaussian distributions. The MSE is 
defined as: 

1    M     f 
MSE = JTJ2      (Yk(x) ~ Y\X)f dX (22) 

where the domain is V = (—00,00) x (—00,00) in our case , Yk(X) is the 
surface for the kth output unit and Yk(X) is the target function. 

In the learning stage, we consider a window of W=401 samples (8) (for 
MRBF) and 4000 learning samples with equal number of samples for each 
cluster. The comparison results between the two methods are given in Table 
1 where the same data were used for both algorithms. The simulations were 
repeated with different data, consistent with the same distribution functions 
and the presented results are the average of all these trials. 

In all these cases, we have obtained a clear improvement by using the 
MRBF algorithm. When the mixture of bivariate normal distributions is 
contaminated with uniform distributed patterns the difference is very large 
because the median type learning is insensitive to the presence of outliers. 
Using the Mahalanobis distance instead of the Euclidean distance, we ob- 
tain better results, except for the classical estimators in the case of models 
contaminated by uniform noise. 
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Figure 3: Samples from the distribution 11 and the boundaries between the 
classes '-' optimal classifier, '- -' MRBF and '-' RBF. 
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Samples drawn from the distributions I and II are depicted in Figures 2 
and 3. The separation boundaries found by means of the RBF and MRBF 
networks as well as the optimal boundary are marked in these Figures. The 
separation boundaries are situated where two neighboring classes have equal 
probabilities. The decision rule for the assignment of a new pattern was based 
on Euclidean distance in Figure 2 and on Mahalanobis distance in Figure 3. 
It can be seen from these Figures that we obtain a better approximation of 
the optimal boundary by using MRBF compared with the classical algorithm. 

In Figure 4 we evaluate the convergence of these algorithms in the case 
of distribution I. The learning curves represent the estimation of the pdf 
functions (MSE) with respect to the number of samples. From this plot the 
improvement given by MRBF compared with classical RBF learning and by 
using the Mahalanobis distance instead of the Euclidean distance is clear. 

From the Table 1 we can see that MRBF gives better results in estimating 
the pdf functions and it is not biased by the presence of the outliers. MRBF 
gives more accurate approximations for the Bayesian boundaries then the 
classical statistical algorithms in the case of bivariate mixtures of Gaussians, 
as can be seen in Figures 2, 3. Median type learning applied to radial basis 
functions converge smoothly to a stationary value smaller than that obtained 
in classical estimation for RBF as can be seen in Figure 3. 

m 
GO 

2000 2500 3000 3500 4000 

No. of Samples 

Figure 4: The learning curves in the case when the samples are drawn from 
the distribution I. Classical estimators are used together with the Euclidean 
distance for curve a and together with the Mahalanobis distance for curve c ; 
robust estimators are used together with the Euclidean distance for curve b 
and together with the Mahalanobis distance for curve d. 
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5     Conclusions 
This paper presents a comparative study of two learning algorithms, one 
based on classical statistics estimators and the other on robust estimators. 
The algorithm derived from robust statistics and called Median RBF uses the 
median in order to find the centers in the network and median of absolute 
deviations for the estimation of the scale parameters. Both algorithms can 
be implemented on-line. We have derived theoretical analysis in a parameter 
estimation problem. The algorithm based on robust statistics is proved to 
give more accurate results in the one-dimensional estimation problem as well 
as in a two dimensional density function approximation. Possible fields of 
application for this algorithm arc in communication systems, image processing 

and speech recognition. 
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THE USE OF RECURRENT NEURAL NETWORKS 
FOR CLASSIFICATION 

T. L. Burrows     M. Niranjan 
Cambridge University Engineering Department 

Trumpington Street, Cambridge CB2 1PZ, England 

Abstract-Recurrent neural networks are widely used for context dependent 
pattern classification tasks such as speech recognition. The feedback in these 
networks is generally claimed to contribute to integrating the context of the input 
feature vector to be classified. This paper analyses the use of recurrent neural 
networks for such applications. We show that the contribution of the feedback 
connections is primarily a smoothing mechanism and that this is achieved by 
moving the class boundary of an equivalent feedforward network classifier. We 
also show that when the sigmoidal hidden nodes of the network operate close 
to saturation, switching from one class to the next is delayed, and within a class 
the network decisions are insensitive to the order of presentation of the input 
vectors. 

INTRODUCTION 

Many classification problems depend on the context in which class data is received, 
ie. the history of previous classes. Human perception of speech is a typical example, 
in which coarticulation effects between adjacent phonemes are important contextual 
factors for correct recognition, especially in noise. The performance of a classifier 
can be enhanced by providing past and future context. Future context can be provided 
by a delay between input window and output decision. Past context can be presented 
within an input window which contains a fixed number of previous frames [1], 
and by including delayed feedback paths (recurrent connections), which provide 
information about previous local decisions [2]. For a fixed input window, the depth 
of the context ie. the number of frames spanned by the input, is fixed. The classifier 
may miss dynamic features of the class with a longer duration than that of the input 
window and cause smoothing of features that change rapidly within this window. For 
a recurrent network, the depth of the context is potentially infinite, but in practise is 
determined by the relative size of the recurrent connection weights. 

Much experimental work eg. [2], has reported improved performance of recurrent 
networks over feed-forward networks. In a previous paper [3], we looked at how 
this is achieved for the system identification of time-varying patterns. In this paper, 
we proceed by studying how recurrent networks operate for classification of time- 
varying patterns. We concentrate specifically on how the recurrent connections make 
use of previous context during 2-class classification problems such as classification 
of phoneme pairs from the TIMIT database. 
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EFFECT OF FEEDBACK ON DECISION BOUNDARY POSITION 

Consider the unit delay recurrent connection around a single hidden node, with a 
nonlinearity f(x) = tanh(x), shown in Fig. 1. The output node is linear and the 
classification decision is determined by an output threshold at zero. 

z(t) 

unit 

delay 

Figure 1: Single Hidden Node With Recurrent Connection 

For such a network, the equations for the output of the hidden node, y(t) and network 
output, z(t), are : 

y(t)   =   f(vTx(t) + wy(t-l) + 6) 

z{t)   =   uy(t) 
(1) 

(2) 

where v is a vector of input weights, x{t) is a vector of input parameters, [ci,c2,... 
,c„]r, 0 is a bias term and (.)T denotes transpose. We used cepstral coefficeints 
derived from phoneme segments from the TIMIT database as an example input. The 
networks were trained as 2-class classifiers using back-propagation through time 
to minimise the mean squared-error, with class targets of -1 and 1. The decision 
boundary is defined by : 

vrx(t) + wy(t- 1) + 0 = O (3) 

The contribution vTx(t) + 0, represents a static linear decision boundary which can 
be interpreted as the decision boundary for a feed-forward classifier which has the 
same weights u, v and 0. The term wy(t — 1) represents a variable bias which causes 
the decision boundary to move parallel to v. We consider a trajectory of points in 
class 1, Fig. 2 a), for which some of the points are incorrectly classified by the static 
boundary. For these errors to be corrected, the decision boundary must move away 
from class 1, biasing the current decision towards that of the previous classification. 
This occurs for positive w, which also gives stable feedback around the node. Hence 
for maximum classifier performance, we require a training algorithm which develops 
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positive w. The limits of the boundary movement lie at ± w on either side of the static 
boundary, and with this they divide the input space into 4 regions, A-D, as shown 
in Fig 2 b). Classification of points in A and D is unaffected by the position of the 
decision boundary and is independent of their context. A and D define a region of 
the input space in which the number of classification errors made by the recurrent 
net is predetermined. B and C define an indeterminate region of the input space, of 
width 21w\, in which the classification of points requires knowledge of their context, 
since movement of the decision boundary in this region causes both correction of 
and addition to errors made by the feed-forward net. The sensitivity of the output 
to the context of the input data implies that the order of presentation of the training 
classes is important. Different orders of presentation of the classes will not converge 
to the same solution, when starting from the same weight initialization. 

b) 
4 

■"'"nit 
3 Class 1 

2 
A 

1 
^"--\--        B '"■■-..x f 

V* 
0 • d e 

-' 
° a 

-2 ~~ ^ 
Class 0 ~-'--. 

Figure 2: a) Movement of decision boundary by recurrent connection, b) Decision boundary 
limits and classification regions 

EFFECT OF DECISION BOUNDARY MOVEMENT ON OUTPUT 
SWITCHING 

The decision boundary movement, which biases the current decision towards that 
of the previous decision, gives a classifier output which exhibits a switching delay 
and is trajectory sensitive ie. is dependent on the order of presentation of input data 
within the current class. The magnitude of the delays and the extent of the trajectory 
sensitivity is determined by the relative range of the indeterminate region, B and 
C, and the approximately linear region of the node function, Fig. 3. All points in 
regions A and D are trajectory insensitive, since they cannot move the decision 
boundary. Only indeterminate points which lie within the linear region of the node 
function, shown hatched in Fig. 3, can cause boundary movement and are therefore 
trajectory sensitive. The entire indeterminate region will be trajectory sensitive if it 
is completely spanned by the linear region of the node function. 

The variation in switching delay for different points within the indeterminate region 
is shown in Fig. 4. The decision boundaries and test data points for this classifier 
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Figure 3: Trajectory sensitive region of input space when decision boundary lies at class 0 
limit, for a nonlinear function which is linear over the range 2d and 9 = 0 

are shown in Fig. 2 b). For a narrow nonlinear function, only a few indeterminate 
points are within the linear region and can cause switching. This switching is rapid 
since the boundary moves quickly across the indeterminate region to the other class 
limit. Most points cause saturation and no switching, Fig. 4 a). Hence most of the 
indeterminate region is trajectory insensitive and smoothing of the classifier output 
occurs ie. previous decisions are favoured. This is obvious in the limiting case of a 
step function, in which the linear width is zero. For this nonlinearity, the boundary 
can only lie at a class limit and only points in A or D cause switching. In this case, 
all indeterminate points are also trajectory insensitive and the previous decision is 
always chosen, giving maximum output smoothing. For a wide nonlinear function, 
Fig. 4 b), more of the indeterminate points fall within the linear region and are 
therefore trajectory sensitive, as shown in Fig. 3. The wider the linear region, the 
more slowly the decision boundary crosses the indeterminate region, giving longer 
switching delays and greater output smoothing. The actual boundary movement 
caused by a trajectory of points, f to a, which span the 'indeterminate region', is 
shown in Fig. 5 a), for f(x) = tanh(x). The boundary and data trajectory move in 
opposite directions, and due to the finite switching delay illustrated in Fig. 4 b), the 
recurrent decision lags the feed-forward decision, Fig. 5 b). 

The limited trajectory sensitivity of the recurrent network is illustrated in Fig. 6, for a 
network with 10,5 and 1 units in the input, hidden and output layer respectively. The 
network was trained as a classifier of voiced and unvoiced phonemes on sentences 
from the TIMIT database. In testing, adjacent input frames within a class segment 
were swapped and the classifier output compared with that*for the normal input 
order. For most segments, the hidden nodes saturate, giving similar recurrent network 
outputs in Fig. c) and d). Only segments in which a node operates in the linear region 
(node output < 0.5 in Fig. 6 b).) are the network outputs very different. Smoothing 
of the recurrent network output within a class segment is seen in the unvoiced 
segments around frames 100 and 145 and a switching delay in the unvoiced/voiced 
class transition at frame 151. 
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EFFECT OF DECISION BOUNDARY MOVEMENT ON CLASSIFIER 
PERFORMANCE 

The movement of the decision boundary has the potential to both improve and impede 
the performance of a recurrent net over that of a feed-forward net due to the variable 
classification of points in the indeterminate region, B and C. The recurrent net cannot 
correct errors in regions A and D. The combined effect of the trajectory sensitivity and 
switching delay caused by boundary movement, is to smooth output decisions of the 
recurrent net causing them to lag those of the feed-forward net. If the 'indeterminate 
region' is too narrow, Fig. 7 a), the feed-forward and recurrent outputs are almost 
identical and there is little difference in performance, Fig. 7 c). Conversely, if the 
'indeterminate region' is too wide, Fig. 7 b), most classifications are dependent on 
previous decisions and over-smoothing of the output occurs, causing the performance 
of the recurrent net to fall below that of the feed-forward net, Fig. 7 d). Hence to 
minimise the additional errors of the recurrent network caused by switching delays, 
we require the indeterminate region to bind, as tightly as possible, any region of data 
overlap surrounding the static boundary. 
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Figure 7: Test patterns and decision boundary limits for a 'g-d' classifier: a) w too large, 
b) w too small. Network output: c) w too large, d) w too small. 
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The smoothing of the recurrent network output can explain the change in relative 
performance of recurrent and feed-forward classifiers at different frame-rates (res- 
olutions) [4], where recurrent networks are reported to perform better at lower 
frame-rates. At a higher frame-rate, there are more frames for a given phoneme 
duration but the parameters vary much less on a frame-to-frame basis than at a lower 
rate, causing saturation of the recurrent network. At a phoneme boundary, the small 
changes in parameter values at each frame cause the recurrent net to switch slowly, 
causing smoothing of the output decisions and a fall in performance below that of a 
feed-forward net. 

DISCUSSION 

Recurrent neural networks are widely used for context dependent pattern recognition. 
In speech recognition, for example, their application is motivated by the need to 
integrate acoustic cues that are distributed over time. It is generally claimed that 
this ability to model the temporal correlation in the data vectors gives recurrent 
neural network classifiers greater power than state-of-the-art acoustic models based 
on hidden Markov modelling. The observations reported in this paper suggest this 
may not be the case in practice. We have shown that the contribution of the feedback 
is primarily a smoothing operation. This can improve performance over a static 
classifier in regions of the input space where the class data may overlap, by moving 
the class boundary of the static classifier. The smoothing can also cause a delay in 
switching from one class to the next. 

We also observed, that when the hidden nodes operate in the saturated regions of 
the sigmoid, the network outputs are not sensitive to the order of presentation of the 
input examples within a class. When this happens, the network is not modelling the 
trajectory of the input vectors and is effectively treating each data vector within a 
class independently, similar to a hidden Markov model state. We suggest some of 
the above problems can be overcome by setting the network targets (or weighting 
the error function) in a similar manner to Etemad [5] and Watrous [6]. These authors 
use a ramp-like target function over the duration of a class, say a phoneme in 
speech recognition, to reflect the increasing confidence of class membership as more 
and more data is received. Such training will force the hidden units to stay out of 
saturation, avoiding some of the problems we have pointed out. 

For the single hidden node recurrent net, a linear decision boundary, vTx, is defined, 
with a bias of 0 + wy(t — 1). We have shown that the effect of w is to bias the current 
decision towards that of the previous decision, in a similar way to which the log prior 
ratio biases the decision boundary of a Bayes optimal descriminant function towards 
the most probable class [7]. We can interpret wy(t — 1) as acting like a variable prior 
ratio, since wy(t — 1) determines which class is favoured. The recurrent connection 
thus updates our estimate of the priors, depending on the previous context, y(t — 1). 
In [8], variation in the class priors between training and test data is accounted for 
by scaling the network outputs. Recent work on feed-forward nets by Gish [9] has 
shown that adjustment of the output biases is sufficient to adapt the classifier to the 
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new data. For a recurrent net, this suggests that modifications to both the recurrent 
weights and the biases are necessary. 

For a feed-forward network (multi-layer perceptron or MLP) with a single output 
node, training by back-propagation is known to yield a minimum mean squared-error 
estimate of the Bay es optimal descriminant function [10], in which the outputs are 
treated as posterior probabilities. The MLP approximation is only accurate if there 
are sufficient hidden nodes to capture the complexity of the function. With multiple 
hidden nodes, the decision boundaries become nonlinear and result as a combination 
of local decisions by each node. For the recurrent network case, cross terms in the 
feed-back matrix, w determine how previous decisions in other local regions of the 
input space affect the current local decision. We are now studying the multiple hidden 
node case more closely and expect the indeterminate regions for each local decision 
to overlap resulting in more of the input space being context sensitive. 
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Abstract Mapping neural networks based on a piecewise-Iinear (PWL) function 
approximation scheme are useful in signal processing, i.e. nonlinear filtering. 
However, the traditional canonical PWL model has a drawback that limits the 
usefulness of these networks. To overcome this limitation, three more general 
PWL models with their network implementation structures are introduced in 
this paper. As the first application of the models in signal processing, the 
modelling, the unification, and the generalization of the useful nonlinear filter 
family, the order statistic filters are considered. 

I. INTRODUCTION 

Neural networks whose input/output relation is characterized by a map, i.e. 
a real function of several variables, play an important role in signal processing. 
They are often used as a method for nonlinear digital signal filtering, which is 
traditionally thought a difficult problem to deal with. It is expected that the ap- 
plication of neural networks in signal filtering opens a new way towards gen- 
eralizing or unifying existing nonlinear filters, which were mostly developed for 
some special purposes [1]. 

The most popular mapping networks may be the multilayer perceptrons 
motivated by a model of a biological perceptual system. Recently, mapping net- 
works have also been developed on some function approximation schemes, e.g. 
the Radial-Basis-Function network and the networks that implement a 
piecewise-Iinear (PWL) function. The network structures developed in [2,3] 
are based on the so-called canonical PWL function proposed in [4]. It has re- 
cently been revealed that the multilayer perceptrons can also be regarded as be- 
longing to the family of canonical PWL networks [5]. A canonical PWL net- 
work has advantages in the implementation. Theoretically, it can be used as a 
general model to approximate an arbitrarily given filtering operator in practice 
[6]. The usefulness of the canonical PWL filter has been proved in various ap- 
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plications of nonlinear signal or image processing. 
Mapping networks implementing a PWL function should have a particular 

meaning in nonlinear signal filtering. One notices that some useful signal pro- 
cessing approaches are inherently PWL characterized. For instance, an impor- 
tant approach of nonlinear filtering is the family of filters based on order- 
statistics [1]. This family is rich in members and possesses useful specialities in 
applications, e.g. image processing. An order statistic filter is in fact a PWL 
filter. This fact has not caught enough attention in the literature where special- 
ized network structures are proposed for the realization of an order statistic 
filter [1,8]. It is naturally expected that a rather general PWL network structure 
will be meaningful in the unification and further generalizations of the family of 
order statistic filters. 

The canonical PWL function serves as the only method at present to 
represent PWL functions in an explicit and compact form that is easy to imple- 
ment in a network structure. However, the canonical model has a fatal draw- 
back, i.e. it only works for a subclass of PWL functions. This drawback limits 
the usefulness of the canonical PWL network in applications, e.g. signal pro- 
cessing. Some useful PWL functions, including the function of an order statistic 
filter, cannot be represented by the canonical model. It is thus a meaningful 
research theme to overcome the limitation of the canonical model and to 
achieve a more general model for PWL functions. 

In this paper we will consider the problem of the PWL model from the 
viewpoints of both the representation capability as large as possible and the sui- 
tability for the network implementation. First we will introduce a general 
scheme for representing all PWL functions. Two simplified models are then 
developed from the general scheme. Each of them has its specialities, but both 
are capable of representing all continuous PWL functions. Therefore, they will 
be more useful than the canonical PWL ones in applications of nonlinear signal 
filtering. The use of the models for the implementation of an order statistic 
filter and its generalizations are considered. 

II. PWL FUNCTIONS -- A GENERAL MODEL 

Let us consider a PWL function /: RN —> R. The domain is partitioned 
into a set of sub-spaces (regions) 

p 

R:={RpCRN |   uRp=RN,RpnRp-=<f>, p ^p1, p,^ e{l,2,...,P}}(l) 

by a finite set of Q (N - l)-dimensional hypersurfaces (boundaries) 

H:={HqCR»,q£{l,2,...,Q}}. (2) 

Each boundary is characterized by 
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Hq :={x£R"| ^(x)=0}, (3) 

where cpq: R
N —> R is called the boundary function of Hq. As usual, the 

boundary functions are limited only to linear ones. That means, the boundaries 
are all (N - l)-dimensional hypcrplanes. 

On each region Rp,p £{ 1,2,...,.P},/ is represented by 

/(x)=/,(x)     for x e*, CR\ (4) 

where fp: R
N —> R is a linear function called the local function of Rp. 

An important class of PWL functions is that of the continuous ones, for 
which there is 

/,(x)=/,.(x),    where x £Rp n*,- , (5) 

forallp,/»' e{l,2,...,P}. 
Although the PWL functions have shown their usefulness in many scientific 

and engineering areas, it is still a difficult task to find a compact global 
representation for all of them, (even only for all continuous ones.) From the 
viewpoint of mapping networks, a useful PWL representation which is suitable 
for a network realization is strongly expected. 

From the above definition we can first see that any general representation of 
PWL functions should include two aspects, concerning the local functions and 
the domain partition, respectively. Through a further study we see that the to- 
pological structure of the boundaries in the domain partition plays a key role in 
the representation. Generally speaking, PWL functions with their domain par- 
tition topologically similar to each other, should have a similar representation. 

A general scheme for representing PWL functions is given as follows 

/(*)= £/P(*)7/>(*(^*)),*(^(X)),...,5(MX))), (6) 

where fp, ^:R"—> R,s:R—> {0,1} is the hardlimit function: 

f 0,    ^0 
*<0:={l,    £>0, W 

and y, for/) ={ 1,2,...,P} are logical operators yp: {0,1}C —> {0,1}. 
We call this scheme the / - cp model of PWL functions, which emphases the 

two aspects of the local functions and the domain partition. Clearly, all PWL 
functions defined as above can be represented by this model. One notices that 
a region Rp for/? £ { 1,2,...,P } can also be defined as 

Rp ={x £R" | ^(x)>0,   for some q £{1,2,...,F} and 

<Pq.(x)Z0, for other <?'£{ 1,2,...,/>}}. (8) 
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The kernel part of the / - cp model are the logical operators jp that carry the 
information about the topological property of the domain partition of the PWL 
function to be represented. The logical operators will not change if the / - cp 
model is used to represent PWL functions that are isomorphic with each other, 
i.e. they are defined on isomorphic domain partitions. * 

A network implementation of the / - cp model is straightforward, as illustrat- 
ed by Fig. 1, where the blocks of fp and cpq are linear combinators implement- 
ing the local and boundary functions of a PWL function, respectively. S is the 
hardlimit unit. F is a logical array implementing the logical operators, 
representing the topological structure of the domain partition. Beside these, 
the components needed by this network are simply switches. 

X —^^ 

m 
J1                   l_ _i 

:   >* Jp L_ 
t 

r 
fl      Ö         -* 

Yfi        \2/ 

Fig. 1 Network structure of the/ - 9? model 

As a general scheme the / - <p model takes all information into account 
which may be required in representing an arbitrary PWL function. For a con- 
crete problem of a given PWL function, the network structure may be unneces- 
sarily large or complicated. In practice, PWL functions are often used within a 
constrained subclass. Therefore, it is meaningful to study the simplification of 
the / - cp model by attaching some constraints. The most widely used subclass 
of PWL functions may be that of the continuous ones. It has been investigated 
that the continuity leads to a strong constraint between the local and the boun- 
dary functions of a PWL function [9]. That means a large reduction of informa- 
tion should be achieved in representing a continuous PWL function. In the fol- 
lowing we will introduce two simplified versions of the / - cp model based on 

1 Two domain partitions are said isomorphic with each other if there exists a 
one-to-one correspondence between the boundaries, their intersections, 
intersections of intersections etc. of them. 
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this kind of constraint. 

HI./ -/ MODEL AND NETWORK STRUCTURE 

The first simplification of the / - cp model is defined as follows: 

p 

/(*) = T,fp(*K(rl(fl(x),...,fr(x)),...Mfi(*),---,fp(*))), (9) 

where rp:R
p —> Z are rank functions defined by 

/>(&,...,&):=* £{1,2,..,^}, 

if £p is the kth largest in { £i,...,&.} , (10) 

and       ipp        for      /? = {1,2,...,P}       are       quasi-logical       operators 
<^:{1)2,...,JP}'>^ {0,1}'. 

We call this representation scheme the / -/ model of PWL functions. Com- 
paring the / -/ model with the / - cp one we see that all boundary functions 
become implicit. That is, in the / -/ model the information about the domain 
partition is implied in that about the local functions. Accurately speaking, the 
/ -/ model represents PWL functions where the domain partition is deter- 
mined by the order of values of the local functions. One notices that this pro- 
perty is possessed by a continuous PWL functions. Therefore, we have 

Theorem 1: 
Any continuous PWL function may be represented by the / -/ model. 

A network structure of the / -/ model is given in Fig. 2. The blocks imple- 
menting the rank functions bring about no difficulty since they can simply be ex- 
pressed as: 

rpUt,...,Sr)=T,s(Sp-&). (11) 
i*P 

The array iff implementing the quasi-logical operators ipp,p = 1,2,...,P is also 
easy to realize. 

The / -/ model may be especially effective in some cases where the PWL 
function to be represented has a relatively small number of local functions. A 
typical example is an order statistic filter. An k th order statistic filter of the sig- 
nal x (n) is described by 

y(n) = xik)(n) := kth largest value of {x(n -/),/ £<>} ,        (12) 

where ^CZ is the filter window. Let S be the size of the window. An order 
statistic filter can be regarded as a PWL function of S variables / (x), where 
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Fig. 2 Network structure of the/ -/ model 

xs £JC for 5=1,2,..., 5 are the values of the signal pixels within the window. / 
is continuous. It consists of P = S local functions 

/-(x):=xf,   *e{l,2,...,S} (13) 

for p =1,2,...,5 and ß =5(5-l)/2 boundaries in the domain partition 
characterized by 

<pq(x): = Xi-Xj=0,   />/, /,;€{ 1,2,...,5}, (14) 

To represent the PWL function of the fcth order statistic filter by the / -/ 
model we have simply 

y,(x) = j(i-,(x)-* + i)-*o>(x)-*). (15) 

The network realization of this / -/ model is shown in Fig. 3. One notices that 
the network structure is similar to the OSNet proposed in [8]. The OSNet is 
developed as a special building block for an efficient hardware implementation 
of order statistic filters, while our network is as a special issue of the more gen- 
eral PWL model. 

For all local functions /_ (l) in this model being linear ones we obtain an 
extension of the order statistic filter. Median hybrid filters where a median 
filter, a special issue of the order statistic filter, is coupled to the outputs of a 
group of linear FIR filters [1], belong to this extension. Theoretically, any furth- 
er (linear) extension can also be represented by the/ -/ model, provided that 
the continuity is preserved. However, if the extension leads to a large increase 
of the local functions, it may be no longer efficient for the / -/ network reali- 
zation. 
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Fig. 3 Network structure of the/ -/ model of an order statistic filter 

IV. (f - <p MODEL AND NETWORK STRUCTURE 

Now we introduce another variation of the / - cp model, with which a PWL 
function is represented by 

Q >q 

f(*)=fo(x)+Z<P<(x)Zcqjq7qjq(s((p1(x)),s(cp2(x)),...,s(<pe(x))), 
«-1 k-i 

(16) 

where /0: R" —> R is a linear function, c,ii? e R, and 7, , are logical opera- 
tors 7,.<,:{0,l}ß -» {0,1}, for i, = 1,2,...,/, and 9 =1,2,...,ß, respec- 
tively. 

We call this variation scheme the <p-<p model of PWL functions. It is seen 
that in this model all local functions are implicit. The <p-<p model represents 
PWL functions for which each local function is expressed as a linear combina- 
tion of the boundary functions. This property is fulfilled by a continuous PWL 
function. Thus, we have also: 

Theorem 2: 
Any continuous PWL function may be represented by the <p- tp model. 

Dual to the /-/ model, the cp-cp model may be more suitable for 
representing PWL functions which have a relatively small number of boundary 
functions. A further study of the continuous case can reveal more details of the 
inner structure of the logical array 7. 
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Fig. 4 Network structure of the cp- cp model 

Let simply Iq = 1 for all q = 1,2,..., Q and 

7,4(J(Pi(*)),*(?,(x)) s(cpQ(x)))=s(cpq(x)), 9 =1.2 G 

Then, (16) becomes 

/(x)=/o(x)+E*,P,(x)j(p,(x)) 
4=1 

(17) 

= /'o(x)+ECJ^(x)| 
,=1 

(18) 

with / '„ a linear function and c'? ER. That is just the canonical PWL model 
given in [7], which constitutes the basis for the network structure developed in 
[2] and [3]. The main points of this canonical model are its explicity, compact- 
ness and that its network realization is rather simple. Unfortunately, this model 
is available only in a subclass of PWL functions. For the existence condition it 
has been proved in [7] that a continuous PWL function has a canonical 
representation if and only if it possesses the so-called "consistent variation pro- 
perty", i.e., for each boundary Hq there should exist a unique constant \ such 
that for any pair of regions Rp and Rp. separated by Hq there is 

/,(x)-/,(*) = \p(x). (19) 

The consistent variation property is not satisfied by some important PWL func- 
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tions, e.g. the PWL function of an order statistic filter. Based on the fact that 
the canonical model is only the simplest special issue of the cp-cp model, it is 
expected that useful alternatives or extensions of the canonical model may be 
achieved through a deeper study of the cp- <p structure, i.e. the logical array. 

Through a study of the PWL characteristics of an order statistic filter it can 
be seen that the <p- cp model of the filter should have Iq = 2 with c , = -1 and 
c?2 =1 for all q = 1,2,...,Q. The logical structure of 7 depends on the win- 
dow size, i.e. S. We have seen in the preceding section that for an order statis- 
tic filter or the extension of median hybrid filter we have P < Q. That means, a 
<p-<p network representation of the order statistic filter itself may not be effi- 
cient, in comparison to an/ -/ one. Besides the median hybrid filter there are 
still other kinds of linear extensions, e.g. the L-filter and the Ll-filter which 
combine order statistic filters with linear FIR filters [1]. Since the combination 
of a PWL function with a linear function still results a PWL function, these 
linear generalizations are also PWL characterized. For these extensions, how- 
ever, P < Q is no longer tenable. Then, the <p- <p model may be more suitable 
for representing such an extension. It can be seen that, for a given filter win- 
dow, there exists a fixed <p-cp structure which is common in representing all 
order statistic filters and all of their linear extensions, including the median hy- 
brid filters, the L-filters, the Ll-filters [1], and even more. This is because in 
this case the PWL functions of these filters are all isomorphic with each other. 
In this sense, we may say that the <p-<p model is more meaningful in the 
research towards generalizing order statistic filters. 

V. CONCLUSIONS 

In order to find a more useful network structure for nonlinear signal pro- 
cessing, we have developed three models for representing PWL functions. As a 
basic scheme, the / - <p model provides a general model for all PWL functions. 
This general model is suitable for a network implementation. The other two, 
i.e. the/ -/ model and the <p-cp model are simplifications of the/ -cp model,' 
by attaching a constraint between the local functions and the domain partitions! 
For the / -/ model, the information about the domain partition is implicit, 
while for the cp-cp model, the local functions are implicit. Therefore, each of 
them has its specialities in applications. But both are capable for representing 
all continuous PWL functions. With them the limitation of the canonical model 
is overcome. In fact, the canonical model is just the simplest special issue of the 
<p-<p model. As the first application, the modelling of the order statistic filter 
and its linear extensions has been considered. This useful family of nonlinear 
filters is inherently PWL characterized, but it cannot be represented by the 
canonical model. Our approach delivers not only a unified network structure 
for this family, but also a way to generalize it and, furthermore, towards the un- 
ification of this specialized family in a more general class of nonlinear filters. 
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The logical array carries information about the topological structure of the 
domain partition and plays a kernel role in the models. Its properties for a 
given class of PWL functions, e.g. that of the family of order statistic filters, 
should be an interesting theme of further study. 
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Abstract - An novel class of locally excitatory, globally 
inhibitory oscillator networks (LEGION) is proposed and 
investigated analytically and by computer simulation. The model 
of each oscillator corresponds to a standard relaxation oscillator 
with two time scales. The network exhibits a mechanism of 
selective gating, whereby an oscillator jumping up to its active 
phase rapidly recruits the oscillators stimulated by the same 
pattern, while preventing other oscillators from jumping up. We 
show analytically that with the selective gating mechanism the 
network rapidly achieves both synchronization within blocks of 
oscillators that are stimulated by connected regions and 
desynchronization     between     different     blocks. Computer 
simulations demonstrate LEGION's promising ability for 
segmenting multiple input patterns in real time. This model lays 
a physical foundation for the oscillatory correlation theory of 
feature binding, and may provide an effective computational 
framework for pattern segmentation and figure/ground segregation. 

1. INTRODUCTION 

A basic attribute of perception is its ability to group elements of a perceived 
scene or sensory field into coherent clusters (objects). This ability underlies 
perceptual processes such as figure/ground segregation, identification of objects, 
and separation of different objects, and it is generally known as pattern 
segmentation or perceptual organization. Despite the fact that humans perform it 
with apparent ease, the general problem of pattern segmentation remains unsolved 
in the engineering of sensory processing, such as computer vision and auditory 
processing. 

Fundamental to pattern segmentation is the grouping of similar sensory 
features and the segregation of dissimilar ones. Theoretical investigations of brain 
functions and feature binding point to the mechanism of temporal correlation as a 
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representational framework [11,12]. In particular, the correlation theory of von der 
Malsburg [11] asserts that an object is represented by the temporal correlation of 
the firing activities of the scattered cells coding different features of the object. A 
natural way of encoding temporal correlation is to use neural oscillations, whereby 
each oscillator encodes some feature (maybe just a pixel) of an object. In this 
scheme, each segment (object) is represented by a group of oscillators that shows 
synchrony (phase-locking) of the oscillations, and different objects are represented 
by different groups whose oscillations are desynchronized from each other. Let us 
refer to this form of temporal correlation as oscillatory correlation. The theory of 
oscillatory correlation has received direct experimental support from the cell 
recordings in the cat visual cortex [1, 2] and other brain regions. The discovery of 
synchronous oscillations in the visual cortex has triggered much interest from the 
theoretical community in simulating the experimental results and in exploring 
oscillatory correlation to solve the problems of pattern segmentation (see among 
others [14, 4, 8, 9, 5, 7, 13]). While several demonstrate synchronization in a 
group of oscillators using local (lateral) connections [4, 7, 13], most of these 
models rely on long range connections to achieve phase synchrony. It has been 
pointed out that local connections in reaching synchrony may play a fundamental 
role in pattern segmentation since long-range connections would lead to 
indiscriminate segmentation [9, 13]. 

There are two aspects in the theory of oscillatory correlation: (1) 
synchronization within the same object; and (2) desynchronization between 
different objects. Despite intensive studies on the subject, the question of 
desynchronization has been hardly addressed. The lack of an efficient mechanism 
for desynchronization greatly limits the utility of oscillatory correlation to 
perceptual organization. In this paper, we propose a new class of oscillatory 
networks, LEGION, and show that it can rapidly achieve both synchronization 
within each object and desynchronization between a number of simultaneously 
presented objects. LEGION is composed of the following elements: (1) A new 
model of a basic oscillator; (2) Local excitatory connections to produce phase 
synchrony within each object; (3) A global inhibitor that receives inputs from the 
entire network and feeds back with inhibition to produce desynchronization of the 
oscillator groups representing different objects. In other words, the mechanism of 
LEGION consists of local cooperation and global competition, thus fully encoding 
oscillatory correlation. This surprisingly simple neural architecture may provide an 
elementary approach to pattern segmentation and a computational framework for 
perceptual organization. 

2. MODEL DESCRIPTION 

The building block of LEGION, a single oscillator i, is defined in the simplest 
form as a feedback loop between an excitatory unit JCJ- and an inhibitory unit y^. 

dx: , 
-£ = 3x( -xt+2-yi + p + /,. + St (la) 
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dt 
= £(7(1 +tanh{xilß))-yi) (lb) 

where p denotes the amplitude of a Gaussian noise term. /,• represents external 
stimulation to the oscillator, and S,- denotes coupling from other oscillators in the 
network. The noise term is introduced both to test the robustness of the system 
and to actively desynchronize different input patterns. The parameter e is chosen to 
be small. In this case (1), without any coupling or noise, corresponds to a 
standard relaxation oscillator. The x-nullcline of (1) is a cubic curve, while the y- 
nullcline is a sigmoid function, as shown in Fig. 1. If / > 0, these curves 
intersect along the middle branch of the cubic, and (1) is oscillatory. The periodic 
solution alternates between the silent and active phases of near steady state 
behavior. The parameter y is introduced to control the relative times that the 
solution spends in these two phases. If / < 0, then the nullclines of (1) intersect at 
a stable fixed point along the left branch of the cubic. In this case the system 
produces no oscillation. The oscillator model (1) may be interpreted as a model of 
spiking behavior of a single neuron, or a mean field approximation to a network of 
excitatory and inhibitory neurons. 

>> 4 
\ ' \ \ f \ \ '•   / \ \                                   ;/ \ 

\                                r- \ \                           / •' \ \ ' \ 
 — —r- "" I 

Figure 1. Nullclines and periodic orbit of a single oscillator as shown in the 
phase plane. The x-nullclinc (dx/dt = 0) is shown by the dashed curve and the 
y-nullcline (dy/di = 0) is shown by the dotted curve. In a simulation when the 
oscillator starts at a randomly generated point (upper middle position in the 
figure) in the phase plane, it quickly converged to a stable trajectory of a limit 
cycle. The parameters for this simulation are / = 0.2, p = 0.02, £ = 0.02, y= 

4.0, 0 = 0.1. 

The LEGION we study here in particular is two dimensional. However, the 
results can easily be extended to other dimensions. Each oscillator in the LEGION 
is connected to only its four nearest neighbors, thus forming a 2-D grid. This is 
the simplest form of local connections. The global inhibitor receives excitation 
from   each oscillator of the grid, and in turn inhibits each oscillator.   This 
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Figure 2. Architecture of a two dimensional LEGION with nearest neighbor 
coupling.  The global inhibitor is indicated by the black circle. 

architecture is shown in Fig. 2. The intuitive reason why the LEGION gives rise 
to pattern segmentation is the following. When multiple connected objects are 
mapped onto the grid, local connectivity on the grid will group together the 
oscillators covered by each object. This grouping will be reflected by phase 
synchrony within each object. The global inhibitor is introduced for 
desynchronizing the oscillatory responses to different objects. We assume that the 
coupling term S{ in (1) is given by 

lceN(i) 

wz s„(z, exz) (2) 

SJx, 0) -  1+ gjpr.jj^g)] (3) 

where Wik is a connection (synaptic) weight from oscillator k to oscillator i, and 
N(i) is the set of the neighoring oscillators that connect to i. In this model, N(i) is 
the four immediate neighbors on the 2-D grid, except on the boundaries where N(i) 
may be either 2 or 3 immediate neighbors. 6X is a threshold (see the sigmoid 
function of Eq. 3) above which an oscillator can affect its neighbors. Wz 

(positive) is the weight of inhibition from the global inhibitor z, whose activity is 
defined as 

fife 
dt 

= <f> (o^ - z) (4) 

for at least where ax = 0 if *,- < 0^ for every oscillator, and a„ = 1 if*,- > 0^ 
one oscillator i. Hence 0^ represents a threshold. If the activity of every oscillator 
is below this threshold, then the global inhibitor will not receive any input. In 
this case z -> 0 and the oscillators will not receive any inhibition. If, on the other 
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hand, the activity of at least one oscillator is above the threshold 0ZX then, the 
global inhibitor will receive input. In this case z —> 1, and each oscillator feels 
inhibition when z is above the threshold 0^. The parameter tp determines the rate 
at which the inhibitor reacts to such stimulation. 

In summary, once an oscillator is active, it triggers the global inhibitor. This 
then inhibits the entire network as described in Eq. 1. On the other hand, an active 
oscillator spreads its activation to its nearest neighbors, again through (1), and 
from them to its further neighbors. Thus, the entire dynamics of LEGION is a 
combination of local cooperation through excitatory coupling among neighboring 
oscillators and global competition via the global inhibitor. In the next section, we 
give a number of properties of this system. 

Besides boundaries, the oscillators on the grid are basically symmetrical. 
Boundary conditions may cause certain distortions to the stability of synchrous 
oscillations. Recently, Wang [13] proposed a mechanism called dynamic 
normalization to ensure that each oscillator, whether it is in the interior or on a 
boundary, has equal overall connection weights from its neighbors. The dynamic 
normalization mechanism is adopted in the present model to form effective 
connections. For binary images (each pixel being either 0 or 1), the outcome of 
dynamic normalization is that an effective connection is established between two 
oscillators if and only if they are neighbors and both of them are activated by 
external stimulation. The network defined above can readily be applied for 
segmentation of binary images. For gray-level images (each pixel being in a 
certain value range), the following slight modification suffices to make the 
network applicable. An effective connection is established between two oscillators 
if and only if they are neighbors and the difference of their corresponding pixel 
values is below a certain threshold. 

3. ANALYTICAL RESULTS 

We have formally analyzed the LEGION. Due to space limitations, we can 
only list the major conclusions without proofs. The interested reader can find the 
details in Terman and Wang [10]. Let us refer to a pattern as a connected region, 
and a block be a subset of oscillators stimulated by a given pattern. The following 
results are about singular solutions in the sense that we formally set £ = 0. 
However, as shown in [10], the results extend to the case £> 0 sufficiently small. 

Theorem 1. (Synchronization). The parameters of the system can be chosen 
so that all of the oscillators in a block always jump up simultaneously 
(synchronize). Moreover, the rate of synchronization is exponential. 

Theorem 2. (Pattern Separation) The parameters of the system and a 
constant T can be chosen to satisfy the following. If at the beginning all the 
oscillators of the same block synchronize with each other and the temporal distance 
between any two oscillators belonging to two different blocks is greater than T, 
then (1) Synchronization within each block is maintained; (2) The blocks activate 
with a fixed ordering; (3) At most one block is in its active phase at any time. 
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Theorem 3. {Desynchronizatiori) If at the beginning all the oscillators of the 
system lie not too far away from each other, then the condition of Theorem 2 will 
be satisfied after some time. Moreover, the time it takes to satisfy the condition is 
no greater than N cycles, where N is the number of patterns. 

The above results are true with arbitrary number of oscillators. In summary, 
LEGION exhibits a mechanism, referred to as selective gating, which can be 
intuitively interpreted as follows. An oscillator jumping to its active phase opens 
a gate to quickly recruit the oscillators of the same block due to local connections. 
At the same time, it closes the gate to the oscillators of different blocks. 
Moreover, segmentation of different patterns is achieved very rapidly in terms of 
oscillation cycles. 

4. COMPUTER SIMULATION 

To illustrate how LEGION is used for pattern segmentation, we have 
simulated a 20x20 LEGION as defined by (l)-(4). We arbitrarily selected four 
objects (patterns): two O's, one H, and one I; and they form the word OHIO. 
These patterns were simultaneously presented to the system as shown in Figure 
3A. Each pattern is a connected region, but no two patterns are connected to each 
other. 

All the oscillators stimulated (covered) by the objects received an external 
input / = 0.2, while the others have / = -0.02. Thus the oscillators under 
stimulation become oscillatory, while those without stimulation remain silent. 
The amplitude p of the Gaussian noise is set to 0.02. Thus, compared to the 
external input, a 10% noise is included in every oscillator. Dynamic normalization 
results in that only two neighboring oscillators stimulated by a single pattern have 
an effective connection. The differential equations were solved numerically with 
the following parameter values: £ = 0.02, <p = 3.0; 7= 6.0, ß = 0.1, K = 50, 0X = 
-0.5, and 6^ = 6XZ = 0.1. The total effective connections were normalized to 6.0. 
The results described below were robust to considerable changes in the parameters. 
The phases of all the oscillators on the grid were randomly initialized. 

Fig. 3B-3F shows the instantaneous activity (snapshot) of the network at 
various stages of dynamic evolution. The diameter of each black circle represents 
the x activity of the corresponding oscillator. That is, if the range of x values of 
all the oscillators are given by xmin and xmax, then the diameter of the black circle 
corresponding to an oscillator is proportional to (x-xmin)/(xmax-xmin). Fig. 3B 
shows a snapshot of the network a few steps after the beginning of the simulation. 
In Fig. 3B, the activities of the oscillators were largely random. Fig. 3C shows a 
snapshot after the system had evolved for a short time period. One can clearly see 
the effect of grouping and segmentation: all the oscillators belonging to the left O 
were entrained and had large activities. At the same time, the oscillators stimulated 
by the other three patterns had very small activities. Thus the left O was 
segmented from the rest of the input. A short time later, as shown in Fig. 3D, the 
oscillators stimulated by the right O reached high values and were separated from 
the rest of the input. Fig. 3E shows another snapshot after Fig. 3D. At this time, 
pattern I had its turn to be activated and separated from the rest of the input. 
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Finally in Fig. 3F, the oscillators representing H were active and the rest of the 
input remained silent. This successive "pop-out" of the objects continued in a 
stable periodic fashion. To provide a complete picture of dynamic evolution, Fig. 
3G shows the temporal evolution of each oscillator. Since the oscillators 
receiving no external input were inactive during the entire simulation process, they 
were excluded from the display in Fig. 3G. The activities of the oscillators 
stimulated by each object are combined together in the figure. Thus, if they are 
synchronized, they appear like a single oscillator. In Fig. 3G, the four upper traces 
represent the activities of the four oscillator blocks, and the bottom trace represents 
the activity of the global inhibitor. The synchronized oscillations within each 
object are clearly shown within just three cycles of dynamic evolution. 

The exact shapes and positions of the patterns in Fig. 3 do not matter for 
pattern segmentation. In fact, this 2-D LEGION provides a general solution to 
segmentation of planar connected patterns. 

5.   DISCUSSION 

Besides neural plausibility, oscillatory correlation has a unique feature as an 
computational approach to the engineering of pattern segmentation and 
figure/ground segregation. Due to the nature of oscillations, no single object can 
dominate and suppress the perception of the rest of the image permanently. The 
current dominant object has to give way to other objects being suppressed, and let 
them have a chance to be spotted. Although at most one object can dominant at 
any time instant, due to rapid oscillations, a number of objects can be activated 
over a short time period. This intrinsic dynamic process provides a natural and 
reliable representation of multiple segmented patterns. 

The basic principles of selective gating are established for LEGION with 
lateral connections beyond nearest neighbors. Indeed, in terms of synchronization, 
more distant connections even help expedite phase entrainment. In this sense, 
synchronization with all-to-all connections is an extreme case of our system. With 
nearest-neighbor connectivity (Fig. 2), any isolated part of an image is considered 
as a segment. In an noisy image with many tiny regions, segmentation would 
result in too many small fragments. More distant connections would also provide 
a solution to this problem. Lateral connections typically take on the form of 
Gaussian distribution, with the connection strength between two oscillators falling 
off exponentially. Since global inhibition is superimposed to local excitation, two 
oscillators positively coupled may be desynchronized if global inhibition is strong 
enough. Thus, it is unlikely that all objects in an image form a single segment as 
the result of extended connections. 

Due to its critical importance for computer vision, pattern segmentation, or 
perceptual organization as known in computer vision, has been studied quite 
extensively. Many techniques have been proposed in the past [3, 6]. Despite 
these techniques, as pointed out by Haralick and Shapiro [3], there is no underlying 
theory of image segmentation, and the techniques tend to be adhoc and emphasize 
some aspects while ignoring others. Compared to the traditional techniques for 
pattern segmentation, the oscillatory correlation approach offers many unique 
advantages.   The dynamical process is inherently parallel.   While conventional 
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computer vision algorithms are based on descriptive criteria and many adhoc 
heuristics, LEGION as exemplified in this paper performs computations based on 
only connections and oscillatory dynamics. The organizational simplicity renders 
LEGION particularly feasible for VLSI implementation. Also, continuous-time 
dynamics allows real time processing, desired by many engineering applications. 
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Figure 3. A An image composed of four patterns which were presented 
(mapped) to a 20x20 grid of oscillators. B A snapshot of the activities of the 
oscillator grid at the beginning of dynamic evolution. C A snapshot taken 
shortly after the beginning. D Another snapshot taken shortly after C. E 
Another snapshot taken shortly after D. F Another snapshot taken shortly 
after E. G The upper four traces show the combined temporal activities of the 
oscillator blocks representing the four patterns, respectively, and the bottom 
trace shows the temporal activity of the global inhibitor. The simulation 
took 8,000 integration steps. 
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Abstract— Recent interest has come about in deriving various neural network 
architectures for modelling time-dependent signals. A number of algorithms 
have been published for multilayer perceptrons with synapses described by finite 
impulse response (FIR) and infinite impulse response (IIR) filters (the latter case is 
also known as Locally Recurrent Globally Feedforward Networks). The derivations 
of these algorithms have used different approaches in calculating the gradients, 
and in this paper we present a short, but unifying account of how these different 
algorithms compare for the FIR case, both in derivation, and performance. A new 
algorithm is subsequently presented. In this paper, results are compared for the 
Mackey-Glass chaotic time series against a number of other methods including a 
standard multilayer perceptron, and a local approximation method. 

INTRODUCTION 
As a means of capturing time-dependent signals in a nonlinear framework, multilayer 
perceptrons (MLPs) with synapses described by filters have recently been proposed 
[1,2,17]. These approaches replace the traditional scalar synaptic weights with finite 
impulse response (FIR) filters commonly used in digital filter theory. The architecture 
can be considered an extension of earlier work in which time delays were incorporated 
as a means of capturing time-dependent input information. For example, in the Time 
Delay Neural Network used by Waibel et al [20], the outputs of a layer in a feedforward 
network are buffered several time steps and then fed fully connected to the next layer. 
Lapedes and Farber's [10] use of a time-window as the input to a multilayer network 
for applications in time series prediction is equivalent to one layer of time delay 
synapses at the input. FIR networks provide a more general model for distributed time 
representations. 

An algorithm for training networks having FIR synapses was first published by Wan 
[17]. A similar algorithm for the same network as well as the case for IIR synapses 
was published by Back and Tsoi [1, 2]. We focus on these algorithms in this paper, 
comparing their derivations and presenting a brief, but unifying view of them. Related 
work which has been presented in [4, 6, 7, 11] and [14] among others, will not be 
considered here. Our aim is to compare the forms of the training algorithms, and to 
provide an indication of how they perform on some practical prediction problems. In 
this brief summary, we show only one set of results, the Mackey-Glass chaotic time 
series which allows us to easily highlight the differences in performances of various 
methodologies for prediction of nonlinear time series. 

The network architecture is defined below: 

Definition 1. An FIR MLP of size (L, nw) with N0,Ni,..., NL nodes per layer, is 
defined by 

4(*) = f(x[(t)) (i) 
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4(0 = f>,!*(0 (2) 

y\k(t)    =    44(0 (3) 
4(0  =  w/fc(8-

,)^-1(o, (4) 

where each neuron i in layer I has an output at time t ofz\(t); a layer consists ofNi 
neurons (1 = 0 denotes the input layer, and I = L denotes the output layer, zl

Nl = 1.0 
may be used for a bias); 4(0 is the output of a synapse connecting from neuron 
i in the previous layer to neuron k in layer 1; c\k is a synaptic gain; and /(•) is a 
sigmoid function typically evaluated as tanh(-). An HR synapse is represented by 
W/t(g-1) = I2"=o'4J•(«~■,) where w\kj correspond to the variable coefficients, and 

q~l is a delay operator (q~l z(t) = z(t — I)), and nw is the number of delays. 

The algorithms use first order stochastic gradient descent to minimize an error function. 
We define the instantaneous performance criteria 

m = X £ e*(0 = 2 £ (*(*) - **(*)) (5) 

where dk(t) is the desired output at time t, and the sum is taken over the output 
neurons. The total error or cost is given by summing the instantaneous error over all 
T time steps in a training sequence 

T 

£T   =   £*(')• (6) 

The different forms of the training algorithms for FIR networks differ in the manner 
in which the gradients are calculated and on whether the instantaneous or total error is 
used in the calculations. 

GRADIENT COMPUTATION IN FIR SYNAPSES USING AN 
INSTANTANEOUS COST FUNCTION 

An algorithm for updating the weights in an FIR network may be obtained by consid- 
ering the instantaneous error £(t) [1,17]. The weight changes can be adjusted using 
a simple gradient method 

w\kj(t + l)   =   w'ikj(t) + Aw'ikj(t) (7) 

4(* + 0   =   4(0 + A4(0 (8) 

A^W = -"ÄEÜ) (9) 

_ d£(t)   dx'k(t) 

~    '«4(0^(0 m 

A4W  = "A (11) 
_ B£(t)  3*1(0 
~    'ö4(*)ftfo(o (12) 
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where rj is the learning rate.  A derivation of the partial terms is given in [2].  In 
the derivation, it is necessary to define a secondary variable 6'k(t) = - ffi') . If we 
consider only the gradient at the exact time t, then we have 

Algorithm IC-1       Instantaneous Cost - Instantaneous Gradient 
N, 

«io = r (*lw) E Cw^tXtV en) 
m=l 

This can be considered an approximate instantaneous gradient. This is the method 
adopted in [1,2]. Note the 6 terms are essentially calculated using standard backpropa- 
gation through thewkm0 taps; the rest of the coefficients in the FIR synapse are ignored, 
since we only assume a relationship between z[(t) and y'^ (t) instantaneously at time 

A different form is achieved if we calculate the gradient over a short time period by 
delaying the calculation of the gradient until all contributions from feedforward delay 
elements can be combined. 

Algorithm IC-2       Instantaneous Cost - Accumulated Gradient 

m=l d=0 

= r(4(0)EWM'o-<o 
m=l d=0 

= /#(*iw)E4+nlwii.,(«-I)*,(o. (i4) 
m=l 

This is similar to the second algorithm proposed by Wan in [17] (discussed in a 
subsequent section of this paper). In this case, we have the backpropagated error 
being obtained from a backward filter and all coefficients in the FIR synapse have an 
influence on the 6 value. 

For both cases, the final update equations for the FIR MLP are 

w'ikj(t + l)    =    «tki(t) + ri6l(t)4tzl-l(t-j) (15) 

40 + 1)    =    4(<) + ^i(0^(?-,K?-1(<)> (16) 
where 6k(t) may be computed by one of the two methods described above. We will 
discuss the relative performance of the different methods in the results section. 

GEDIENT COMPUTATION IN FIR SYNAPSES USING A 
TOTAL COST FUNCTION 

This section reviews the algorithms derived by Wan in [17, 18]. Gradient adaptation 
is based on the total squared error over the entire sequence of inputs, as opposed to 
the instantaneous error measure used previously. This should not be confused with 
the fact that in all cases, we use an on-line updating scheme which makes use of error 
measurement computed for that particular time instant. 

Fundamentally, the weight changes in (9) and (11) are replaced by 
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We have simply substituted the total error ST for the instantaneous error £(t). In this 
case an expression for 6 is obtained by maintaining the dependence over all values 
of the input sequence. Derivations given in [19] leads to the following algorithms. 
Algorithm TC-1 is very inefficient for networks with more than two layers. Algorithm 
TC-2 on the other hand, uses the same update equations (15) and (16) as before. In 
this case we derive a slightly different equation for the S term. 

Algorithm TC-1       Total Cost - Instantaneous Gradient 

TT®Z = E cU!-1(* - ")''(^(< -»)) £ #! w^MtUo <18> ÖtW*) ^o m=l 

aen\ n» Nl+1 

|M-    =   J2yl(t-n)f'(xUt-n))^6'^t)c^(t)w^n^     (19) 
^tJfcW „=0 m=l 

Algorithm TC-2       Total Cost - Temporal Backpropagation 

N,+i 

*[(*)     =     /#(«i(*))Eet!nlWiK.1(«+,)Cl('). (20) 
m=l 

Note that in this case, Algorithm TC-2 needs to be delayed nw time steps to maintain 
causality. It can be seen as very similar to Algorithm IC-2, though the evaluation of 6 
and w terms occurs at different times (cf. (14)). In this algorithm, the backward filtering 
comes about directly as a result of using the total cost function over time, thereby 
necessitating the accumulation of gradient information. In Algorithm IC-2, gradient 
computations are accumulated over time after initially considering an instantaneous 
gradient. 

SIMULATION RESULTS 
As a means of comparing the different algorithms, we present some preliminary results 
for the application of the neural network algorithms to some time series prediction 
tasks. In this extended summary, only the results obtained in modelling the Mackey- 
Glass delay-differential equation1 are presented, due to the widespread interest in using 
it as a benchmark. In the full paper, results pertaining to other time series prediction 
problems are considered, specifically: 

1. Prediction of Mackey-Glass chaotic time series, 

2. Prediction of Laser data as used in Santa Fe Time Series Prediction Competition. 

3. Nonlinear speech prediction 

4. Financial time series prediction 

The algorithms discussed above are each trained on the data for the Mackey-Glass time 
series. In each case, multiple simulations were performed and the results averaged 
to obtain a reasonable indication of the networks performance. After some initial 
testing to determine suitable learning rates, we selected a specific learning rate which 
remained the same for each network when trained on a particular time series. 

'The Mackey-Glass [12] equation is described by x(t) = -bx(t) + ^'„^lo , where T=30, a=0.2, 

and 6=0.1. 
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Our aim was to test two basic approaches to time series prediction, namely, the 
traditional approach of using past values of the time series directly, and secondly, the 
approach of embedding the time series in a phase space, and using the delay coordinates 
as the vector of inputs2. This approach, proposed by Takens [13,15] involves sampling 
the time series at some delayed time values to create a delay coordinate vector. This 
is sometimes referred to as a phase space. 

As a means of comparing each algorithm, we benchmark their relative performances 
againsta windowed input MLP, and a local approximation method developed by Cas- 
dagli [5] (a version of the nearest neighbor method). Obviously, there are many 
variations in which this could have been done. Our intent is to provide a reasonable 
means of quickly assessing the performance of these algorithms which may provide a 
starting point for anyone interested in considering them further. 

The work we present here consists of benchmarking each of the above algorithms on 
some representative time series as listed above. We consider three main cases: 

• Single-step ahead prediction using a vector of past inputs (spaced one time unit 
apart) 

• Multi-step ahead prediction using a delay coordinate (Takens) vector of past 
inputs (spaced r time units apart, where r is the delay parameter) 

Iterated-prediction problem, using past outputs of the model as inputs for future 
predictions3. 

• 

In the simulations performed, we used delay coordinate vectors with 6 elements (D=6), 
and a time delay of r = 6. The order of FIR filters was nw = 5. The results shown in 
Figures 1 and 2 are for the multi-step prediction problem, and the iterated-prediction 
problem using a prediction time-step of 6. 

These results are interesting, in that they show, for the problem at hand, the FIR MLP 
structure appears to be better able to model the dynamics of the chaotic time-series. 
The multi-step ahead prediction performance for the test set shows that each model 
is able to do quite well. However, when we consider the more difficult problem of 
iterated-prediction, we observe that the networks with FIR synapses perform much 
better (see for example, the generated phase space plots in fig. 3). 

It is interesting also to observe the different behaviours of the algorithms possible 
for the FIR MLP model, indicating that while they may be better than other methods 
generally, there are differences between how the algorithms operate in practice. Results 
on the other simulation problems will be presented at the workshop. 

CONCLUSIONS 
The aim of this brief note was to clarify some of the issues in calculating the gradients 
for multilayer perceptrons with FIR synapses. This contributes to a further under- 
standing of these types of network architectures. Results in using these networks have 
shown promise for a variety of nonlinear signal prediction tasks and we look forward 
to continued activity in this area. 

In our models, we only have a single input. However this is equivalent to the case where, for example, 
a linear predictor or multilayer perceptron has a window of inputs. In our case, the window of each filter 
exists in each synapse already. 

3Our approach is to allow the models to recursively predict further and further into the future, based on 
the initial predictions obtained. Therefore, if we allow the model to predict 6 time-steps into the future, and 
we wish to see how it performs out to 400 time-steps, we allow the model to use its shorter predictions to 
"bootstrap" itself out. This follows the conventions adopted by Lapedes and Färber [10] and Stokbro and 
Umberger[16J. 
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Figure 1: Test set performance on 6-step ahead prediction of theMackey-Glass chaotic 
time series (T = 30). (a) Backpropagation (b) Nearest Neighbour (k = 20) (c) 
Algorithm IC1 (d) Algorithm IC2 (e) Algorithm TCI (f) Algorithm TC2. (G=l 
indicates synaptic gain is used, D is embedding delay, T is prediction time-step, W is 
input window (backpropagation only), L is learning rate, A is algorithm, Nb is FIR 
filter order). 
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Figure 2: Iterated prediction performance on Mackey-Glass chaotic time series (T = 
30). (a) Backpropagation (b) Nearest Neighbour (k = 20) (c) Algorithm IC1 (d) 
Algorithm IC2 (e) Algorithm TCI (0 Algorithm TC2. 
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Figure 3: Phase space generation performance plotting y(t) vs. y(t - 30) for Mackey- 
Glass chaotic time series (T = 30). (a) Backpropagation (b) Nearest Neighbour 
(jfc = 20) (c) Algorithmic! (d) AlgorithmIC2 (e) Algorithm TCI (f) Algorithm TC2. 
(g) Desired phase space. 
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Abstract.  We propose to use the Gamma filter [1] as a feature extractor for the 
preprocessing of speech signals. Gamma filter which can be implemented as a 
cascade of identical first order lowpass filters generates at its taps the Poisson 
Moments of an input signal. These moments carry spectral information about 
the recent history of the input signal. They can be used to construct time-fre- 
quency representations as an alternative to the conventional methods of short 
term Fourier transform, cepstrum, etc. In this study it is shown that when the 
time scale of the Gamma filter is chosen properly, the Poisson moments corre- 
spond to the Taylor's series expansion coefficients of the input signal spectra. 
The appeal of the proposed method comes from the fact that in the analog 
domain the moments are available as a continuous time electrical signal and 
can be physically measured, rather than computed off-line by a digital com- 
puter. With this convenience, the speed of the discrete time processor following 
the preprocessor is independent of the highest frequency of the input signal, 
but is constrained with the stationarity duration of the signal. 

INTRODUCTION 

Classification of temporal patterns is one of the areas where artificial neural net- 
works (ANNs) are frequently utilized. Speech recognition is a special case to that 
problem. In order to simplify the classification task undertaken by an ANN prepro- 
cessing of the temporal pattern is vital. The goal of the preprocessing should be to 
capture the features of the pattern and to express them in a low dimensional space. 
If this is achieved, then a big deal of computational and structural burden over the 
neural network can be removed. 

One method suggested for the preprocessing of speech signals is the Focused 
Gamma Network [2][3]. This is & generalized feedforward structure with adjustable 
feedback which is responsible for changing the time scale (or the memory depth) of 
the preprocessor. Adjusting the time scale allows one to focus the representation 
space on the signal of interest such that a low dimensional, but a faithful representa- 
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tion is obtained. Well known Time Delay Neural Network (TDNN) [4] is a special 
case of the Gamma Network where the time scale is frozen to be unity. 

In their isolated word speech recognition task Tracey and Principe [2] showed that 
the Gamma Network is superior to TDNN both in terms of the size of the neural 
network required and the time it took to learn the given patterns. In this paper we 
analyze the Gamma Network and show that the features fed into the ANN are basi- 
cally the Taylor's series expansion coefficients of the recent speech spectra. Taking 
into account the practicality of obtaining these features, a time-frequency represen- 
tation can easily be constructed by concatenating the feature vectors of different 
times together. An analog implementation of the filter can be pursued in analog 
VLSI. Since the moment vectors are obtained in the analog domain, a digital pro- 
cessor that operates on these vectors is not bound by the Nyquist rate of the input 
signal, but by the rate the moments vary. 

POISSON MOMENTS 

Fairman and Shen [5] proposed that a distribution f(t) can be expanded in terms of 
the derivatives of Dirac's delta function as follows 

/«)  = lfi«0)e-X('-'°)S"(t-,0) (1) 
; = o 

fj(t0) is called the im Poisson Moment of f(t) at t=t0. It is given by 

(2) 
/,('.)=/(')*/>,• (0|,_, Pi0)  = t-e-X' X,t>0 

« l\ 

'<%>' stands for the convolution operator. pj(t) can be recognized as the impulse 
response of a cascade of i+1 identical lowpass filters. This structure is known as the 
Gamma filter. X is called the time scale of the filter and it is responsible for adjust- 
ing the region of support of the impulse response pj(t). Equation (2) suggests that, 
instead of computing fj(t0) off-line, one can physically measure it as the value at the 
i+lst tap of a Gamma filter with input f(t) (Figure 1). This convenience makes the 
moments computationally inexpensive. 
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Figure 1    Poisson moments of f(t) are generated by the Gamma filter 

Taking the Laplace transform of both sides of (1) and using only a finite number of 
terms it can be shown that this is equivalent to [4] 

^WB^W(* + i)' (3) 
i = 0 

Notice the similarity between (3) and the Taylor's series expansion of est0F(s) 
around s=-X given by 

i = 0 

where q's are the Taylor series coefficients. 

(4) 

1      (I        -      St„ „  ,     ,   ,    I 
c; = ^ —Ae °F{s)}\ 

'■ ds s = -K 
jm^ (fo~0' -*.(»„-0 

dt (5) 

Taylor series coefficients carry spectral features of est0F(s) around the frequencies 
s=-^.. If one is concerned only with the magnitude spectrum IF(jQ)l (as with the 
speech signals) the term est0 has no significance in the analysis since it accounts for 
a delay. Due to the fact that Taylor's series approximation diverges at points away 
from the pivot point s=-X, feature vector [c0 Cj... cN] carries only local frequency 
information. However, a piecewise representation of the entire frequency axis can 
be attained by concatenating the feature vectors obtained around different X . 
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APPROXIMATION OF TAYLOR SERIES COEFFICIENTS IN TERMS OF 
THE POISSON MOMENTS 

When the time scale X and the measurement time t0 are chosen properly, Taylor 
series coefficients q can be approximated by the Poisson moments f4(t0). If this 
holds, Poisson moments can be used as a feature vector to represent the spectral 
features of IF(jw)l, too. Let's denote the error of approximating the i1*1 Taylor's coef- 
ficient by the i,h Poisson moment with ej i.e. 

fiOe) = Ci + e-, (6) 

Assume that f(t) is a sum of complex decaying exponentials and let pr be the real 
part of the pole that is closest to the imaginary axis, i.e. 

M 

fit)  =  ^bke'Pk'u{t)       min{Re[pk)} =pr 
k 

(7) 
* = o 

Comparing (2) and (5) it can be shown that an upperbound for the absolute percent 
approximation error is 

/;• 100 100 e-ß 

I 

I 
m = 0 

(-ß)"' 
m\ 

(8) 

where 

ß= (P,-l)t0 Pr>0 (9) 

The error upperbound q decreases monotonically as a function of ß. As an example, 
a choice of ß>4.2 guarantees that r;<2% for moment orders up to 8. If there is no 
apriori information available on pr, it can be selected to be a small positive number. 

REGION OF CONVERGENCE OF THE SPECTRAL APPROXIMATION 

As stated before, when the time scale X is chosen properly, the Poisson moments 
correspond to the Taylor's series expansion coefficients of the input spectra around 
s=-X. The choice of the time scale affects the region of convergence (ROC) of the 
spectral approximation as shown in Figure 2. ROC is centered around the point 
s=-X and bounded by the pole that is closest to the imaginary axis of the s-plane. If 
that pole has a negative real part pr and an imaginary part pi( it can be shown that 
Taylor's approximation converges for frequencies IQkfic where 

nc = Jp2r+pl + 2XPr 
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PIECEWISE APPROXIMATION OF THE FREQUENCY SPECTRA 

Taylor's series expansion yields a local approximation. At points away from the 
pivot point it diverges fast. Therefore, it is not possible to globally approximate a 
wide bandwidth of frequencies with a finite number of coefficients. As a solution, a 
piecewise approximation scheme that partitions the frequency axis into several 
bands and approximates each band locally can be adopted. The region of support of 
each local approximation can be changed by selecting the pivot point s=-X as a 
complex number and varying its imaginary part so as to cover different frequency 
bands. Or, instead of doing the expansion around various center frequencies one 
can also frequency shift each band to the origin and then expand it around real X. In 
practice a constant Q bandpass filter followed by a mixer can be used to shift the 
frequency band of interest to the origin. The baseband signal at the output of the 
envelope detector can be fed into the Gamma network whose tap outputs are the 
Poisson moments. These moments would represent the band of frequencies that the 
bandpass filter was tuned to. If the mixer is replaced with a cascade of a square-law 
device and an envelope detector, one can obtain an approximate representation for 
the power spectrum of the input signal (Figure 3). Actually that's what has been 
done in Tracey and Principe's study of simple word recognition using ANNs [2]. In 
preprocessing the speech signal they used a cochlea model [6] followed by a 
Gamma network that is used to capture the features of various bands in the form of 
Poisson moments. These features were further fed into an ANN for classification. 

159 



Original spectrum 

§EHZHJL§ 

'Approximate spectrum 

: Gamma 
Network 

Figure 2     Picccwisc approximation of the magnitude spectrum using Poisson moments 

Figure 4 illustrates the magnitude spectrum of a 20 msec segment of sample word 
utterance 'suit' and its approximation obtained using Poisson moments. The fre- 
quency axis was divided into bands of 160 Hz each. Each band was shifted to the 
origin and filtered by a Gamma filter of order 4, thereby creating Poisson moment 
vectors of size 4. Poisson moments were further used to approximate the original 
magnitude spectrum. The closeness of the approximation to the original spectrum is 
noticeable. 

CONCLUSIONS 

In this study we have shown how the Gamma filter can be used to form a time-fre- 
quency representation of its input. This filter can be implemented as a cascade of 
identical lowpass filters. The representation is readily available at the taps of the 
Gamma filter in the form of Poisson moments. Compared to conventional spectral 
representation schemes like Fourier series or cepstral coefficients, this is a compu- 
tationally very inexpensive method. The discrete time processor that operates on 
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the moments is not constrained by the Nyquist rate of the input signal, but by the 
rate moments vary. The highest frequency of the input signal affects the number of 
bands that need to be implemented to cover the required bandwidth with a given 
precision. In a sense, this method trades speed for parallelism, since each frequency 
band operates totally independent of the others. For spectral analysis of very high 
frequency signals that can not be digitized with the present technology, this method 
is very appealing. Analog VLSI chips can be fabricated to implement the analog 
bandpass filters and the Gamma structure, where the Poisson moments will be mea- 
sured. The moments can be further fed into an ANN directly for tasks like classifi- 
cation, prediction and identification. 
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Figure 3     Original and approximate magnitude spectrums of a segment of the   word 
utterance 'suit'. 
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Abstract. The fuzzy min-max classification network constitutes 
a promisimg pattern recognition approach that is based on hy- 
berbox fuzzy sets and can be incrementally trained requiring 
only one pass through the training set. The definition and 
operation of the model considers only attributes assuming con- 
tinuous values. Therefore, the application of the fuzzy min-max 
network to a problem with continous and discrete attributes, 
requires the modification of its definition and operation in order 
to deal with the discrete dimensions. Experimental results us- 
ing the modified model on a difficult pattern recognition prob- 
lem establishes the strengths and weaknesses of the proposed 
approach. 

INTRODUCTION 

Fuzzy min-max neural networks [2, 3] consitute one of the many mod- 
els of computational intelligence that have been recently developed from 
research efforts aiming at synthesizing neural networks and fuzzy logic 

The fuzzy min-max classification neural network [2] is an on-line 
supervised learning classifier that is based on hyperbox fuzzy sets. A hy- 
perbox constitutes a region in the pattern space that can be completely 
defined once the minimum and the maximum points along each dimen- 
sion are given. Each hyperbox is associated with exactly one from the 
pattern classes and all patterns that are contained within a given hyper- 
box are considered to have full class membership. In the case where a 
pattern is not completely contained in any of the hyperboxes, a properly 
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computed fuzzy membership function (taking values in [0,1]) indicates 
the degree to which the pattern falls outside of each of the hyperboxes. 
During operation, the hyperbox with the maximum membership value 
is selected and the class associated with the winning hyperbox is con- 
sidered as the desicion of the network. Learning in the fuzzy min-max 
classification network is an expansion-contraction process that consists of 
creating and adjusting hyperboxes (the minimum and maximum points 
along each dimension) and also associating a class label to each of them. 

In this work, we study the performance of the fuzzy min-max clas- 
sification neural network on a pattern recognition problem that involves 
both discrete and continuous attributes. In order to handle the discrete 
attributes, the definition of a hyperbox must be modified to incorporate 
crisp (not fuzzy) sets in the discrete dimensions. Moreover, a modifica- 
tion is needed of the way the membership values are computed, along 
with changes in the criterion under which the hyperboxes are expanded. 
Besides extending the definition and operation of the fuzzy min-max net- 
work, the purpose of this work is also to gain insight into the factors that 
affect operation and training and test its classification capabilities on a 
difficult problem. 

In the following section a brief description of the operation and train- 
ing of the fuzzy min-max classification network is provided, while in 
Section 3 the modified approach is presented. Section 4 provides ex- 
perimental results from the application of the approach to a difficult 
classification problem. It also presents results from the comparison of 
the method with the backpropagation algorithm and summarizes the 
major advantages and drawbacks of the fuzzy min-max neural network 
when used as a pattern classifier. 

LEARNING IN THE FUZZY MIN-MAX CLASSIFICATION 
NETWORK 

Consider a classification problem with n continuous attributes that have 
been rescaled in the interval [0,1], hence the pattern space is In ([0, l]n). 
Moreover, consider that there exist p classes and K hyperboxes with 
corresponding minimum and maximum values v,-,- and Wji respectively 
(j = 1,..., K, i = 1,..., n). Let also ck denote the class label associated 
with hyperbox B^. 

When the hth input pattern Ah = (ahl,...,ahn) is presented to the 
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network, the corresponding membership function for hyperbox Bj is ([3]) 

1   n 

bj{Ah) = - J2il ~ f(ahi ~ WJII 7) - f(vji ~ ahi, 7)] (1) n . . 

where f(x, 7) = xy, if 0 < xj < 1, /(z, 7) = 1 if xj > 1 and f{x,j) = 0 
if £7 < 0. If the input pattern Ah falls inside the hyperbox Bj then 
bj(Ah) = 1, otherwise the membership decreases and the parameter 
7 > 1 regulates the decrease rate. As already noted, the class of the 
hyperbox with the maximum membership is considered as the output of 
the network. 

In a neural network formulation, each hyperbox Bj can be considered 
as a hidden unit of a feedforward neural network that receives the input 
pattern and computes the corresponding membership value. The values 
Vji and Wji can be considered as the weights from the input to the hidden 
layer. The output layer contains as many output nodes as the number 
of classes. The weights ujk (j = 1,..., K, k = 1,... ,p) from the hidden 
to the output layer express the class corresponding to each hyperbox: 
Ujk = 1 if Bj is a hyperbox for class Cfc, otherwise it is zero. 

During learning, each training pattern Ah is presented once to the 
network and the following process takes place: First we find the hyperbox 
Bj with the maximum membership value among those that correspond 
to the same class as pattern Ah and meet the expansion criterion: 

n 

n0 > ^2(max(wji,ahi) - min(t7jt-,ahi)) (2) 
i=i 

The parameter 0 (0 < 6 < 1) is a user-defined value that imposes a 
bound on the size of a hyperbox and its value significantly affects the 
effectiveness of the training algorithm. In the case where an expandable 
hyperbox (of the same class) cannot be found, then a new hyperbox 
Bk is spawned and we set Wki = Vki = a/ii for each i. Otherwise, the 
hyperbox Bj with the maximum membership value is expanded in order 
to incorporate the new pattern Ah, i.e., for each i = 1,..., n: 

mm(v0jld,ahi) (3) .new   „,:„/„.oI<i 

W 
new   rr,n^f„.fild = max(w;f, ahi) (4) 

Following the expansion of a hyperbox, an overlap test takes place to 
determine if any overlap exists between hyperboxes from different classes. 
In case such an overlap exists, it is eliminated by a contraction process 
during which the size of each of the overlapping hyperboxes is minimally 
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adjusted. Details concering the overlap test and the contraction process 
can be found in [2]. 

From the above description it is clear that the effectiveness of the 
training algorithm mainly depends on two factors: the value of the pa- 
rameter 9 and the order with which the training patterns are presented 
to the network. 

TREATING DISCRETE ATTRIBUTES 

A basic assumption concerning the application of the fuzzy min-max clas- 
sification network to a pattern recognition problem is that all attributes 
take continuous values. Hence, it is possible to define the pattern space 
(union of hyperboxes) corresponding to each class by providing the min- 
imum and maximum attribute values along each dimension. In the case 
of pattern recognition problems that are based on both analog and dis- 
crete attributes, it is nessecary for the discrete features to be treated in 
a different way. This is mainly due to the fact that it is not possible to 
define a meaningful ordering of the values of discrete attributes. Thus, 
it is not possible to apply the minimum and maximum operations on 
which the original fuzzy min-max neural network is based. 

Consider a pattern recognition problem with n attributes (both con- 
tinous and discrete). Let V denote the set of the indices of the discrete 
attributes and C denote the set of indices of the continuous attributes. 
Let also nc = \C\ and nD = |2>| denote the number of continuous and dis- 
crete attributes respectively and £>' denote the domain of each discrete 
feature i € V.  A pattern Ah = (ahu...,ahn) of this problem has the 
characteristic that ahi 6 [0,1] for i £ C and ahi e D

{ for i £ V. In order 
to deal with problems characterized by such mixture of attributes, we 
consider that each hyperbox Bj is described by providing the minimum 
vji and maximum Wji attribute values for the case of continuous features 
(i € C) and by explicitly providing a set of attribute values Dj{ C D{ for 
the case of discrete features i 6 V. Since it is not possible to define any 
distance measure between the possible values of discrete attributes, we 
cannot assign any fuzzy membership values to the elements of sets Dj{ 

Therefore, the sets Dj{ are crisp sets, i.e., an element either belongs to 
a set or not.  Taking this argument into account, equation (1) provid- 
ing the membership degree of a pattern Ah to a hyperbox Bj, takes the 

166 



following form: 

bj(Ah) = -{Yfi-~f(ahi~ WJ»y) ~f(vfi ~°w>7)]+ J2 mDn(a/»)) (5) 
" tec i€P 

where ms(x) denotes the membership function corresponding to the crisp 
set 5, which is equal to 1 if x G 5, otherwise it is equal to 0. 

In a neural network implementation, the continuous input units are 
connected to the hidden units via the two kinds of weights «,,- and Wji 
as mentioned in the previous section. In what concerns the discrete 
attributes, we can assign one input unit to each atribute value, that is 
set to 1 in case this value exists in the input pattern, while the other 
units corresponding to the same attribute are set equal to 0. If a specific 
value dik G D* belongs to the set Dji, the^ the weight between the 
corresponding input unit and the hidden unit j is set equal to 1, otherwise 
it is 0. 

During training, when a pattern Ah is presented to the network the 
expansion criterion has to be modified in order to take into account both 
the discrete and the continuous dimensions. More specifically, we have 
considered two distinct expansion criteria: The first one concerns the 
continuous dimensions and remains the same as in the original network 
given by equation (2) with n being replaced by nc which denotes the 
number of continuous attributes. The second expansion criterion con- 
cerns the discrete features and has the following form: 

A < 5Z mDji (ahi) (6) 

where the parameter A (0 < A < nu) expresses the minimum number 
of discrete attributes in which the hyperbox Bj and the pattern Ah 
must agree in order for the hyperbox to be expanded to incorporate the 
pattern. 

During the test for expansion process, we test whether there exist 
expandable hyperboxes (according to the two criteria) from the same 
class as Ah and we expand the hyperbox with the maximum membership. 
If no expandable hyperbox is found a new one Bf. is spawned and we set 
Vki = wki = ^hi for i G C and Dki = {ahi} for i G V. 

When a hyperbox is expanded, its parameters are adjusted as follows: 
If i G C 

vjr = mm(vf,ahi) (7) 

w*r = m*x{v$d,ahi) (8) 
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if iev 
D]r = Df U {ahi} (9) 

During overlap test and contraction the discrete dimensions are not 
considered and ovelap is eliminated by adjusting ony the continuous di- 
mensions of the hyperboxes following the minimum disturbance principle 
as in the original network. Although it is possible to separate two hy- 
perboxes Bj and Bk by removing common elements from some of the 
sets Dji and D^, we have not followed this approach. The main reason 
is that the disturbance in the already allocated patterns would be more 
significant, since these sets do not contain many elements in general. 

EXPERIMENTS ANI^ CONCLUSIONS 

We have studied the modified fuzzy min-max neural network classifier 
on a difficult classification problem concerning the assignment of credit 
to consumer applications. The data set (obtained from the UCI repos- 
itory [5]) contains 690 examples and was originally studied by Quinlan 
[4] using decision trees. Each example in the data set concerns an appli- 
cation for credit card facilities described by 9 discrete and 6 continuous 
attributes, with two decision classes (either accept of reject the applica- 
tion). Some of the discrete attributes have large collections of possible 
values (one of them has 14) and there exist examples in which some at- 
tribute values are missing. As noted in [4] these data are both scanty 
and noisy making accurate prediction on unseen cases a difficult task. 

Two series of experiments were performed. In the first series, the 
data set was divided into a training set of 460 examples (containing 
equal number of positive and negative cases) that were used to adjust 
the network hyperboxes, while the remaining 230 examples were used as 
a test set to estimate the performance of the resulting classifier. Each 
experiment in a series consisted of training the network (in a single pass) 
for certain values of 6 and A and then computing the percentage of correct 
classifications over the test set. Moreover, the order of presentation of 
the training patterns to the network was held fixed in all experiments. 
Best results were found for 9 = 0.237 and A = 8. For these parameter 
values the resulting network contained 136 hyperboxes and the success 
rate was 87%. It must be noted that the success rate was very sensitive 
both on the choice of the parameter 6 and on the order with which the 
training examples are presented. This of course constitutes a weakness 
of the fuzzy min-max classifier, but on the other hand, each training 
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experiment is very fast and the process of adjusting 6 can be performed 
in reasonable time. We have also tested the classification performance in 
case the training data are presented to the network more than once and 
we have found that only marginal performance improvement is obtained. 

We have also used the same data set to train a multilayer percep- 
tron using the backpropagation algorithm (the on-line version). A net- 
work with one hidden layer was considered. Several experiments were 
conducted for different values of the number of hidden units. The best 
classification rate we were able to obtain was 83% for a network of 10 hid- 
den units and with learning rate 0.1. It must be noted that the required 
training time was excessively long compared to the one-shot training of 
the fuzzy min-max network. 

During experiments, we have observed that some of the examples 
were 'bad', in the sense that they were very difficult predict, and, in 
addition, when used as part of the training set, the resulting network 
exhibited poorer classification performance, than in the case in which 
these examples were not used for training. For this reason, a second series 
of experiments were conducted on a subset of the data set (400 examples) 
that resulted from the removal of the bad examples. We considered 
a training set and a test set of size 200, each of them containing 100 
positive and 100 negative examples. Best performance was obtained for 
0 = 0.115 and A = 8 (112 hyperboxes) with classification rate 97.5%. 
Moreover, the performance was very robust with respect to the value of 
0 with the classification rate being more than 90% for all tested values. 
The best classification rate we have obtained for this data set using the 
backpropagation algorithm was 89.5%. 

As the experiments indicate, the fuzzy min-max classification neural 
network constitutes a promising method for pattern recognition problems 
that has the advantage of fast one-shot training with its only drawback 
coming from its sensitivity in the parameter values used in the test for 
expansion criteria. Therefore, further research should be focused on de- 
veloping algorithms for automatically adjusting these parameters during 
training. 

REFERENCES 

[1] IEEE Trans, on Neural Networks, Special Issue on Fuzzy Logic and 
Neural networks, vol. 3, No. 5, September 1992. 

169 



[2] P. K. Simpson, "Fuzzy Min-Max Neural Networks-Part 1: Classi- 
fication," IEEE Trans, on Neural Networks, vol. 3, No. 5, pp. 776-786, 

September 1992. 

[3] P. K. Simpson, "Fuzzy Min-Max Neural Networks-Part 2: Cluster- 
ing," IEEE Trans, on Fuzzy Systems, vol. 1, No. 1, pp. 32-45, February 

1993. 

[4] J. R. Quinlan, "Simplifying Decision Trees," Int. J. Man-Machine 

Studies, vol. 27, pp. 221-234, 1987. 

[5] P. M. Murphy and D. W. Aha, "UCI Repository of Machine Learning 
Databases," Irvine, CA: University of California, Department of Com- 

puter Science, 1992. 

170 



Time Signal Filtering by Relative Neighborhood 
Graph Localized Linear Approximation. 

John Aasted S0rensen, Electronics Institute, Build. 349 
Technical University of Denmark, 2800 Lyngby Denmark. 

Abstract. A time signal filtering algorithm based on the relative neigh- 
borhood graph (RNG) used for localization of linear filters is proposed. 
The filter is constructed from a training signal during two stages. During 
the first stage an RNG is constructed. During the second stage, localized 
linear filters are associated each RNG node and adapted to the training 
signal. The filtering of a test signal is then carried out by inserting the 
test signal vectors in the RNG followed by the determination of the filter 
output as a function of the linear filters of the RNG nodes to which the 
vectors are associated. Training examples are given on a segment of a 
speech signal and a signal with burst structure generated from a bilinear 
Subba Rao model. 

1    Introduction 

A time signal filtering algorithm based on relative neighborhood graph 
(RNG) localized linear filters is proposed. The filter is constructed 
during two stages: 
During the first stage, a training signal xn, n = 1,...,N is used for 
generation of an RNG using an input dimension D. The RNG of a set of 
vectors, connect the vectors xf = (x{,.. .,X,_D+I) and Xj if the inter- 
section of the spheres with radii equal to the distance between Xj and 
Xj and centered in x; and Xj does not contain any vector from the set. 
This intersection is also denoted the lune A,-j of x, and Xj. A lune thus 
represents a part of the input space which is mainly defined by the two 
vectors generating the lune. The result of the first stage is a structural 
representation of the input space based on the RNG. This structure is 
then used for localizing linear filters, adapted by a gradient algorithm to 
the training set during the second stage. 

The filtering of a test signal tn, n - 1,... is then carried out as follows: 
Insert test vectors t£ = (tn,tn-i,. ..,tn-D+i) into the RNG, by deter- 
mining all the lunes to which each tn belongs. These lunes defines the 
neighborhood of t„. The filter output is then a function of the linear 
filters belonging to this neighborhood. In the example hereafter the filter 
output function is a weighted mean value of the neighborhood filters. 
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The Relative Neighborhood Graph (RNG) 

If the open sphere with center in x and radius r is denoted 

B(x,r) = {y|d(x,y)<r} (1) 

where d(x,y) is the distance between x and y, 
then the lune A,j of x, and Xj is determined by 

Aij = B(xi, rf(x,,xj))r\ B(xj, d(xi,XJ)) (2) 

or by 
A,-j = {x | max(rf(xt-,x), d(x,Xj)) < rf(x,-,x7)} (3) 

The lune is exemplified in Figure 1. 

S(xi,d(x,-,x;-)) 

B{xj,d(xi,Xj)) 

Figure 1: The relative neighborhood A,-j. 

Based on this definition of a lune [1], the RNG of an input signal 
xn, n = 1,..., JV is determined by 

where 

[P,C] = RNG(xn,n=l,...,N,D) (4) 

D : Dimension of input space. 
P is a matrix of RNG nodevectors. 

P = [pi,P2,...,pfl]eRDxfl 

R is the number of nodes in the RNG. 
C is the incidence matrix of the RNG. 

C = [c1,c2,...,cfl]6{0,l}flxfl 

CT = (ci,j,---,Cfl,,-) 
ctj = 1 if Ap^p^ is empty, otherwise aj = 0. 
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2    Training Algorithm 

The training algorithm is divided into 2 stages. 

Stage 1:  Generation of the RNG filter structure. 
In the first stage the RNG is determined according to 

[P,C] = RNG(xn,n=l,...,N) (5) 

Stage 2: Adaptation of RNG localized linear filters. 

The RNG localized linear filters are now formed by associating a FIR 
filter with each node of the RNG. This leads to the following filter matrix 

W = [wi,...,wfi] (6) 

where wf = [wi:k,..., wo,k, WD+i,k]- The term wo+i,k is the bias of 
the RNG node filter number k — 1,..., R. 

Assuming that the current augmented input signal vector at time step n 
is zj = (xn,xn-i,...,xn-D+\, 1) and the augmented RNG node vectors 
are rj = [pT, 0] for j = 1,..., R, gives the following filter output, using 
the weighted mean of neighborhood 

Here jjin is the number of times the RNG node number j is a member 
of a lune to which x„ belongs, when xn is inserted into the RNG. x„ is 
inserted in the RNG by determining the lunes to which xn belongs. The 
total number of nodes in the lunes to which x„ belongs is 

R 

7n=X)7j> (8) 
J' = l 

The RNG node weighting matrix at time step n becomes 

r Ti 

r„ 
0 

0 2«^ 
7n        J 

0) 

In (7) x is formed as a weighted mean value of the predictions from 
the nodes which constitute the lunes to which x„ belongs. Defining the 
error vector between the current input vector xn and RNG node number 
j gives 6j = zn — rj for j = 1,..., R. This defines the input signal matrix 
at time step n to the RNG nodes: 

An = [6u...,SR] (10) 
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From (7), (9) and (10) the filter output can be represented 

xn = trace(W^A„r„) (11) 

Using the LMS adaptation of the filter matrix W„, where the index n 
denotes the time step, leads to: 

W„+1 = Wn + /ien A„r„ (12) 

where e„ = xn — xn is the prediction error and n is the adaptation con- 
stant. 

3    Training Experiments 

The training algorithm is exemplified on a speech signal segment shown 
in Figure 2 and on a segment of the bilinear model of Subba Rao [2]: 

xn = 0.8x„_i - 0.4ain_2 + 0.6x„_ie„_i + 0.7x„_2e„_i + e„       (13) 

where e„ is white, Gaussian noise with variance 1. As shown in Figure 
3, this signal exhibits burst structure. 

300 

Figure 2: Speech input signal. 
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Figure 3: Input signal from the bilinear Subba Rao model. 

The predictions are evaluated by the normalized, mean square error [3] 

1 
N 

NMSE(xn,xn) = —-^2(xn - xn) (14) 
n=l 

where x„ is the true value of the input signal at time step n and xn 

is the predicted value, a2 is the variance of the input signal with N 
samples. Thus NMSE is the ratio of the mean squared errors of the 
filtering method being trained and a method which predicts the mean 
at every time step. 
In Table 1 are given training examples using the above speech and bi- 
linear signal segments. The training is carried out on three models: The 
block linear filtering, the linear k-nearest neigbor filtering [4] and the re- 
lative neighborhood graph based filtering. From this it is seen that the 
training performance of the RNG filter structure is comparable to the 
performance of the k-nearest neighbor filtering at the same dimension 
of the input space. Furthermore it is expected that the RNG leads to a 
more suitable definition of neighborhood for localized filtering compared 
to the k-nearest nigborhood. 
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Filter D nn R NMSE speech R NMSE bilinear 
Linear 12 0.137 0.691 
k-nn 4 

6 
12 
3 
4 
4 

10 
15 
15 
6 
6 
10 

0.080 
0.073 
0.005 

0.155 
0.032 
0.210 

RNG 3 54 0.130 55 0.042 
4 66 0.051 58 0.0089 

Table 1: Training results for the speech and the bilinear signal segment. 
D: Dimension of input vector. 
nn: The number of nearest neighbors in k-nearest neighbor. 
R: The number of nodes in the RNG, determined in the first stage. 
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CLASSIFICATION USING HIERARCHICAL 
MIXTURES OF EXPERTS 

S.R.Waterhouse     A.J.Robinson 
Cambridge University Engineering Department 

Trumpington Street, Cambridge CB2 1PZ, England 

Abstract-There has recently been widespread interest in the use of multiple 
models for classification and regression in the statistics and neural networks 
communities. The Hierarchical Mixture of Experts (HME) [1] has been suc- 
cessful in a number of regression problems, yielding significantly faster training 
through the use of the Expectation Maximisation algorithm. In this paper we 
extend the HME to classification and results are reported for three common 
classification benchmark tests: Exclusive-Or, N-input Parity and Two Spirals. 

INTRODUCTION 

Traditional Neural Network architectures such as the multi-layer perceptron have 
proved successful as universal function approximators and have been used in many 
different problems ranging from pattern classification to control engineering. Whilst 
there is undoubtably further valuable work to be done on such architectures, such 
as improving training methods, there is a considerable incentive to look in other 
directions for new architectures. Such architectures ideally would be statistically 
motivated and have parameters which are easily interpretable; they would also allow 
training speeds to be increased, since the gradient descent algorithm used in tradi- 
tional back-propagation is typically too slow for solving real-world problems in real 
time. 

Motivated by such concerns, a number of researchers have investigated methods of 
function approximation incorporating ideas from the fields of statistics and neural 
networks. One recurring trend in such work is the use of separate models to approx- 
imate different parts of a problem. The general approach is to divide the problem 
into a series of sub-problems and assign a set of function approximators or 'experts' 
to each sub-problem. Different approaches use different techniques to divide the 
problem into sub-problems and to calculate the best solution to the problem from 
the outputs of the experts. The architecture described in this paper, the Hierarchical 
Mixtures of Experts (HME) [1], employs probabilistic methods in both the way it 
divides the input space and the way it combines the outputs from the experts. 

The paper is organised as follows. The HME architecture is described, along with the 
use of the Expectation Maximisation (EM) algorithm [2] which is used to estimate 
its parameters. The extension of the HME to classification is discussed, including the 
required modifications to the training algorithm. The results obtained on two classi- 
fication simulations are presented: N-input Parity and the 'Two Spirals' problem. 

HIERARCHICAL MIXTURES OF EXPERTS 

The HME is based on the principle of 'divide and conquer' in which a large, hard 
to solve problem is divided into many smaller, easier to solve problems. There are 
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Figure 1: Hierarchical Mixture of Experts 

several alternative strategies for tackling such problems. The simplest approach is to 
divide the problem into sub-problems having no common elements - a 'hard split' 
of the data. The optimum output of the experts assigned to each sub-problem may 
then be chosen on a 'winner-takes-all' (WTA) basis. Classification and Regression 
Trees (CART) [3] are based on this principle. Alternatively, the outputs of the experts 
may be combined in a weighted sum with weights derived from the performance of 
the experts in their partition of the input space; this is the principle behind Stacked 
Generalisation [4]. The most advanced method is to divide the problem into sub- 
problems which can have common elements -a 'soft split' of the input space into 
a series of overlapping clusters. The outputs can be chosen either using WTA or 
stochastically. The HME combines the ideas of soft splits of the data with stochastic 
selection of the outputs of the experts by the use of a gating network. A two-level 
HME architecture with a common branching factor of two at each level (a 'binary 
branching' HME) is shown in Figure 1. In the general architecture, multiple levels 
and branching factors are possible. In its basic form, the HME employs a fixed 
architecture which is pre-determined before training commences. The tree consists 
of non-terminal and terminal nodes which we denote by a set of indicator variables 
{Z}. Non-terminal node (1) is thus denoted z\ and consists of gating network GN(1). 
Terminal node (1,1) is denoted by zu and consists of expert network EN(1,1). A 
general HME with / levels of gating networks and branching factors bo, £i,..., b,_i 
is denoted by HME(/':<?o>6i £;-■), thus Figure 1 is HME(2:2,2). In the original 
HME each expert was linear and performed a regression task [1]. In this paper, each 
expert is non-linear and performs multi-way classification. 

Our general classification problem may be considered as follows. At time t during 
training, we observe an input vector xw which belongs to class n. We construct a 
target output vector yw with 1 in element; and 0 elsewhere. We wish to compute the 
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probability P(yn\x
(,)) of the correct class n being returned given the input vector at 

time t.x We do this by breaking the problem into a series of smaller problems. For 
example, expert network EN(1,1) computes P{y\x,z\,zu), the probability vector 
of all classes given that we took the left branch of every split and ended up in 
terminal node (1,1). The top level gating network GN(0) computes P(z\ \x), and the 
second level gating network GN(1) computes P(zu\x,zi). GN(1) weights EN(1,1) 
and EN(1,2) to give the output of node (1), 

/*, = P(y\x,zi) = J2P(y\x,zuZij)P(zy\x,zi). 

All these nodes are combined to give the overall output \i of the HME, 

bo 

fi = P(y\x)   =   ^2P(Zi\x)P{y\x,Zi) 

bo 

<=l ;=l 

This process may be extended to any depth and may use arbitrary branching factors 
at each depth. Unlike CART, the shape of the HME network is pre-determined 
heuristically before training. 

Expert network EN(1,1) is a single layer network with 'softmax' activation function 
[5] whose output is 

IN 

Mil =^(y|tf.Zi.zn,©n) = exp(e[lnaO /^exp(0[ux), 
/   *=i 

where ©u is a parameter matrix, consisting oiN independent vectors {9Uk}- The 
formofGN(l)is 

P(zi\x,Hi) = exp(£[,a;) / ^exp(^[,a!) 
/    i=i 

where Si is the parameter matrix for this gate, consisting of b\ independent vectors 
t,u. Therefore, the mathematical form of the gating and expert networks is the same, 
with the difference that the gating network is classifying the experts over the input 
space and the experts are classifying within the input space regions. 

Training the HME 

The HME is trained using the Expectation Maximisation (EM) algorithm, in which 
'missing data' is specified, which if known would simplify the maximisation problem. 
If we had information about which node had generated the data, we could update the 
parameters for the gates and experts for that node. Thus the missing data for the EM 
algorithm applied to HMEs is the set of indicator variables {Z} which indicate which 
node generated each output, or alternatively which node is best suited to the portion 

1.   For simplicity of notation, we shall now drop the superscript t on the inputs, outputs and indicator 
variables. 
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of the input space under consideration. The E-step of the EM algorithm reduces 
to computing the expected values of the indicator variables which gives the set of 
posterior probabilities {//}. The conditional posterior probability of node (1,1) is 
the probability that EN(1,1) can be considered to have generated the data based on 
both input and output observations, given that we are in non-terminal node (1). This 
is given by 

_.    , .       />(zn|zi,a!)/>(y|a!,zii,zi>0ii) 
h\\\ =P(zu\z\,x,y) = 

VpiP(zij\zix)P(y\x,z\j,ZuGij) 

where P(y \x, z\\,Zi,0u)is the probability of generating the correct output vector y 
from EN(1,1) given the input x. For 1-out-of-N classification, this is given by 

P(y\x,zi\,z\,Q]])   =   expf 53>jfclog/iiuJ =/in„ 

where jim is the output for class k from EN(1,1) and n is the correct class. In a 
similar way, the conditional probability of node (1) is given by 

,       _, ,        P(z\\x)P{y\x,zy) 
h\ =P(zi,x,y) = 

Y:i,P{Zi\x)P{y\x,Zi) 

For node (1,1) the joint posterior probability, h\\ is the product of the joint posterior 
probability of node (1) and the conditional posterior probability of node (1,1). In 
a deeper architecture, the joint posterior probabilities are recursively computed by 
multiplying the conditional posterior probabilities along a path from the root node 
(0) to the node in question. 

The M step reduces to a set of independent weighted maximum likelihood problems 
for the experts and the gates. Thus the weight for GN(1), at time t, is the joint 
posteriorprobabilityof this node, /i(,°, and the weighfforEN(l, 1) isthejointposterior 
probability of this node, ftf]. The target outputs for the gating networks are the 
conditional posterior probabilities of the node in question, so that the targets for 
GN(1) at time t are //,'?, and h% for outputs 1 and 2 respectively. 

Once the maximum likelihood problems of the M-step have been completed, the E- 
step is repeated, computing a new set of posteriors {//} for all times t which become 
the new weights for the M-step. 

Solving the M-Step 

Since each EN and GN is a simple network with a single layer of weights, we may 
solve the maximum likelihood problems relatively easily. We update the parameter 
vectors for each output of the networks independently, given the Generalised Linear 
[6] assumption that the outputs are independent. The simplest method is to use 
gradient ascent of the likelihood, which for parameter vector 0f at iteration m for 
output i of an EN reduces to 

er] = 0T + ^^r^ E A(0*w(yi,) - ^ 
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where y\{) is the target for class i, juf() is the ith output of the EN, ftw is the weight 
at time t, T is the total time, and A is a learning rate. These equations are the same 
for the gating networks, with the output targets {v^} replaced by the conditional 
posterior probabilities of the node in question. 

An alternative maximisation method, and the one adopted in this paper, is to use the 
Hessian or second derivative of the likelihood with respect to the parameter vectors: 

er1 = ef + x\Yj iPx®i#\\ - tfW)T)    [J2 Aw*(r)(yi° - vP)) >   (D 

where X is once again a learning rate, which has typical values in the range 0.4 to 
1.0. This method is equivalent to the Iteratively Reweighted Least Squares algorithm 
(IRLS) of Generalised Linear Models [6]. 

Implementation Issues 

Variation in M-Step Iterations. Although the basic EM algorithm dictates that the 
M step should be iterated until convergence, the Generalised EM algorithm (GEM) 
relaxes this constraint, requiring only an increase in the likelihood in the M-step. By 
reducing the number of M-step iterations we can reduce the overall computation. 
The power of the EM algorithm lies in the E-step which repeatedly computes new 
weights based on the previous M steps. In our experiments the number of M step 
iterations was typically set to between 1 and 3. 

Learning rates. The IRLS algorithm in common with conventional gradient de- 
scent algorithms, is sensitive to learning rates. Learning rates that are too large give 
instability, manifested in step sizes that lead to an decrease in the overall network 
likelihood. In practice we found that a learning rate of 0.4 for both experts and gates 
gave a good balance between learning speed and stability, although rates of 0.8 have 
proved stable with some initial conditions. 

Saturation of expert and gating network outputs. If the output ju/r) in Equation 
(1) of any of the networks becomes near to either 1 or 0, or if the weight Aw is near 
0, then the addition to the Hessian matrix for output i of that network at time t will 
be very small. If this occurs for a large majority of the training set, the Hessian will 
become singular and impossible to invert accurately. The solution to this problem 
is to use threshold values for the outputs of 0.9999 and 0.0001 and a floor for the 
weights of 0.0001. In practice, these have to be tuned to prevent instability but have 
no significant effect on accuracy until set to around 0.9 and 0.1. 

Choice of initial parameter values. Two strategies are used to initialise the network. 
The first is to start all parameter vectors of experts and gates at zero and give each 
gate output a 'kick' so that the experts begin to separate in the input space and 
compute different outputs. The second is to initialise all parameter vectors to random 
values, in a range — r to +r. TypicallyO. 1 < r < 3. An alternative is to use random 
weights for the expert parameters and zero initial weights for the gates, with the 
choice of strategy varying with the problem. In our experiments we found that the 
second option gave the quickest results which were most free from local maxima, 
whilst the first and third options gave solutions which were drawn to local maxima 
or failed to separate the experts at al! 
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SIMULATIONS 

In this paper we follow the work of [7] in using strict methods when reporting 
learning speeds and network performance. In particular we use a 40-20-40 threshold 
criterion which dictates that an output is only correct if it is greater than 0.6. We 
define an epoch as one pass through the training set. Thus, one EM cycle may consist 
of many epochs, depending on the number of iterations performed in the M-step. 

N-Input Parity 

The task of the N-input parity problem is to compute the odd parity of N binary inputs. 
The network must compute a 'one' if the input has an odd number of 'one' bits in 
the input and a 'zero' if there are an even number. The special case of 2-input parity 
is the Exclusive Or function (XOR) which was shown to be impossible for simple 
single layer networks to approximate [8]. In this paper we show that the HME can 
solve this problem efficiently using only three single layer networks, in the form of 
one GN and two ENs. We also describe solutions for 3 to 8 input parity, with learning 
times faster than conventional feed-forward networks. The performance of the HME 
on the XOR problem using a varying degree of test thresholding and averaging over 
100 trials per threshold is shown in Table 1. These results were obtained using a 

Threshold Min 
Epochs 

Max 
Epochs 

Average 
Epochs 

Standard 
Deviation 

0.6 2 6 2.76 0.971 
0.8 2 6 3.32 0.882 
0.9 3 6 4.14 0.757 

0.95 4 7 4.67 0.713 
0.99 8 24   . 11.5 4.27 
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N Parameters Architecture Min 
Epochs 

Max 
Epochs 

Average 
Epochs 

%NC 

3 12 (1:3) 3 11 4.85 0 
4 18 (2:2,2) 6 13 10.4 20 
5 51 (2:3,3) 11 26 16.2 10 
6 60 (4:2,2,2,2) 12 29 18.8 20 
7 111 (5:2,2,2,2,2) 14 26 23.5 10 
8 51 (2:2,4) 50 102 42 90 
8 111 (5:2,2,2,2,2) 15 57 34 50 
8 210 (6:2,2,2,2,2,2) 13 56 36 33 

Table 2: Performance of the HME on the N-Input Parity problem. 

3/4 of the data in one expert and 1/4 in the other. In 2(c) the data is distributed over 
3 experts with 1/2 going to one expert and the remaining 1/2 shared between the 
remaining 2 experts. In 2(d) the data is distributed evenly over 4 experts. It is clear 
that 2 (b) is an unsatisfactory solution which would not give good generalisation, 
unlike (a), (c) or (d). In a series of 35 trials for HME(1:2), solution (a) occurred in 26 
cases while (b) occurred in 9 cases. By using the HME(2:2,2), solution (c) occurred 
23 times, (a) 8 times, (d) 3 times and (b) only once. Thus, we have reduced the 
probability of solution (b) occuring by adding the extra 2 experts. For larger values 

0.5     inpuM ' 0.5     Input 1 1 

0^  
0 0.5     InpuM 1 0 0.5      input 1 1 

Figure 2: The effect of different initial conditions on a HME(1:4) for the XOR problem. 

of N, behaviour of this sort may lead to local maxima which give us non-convergent 
solutions. The net result of this is that we get many more non-convergent solutions 
with tight networks, although there is a large advantage in terms of computation 
when using such a network. By relaxing the network and using more levels, and 
thus introducing redundancy, we create many more possible configurations which 
will give success, as seen by relaxing the XOR problem to using 4 experts instead 
of 2. Therefore the number of non-convergent solutions is reduced, and those that 
do occur represent states where only a small number of points remain misclassified. 
This effect may be seen for 8-input Parity in Table 2. By increasing the depth of the 
network and thus increasing the number of terminal nodes, we reduce the percentage 
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of non-convergent solutions. 

The Two Spirals Problem 

The aim of the two-spirals problem is to train a network to discriminate between 
two spirals in the 2-D plane. Each spiral has 97 points and coils three times around 
the origin and around the other spiral, without overlapping. The learning set and the 
evolution of the output of a binary branching HME with 10 levels is shown in Figure 
??. The points in the test set are offset vertically from the points in the learning set 
by 0.1. The best solutions to the spirals problem have been obtained using Cascade 
Correlation [11]. This is capable of approximating the problem in 1700 epochs 
using around 140 parameters. Back-propagation networks have been used to solve 
the problem [12] using a 2-5-5-1 network with shortcut connections between layers 
in 20,000 epochs using conventional gradient descent with momentum and 8,000 
epochs using quickprop, using a similar number of parameters. Using a conventional 
2-5-5-1 network without shortcuts took 60,000 epochs of quickprop. 

Depth 
of Tree 

Number 
of Parameters 

Training Set 
Correct/194 

Testing Set 
Correct/194 

M-step 
Iterations 

Total 
Epochs 

10 3102 187 184 3 135 

10 3102 185 184 1 140 

5 111 161 159 1 30 

Table 3: Results for the Two-Spirals Problem using binary branching HMEs. 

The results in Table 3 demonstrate that the HME is capable of solving the two-spirals 
problem to a high degree of accuracy. Although the experiments performed have not 
resulted in a complete solution, the number of training epochs for the HME on this 
problem are an order of magnitude less than Cascade Correlation networks and two 
orders of magnitude less than conventional feed-forward back-propagation networks. 
We suspect that the non-convergence of the HME is due to similar effects as those 
proposed for the Parity problem. In terms of numbers of parameters, the HME may 
appear to be using far more, since for a depth of 10 and common branching factor 
of 2 there are 3102 parameters. This is misleading, however, since the number of 
terminal nodes which actually remain active is a small fraction of the total number 
of terminal nodes present. 

CONCLUSIONS 

We have described the application of the HME to classification and presented a 
number of results on standard benchmarks. In common with the performance of the 
HME on regression problems, we have found that it requires fewer epochs to learn 
classification problems than conventional feed-forward networks. There are however, 
a number of problems associated with the learning algorithm,'including numerical 
instabilities caused by the 2nd order M-step update and the existence of local maxima 
within the solution sets. We have described solutions to these problems, such as the 
use of thresholding of outputs and weights in the M-step, choice of learning rate and 
initial conditions to avoid instabilities and local maxima. Future directions for this 
work will focus on removing the need for matrix inversion by using some form of 
approximation to the inverse Hessian in (1). The use of fast gradient descent methods 
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Figure 3: Learning set for the two spirals problem and evolution of the decision boundary for 
a binary branching HME with 10 levels. 
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such as quickprop [7] would move the HME closer to true connectionist methods 
and reduce the computational load of the M-step. 

In addition we have described how the use of redundancy in the HME may reduce 
the chance of local maxima. In these networks, the redundant experts are typically 
inactive after a few epochs, which suggests that they could be 'pruned' using similar 
techniques to those developed for CART [3]. Alternatively we may start with a small 
network of, say 2 experts and grow the tree using CART principles. We anticipate 
that the use of such ideas will improve the performance of the HME in terms of speed 
and accuracy and allow us to extend the applications of classification HMEs to real 
world problems. 
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A Hybrid Neural Network 
Architecture for Automatic 

Object Recognition 
Thomas Fechner, Ralf Tanger 

Abstract 

This paper describes the application of a hybrid neural network archi- 
tecture for automatic object recognition in inverse synthetic aperture radar 
(ISAR) imagery. The architecture employs a cascaded combination of an 
unsupervised and a supervised trained Neural Network. The unsupervised 
trained Self-Organizing Feature Map is used for object segmentation and 
the supervised trained Multi-Layer Perceptron classifies the segmented ob- 
jects. The classification result is fed back to the Feature Map Segmentor 
in order to improve segmentation and classification. The functionality of 
this approach is demonstrated by the use of simulated noisy ISAR images 
from different objects. 

I. INTRODUCTION 

AUTOMATIC object or target recognition (ATR) with neural net- 
works is an active research area for military and commercial appli- 

cations [1]. Commonly used sensors are based on passive electro-optic 
or active radar technology. Electro-optic devices have the advantage of 
higher resolution and radar has the advantage of all-weather capability 
and a higher range. Although we are working with imagery from inverse 
synthetic aperture radar (ISAR), our aim is to develop an architecture 
which is capable of processing images which may be produced by differ- 
ent sensors. 

ISAR-images are produced by radar range/doppler measurements of a 
rotating object. ISAR imagery differs from photographic imagery in that 
it only exhibits the centers of reflectivity which fluctuate depending on 
the aspect angle. Due to the larger wavelength of radar waves, the image 
resolution is much lower than photographs. Further, ISAR imagery is 
rather noisy. Another problem with real world ISAR imagery is that 
due to estimation errors the image may change its scale. In order to 
classify objects under such degraded conditions, powerful segmentation 
techniques are required. The first section of this paper describes the 
functional blocks of the proposed ATR-architecture. The next section 
demonstrates the functionality of this approach by an example. 

T. Fechner and R. Tanger are with the Daimler Benz Forschungsgruppe Systemtech- 
nik, Alt Moabit 91b, 10559 Berlin, Germany. E-mail: fechner@DBResearch-berlin.de, 
tanger@DBResearch-berlin.de 
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Fig. 1.   Noisy input mage 

II. SYSTEM DESCRIPTION 

The proposed automatic object recognition system (Fig. 2) works on 
2-dimensional intensity images with dimension N x N. A typical input 
image is depicted in Fig. 1. The first processing stage is the image seg- 
mentor. The segmentor has two tasks: separating the object of interest 
from the background and restoring degraded regions in the segmented 

4 Classification 

MLP-Classifier 

t Feature vector 

Feature extraction 

t Segmented image 

SOM-Segmenter 

t 
Input image 

Fig. 2.   Hybrid architecture or the automatic object recognition system 
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Fig. 3.   Block diagram adaptive segmentation 

image. The next processing stage is the feature extractor. Although 
some proposed neural network recognition systems work directly on the 
image pixels, we decided to implement a special feature extraction pro- 
cessing stage. The first reason is to reduce the number of input features 
in an effort to keep the classifier complexity low. The second reason is 
that we are able to integrate a-priori knowledge about the classification 
problem by implementing specific features. The feature vector is fed to 
the neural network classifier which is implemented as a multi-layer per- 
ceptron with two hidden layers. Unlike traditional feedforward classifier 
approaches, here the classifier output is fedback to the segmentor in or- 
der to optimize the quality of the segmented image and the sharpness of 
the classifier's decision. 

A. Clustering Segmentation using Feature Maps 

Segmentation is the process of separating the object of interest from 
the background. Pixels belonging to the object are set to 1 while back- 
ground pixels are set to 0. Due to the simplicity, most traditional seg- 
mentation techniques are based on thresholding. In this approach, sep- 
arate peaks in the intensity histogram are used to construct an optimal 
threshold. Unfortunately this method fails when the histogram shows a 
unimodal shape. Unimodal distributions are obtained when the image 
consists mostly of large background areas with only a small object which 
do not exhibits sharp boundaries. Unsupervised clustering segmentation 
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Fig. 4.   Clustering the noisy input image of fig. 1, using 25 subclusters 

has advantages because the segmentation relies on local features and not 
on global thresholds. Also, the unsupervised approach may reveal char- 
acteristics that have not been observed by the human. Clustering seg- 
mentation techniques assign a feature vector to each image pixel. The 
n-dimensional feature space is partitioned into M regions so as to min- 
imize a global error function. The idea is that object and background 
pixels have dissimiliar features and are therefore associated to different 
clusters. The feature vector x(m) with the features {xi(m),i2("i)} is 
used to describe each pixel m € N2 : single pixel intensity and mean 
intensity within a local neighborhood. 

x{m) = { t'o(m), ^2 'oO') (1) 

where Vj is a set of the 24 nearest neighbors with pixel m at its center. 
Although the goal is to have two clusters (one for the object pixels and 

one for the background) it is better to choose a number of sub-clusters 
which will be assembled in a hierarchical order to obtain object and 
background superclusters. The subclusters are represented by a set of 
vectors w(l) with / G [1.. .M].    This vector quantization problem can 
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Fig. 5.   Expansion of the object-supercluster by subcluster-merging (For demomstra- 
tion purposes, we proceed the cluster merging above the optimum) 

be solved by using either conventional vector quantization algorithms [2] 
or self organizing feature maps (SOM) [3][4]. SOM's have the advantage 
that the resulting clusters are topologically ordered. For this application 
the SOM is configured as a one-dimensional array of M = 25 laterally 
interconnected neuron-elements, each neuron representing one cluster. 
The topological order is exploited here in order to dynamically expand 
the object-supercluster (fig. 5) by merging neighboured subclusters (fig. 
4). After clustering the segmented image sieg is realized as follows: 

"seg (m) -{I if 
else 

x(m) belongs to the object-supercluster 
(2) 

B. Feature Extraction for the classifier 

The primary requirements for features are compactness, informative- 
ness and robustness. Two groups of features were extracted: statistical 
moments and range bin profiles (py). Moments have been used for many 
object classfication tasks e.g. aircraft-identification [5]. The main advan- 
tage is their compactness and their invariance properties. The central 
moments mu are related to the center of mass and therefore they are 
translation invariant. By area-normalization of the central moments the 
resulting normalized central moments nu are also scale invariant. Due 
to the binarization of the image the moments depend only on the shape 
of the segmented object. 

N-1N-1 

x=0 y=0 
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n«,y = m«.\y/™Üoo (4) 

with x = mjo/moo and y = m0i/moo. 
The standard-moments m,j are calculated from 

N-1N-1 
mi-i = 1L Y^ XVW*,2/) (5) 

x=0 y = 0 

While the moments mainly describe the global object shape, the pro- 
files provide information about the object details. For each range-bin x, 
the profiles describe the image variation about the center of mass [6]. 

JV-l 

Px = X] (y - Wf s.eg{x, y) (6) 
y=0 

with 

_       ES V*ieg(.X, y) 
2/x = —5vn—-—- (7) 

Ey=0   S>eg{x,y) 

The feature extractor produces 147 features which are fed to the fol- 
lowing processing stage. 

C. Classification 

Classification is the mapping of feature vectors into the decision space. 
Simple feedforward network structures using only input and output lay- 
ers are very restricted in their capability of realizing the required map- 
ping function. The introduction of hidden units give feedforward neural 
networks the potential for an arbitrary mapping. The desired mapping 
is trained using the backpropagation algorithm on classified examples. 
The neural network employed here is a multi-layer perceptron with two 
hidden layers (128 and 96 neurons respectively) and an output layer 
with 10 neurons; one output neuron for each class. The resulting output 
vector is normalized to unity which is required in order to interpret the 
outputs as probabilities. Using a training data set with 5000 manually 
segmented images from 10 different objects the classifier was trained for 
25 iterations, resulting in an error rate of 5%. After training the gen- 
eralization capability was tested by an independent data set with 5000 
noise free images, which produced an error rate of 13%. 

D. Closing the feedback loop: adaptive segmentation 

The output o of the classifier and a measure for the homogeneity h 
of the segmented image is used for controlling the segmentation process. 
The cost function which has to be minimized is defined as follows: 

e = (1.0-max(o))2 + /i2 (8) 
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EJll EjLl1 s*eg(i,j) ~ S,eg(i,j + 1) 

Ei=l /Lsjzzl s'eg\},3) 
(9) 

Starting with only one cluster the object-supercluster is expanded by 
merging neighboured clusters. The iterative segmentation optimization 
is stopped when the cost function is at its minimum. 

III. EXAMPLE USING NOISY INPUT DATA 

In order to test the robustness of the classifier against noise, gaussian 
white noise was added to the image data. 

With conventional global threshold segmentation the classification per- 
formance has been shown to be very sensitive to noisy images. Even 
at moderate signal to noise ratios the classification error increased to 
60% and above. Substitution of the global treshold segmentation by 
the adaptive feature map segmentation resulted in a clearly recogniz- 
able improvement of the classification performance. For training of the 
segmentation feature map one noisy image was sufficient. Once the fea- 
ture map clusters are trained only the merging of the clusters to one 
object-supercluster is dynamically controlled in recall mode. The seg- 
mentation is nothing more than a two-dimensional treshold comparison. 
Due to the ordering of the feature map clusters the feature map weight 
vectors can be considered as a discrete scale of two-dimensional thresh- 
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Fig. 6.   2-dimensional threshold scale given by the feature map weight vectors. 
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Fig. 7.   Cost value for the sequence of subcluster-merging as depicted in fig. 5. 
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old values (pixel intensity and local mean) (fig. 6). Starting with the 
highest threshold given by only one cluster, the threshold is decreased 
by increasing the number of merged clusters until the cost function is 
minimized (fig. 7). 

IV. CONCLUSION 

In this paper we presented the architecture of an automatic object 
recognition system using a feature map for cluster segmentation and a 
supervised trained multi-layer perceptron for the classification. In dif- 
ference to conventional feedforward classification systems, the classifier's 
decision is fed back to the adaptive segmentor in order to reinforce the 
classification result. The ordering property of the feature map provides 
an easily realizable adaptive cluster segmentation. While the segmen- 
tation ability was demonstrated for some few examples the feedback 
mechanism has to be investigated systematically for different signal to 
noise ratios in the future. 
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Abstract - The paper presents a contribution to the analysis of 
wavelet transfer function use in neural network systems and the 
discussion of some possible learning algorithms of such structures. 
Wavelets local properties both in time and frequency domains are 
stated at first giving motivation for wavelet networks application 
and providing bases for their initial coefficient estimation described 
recently. The main part of the paper is devoted to the network co- 
efficients optimization using genetic algorithms as an alternative 
to the gradient descent method. Principles of the evolution tech- 
niques are presented for a simple system in this part and then 
applied for a given time series modelling and prediction. 

INTRODUCTION 

Problem of nonlinear time series prediction is studied in various disci- 
plines now including engineering, biomedicine and economics [1], [2]. Most 
approaches consist in the use of adaptive methods [3] and multilayer neural 
networks [4], [5]. Their modification include wavelet transfer function study 

[6], [7], [8], [9] and cascade correlation networks [10]. 
The paper contributes to this problem in the study of links between 

wavelets and neural networks presented recently [11], [8]. The emphasis is in 
the analysis of the learning process based upon genetic algorithm use [12], 
[13] as an alternative to the gradient estimate applied in the backpropagation 
method. The goal of the paper is to show advantages of genetic algorithm 

approach in this case. 
Methods presented in the paper are verified for simulated series to enable 

their further use for real signals analysis including those stored in the Signal 
processing information base [14] and other physiological signals. 
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Figure 1: 

An example of the wavelet set based on the given initial function 
h(x) = —x r~T I2 with its spectrum estimation and relation between 
wavelet dilation and spectrum compression. 

WAVELET NETWORK CONSTRUCTION 

Wavelet functions and Uieir application in signal processing are described 
in various papers published recently [15], [16], [17], [18]. These functions in 
close connection with the wavelet transform can be used very efficiently both 
for signal analysis as an alternative to the short-time Fourier transform and 
for signal modelling in wavelet network structures. 

Basic properties of wavelet fund ions include their local influence both in 
time and frequency domains [19]. The set of continuous wavelet functions 
is usually derived from the initial (mother) wavelet h(x) and coefficients of 
dilation (d) and translation (/.) defining the function 

I'dAp) = !>{(}>-t)/d) = h{wp+b) (1) 

for HI = 1/rf and b = -f./d. Using the signal processing point of view it is 
possible to consider the initial wavelet as a pass-band filter. Wavelet dila- 
tion resulting in its pass-band compression is presented in Fig. 1 for a chosen 
wavelet function. Properly constructed wavelets allow in this way signal de- 
composition info different frequency bands and their multiresolution analysis 
[17]. 

Basic two-layer neural network structure used for signal prediction is pre- 
sented in Fig. 2. Signal pattern is used as a neural network input and the 
whole network is trained to evaluate its output close to the target signal 
values in the mean square sense. While the output layer transfer function is 
usually linear in this case the transfer function of the first layer can be nonlin- 
ear and sigmoidal functions are often applied. We shall study the alternative 
use of wavelet functions in such a structure now. 

Mathematical description of the wavelet network R-SI-S2 is similar to 
that of sigmoidal neural network system.  Summarizing network coefficients 
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Figure 2: 

Signal prediction based on the two layer neuron network having the out- 
put vector A2 = F2(W2 * Al + B2) where Al = F1(W1 * P + Bl). 

in matrices 

wli.i     " •    wl\,R 

W1SI,H = 

_u>lsi,i    •• ■     wlSl,R 

and bias vectors 

bl = [61i, • ■■,blsi]', 

W2 S2.S1 : 

w2iA 

u>2s2A 

w2i:si 

w2s2,s\ 

b2=[62ll---,6252]/ 

permits to employ transfer functions F\ and F2 for the first and the second 
layer respectively to evaluate network output 

A2 = F2(W2*A1 + B2), Al = F1(W1*P + B1) 

While F2(x) - x in many cases of signal prediction there is a choice of the 
first layer transfer function in various ways including wavelet functions as 

well. 
During the learning process the summed square error deviations between 

evaluated and target values are minimized. To shorten the iterative learning 
process various methods of coefficients initial estimates have been suggested 
[5], [11]. We shall restrict our attention to the study the genetic algorithm 
approach to the wavelet transfer function case. 
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Gradient Method Genetic Algorithm 

Figure 3: 

Comparison of the initial part of the optimization process for the wavelet 
network having its structure 1-1-1 for a given nonlinear transfer function 
Fl(r) = -x e.-* /2 using a gradient search and genetic algorithm opti- 
mization approach: (a) Gradient search for two different initial estimates, 
(b) Genetic search presenting the initial (o) and final (*) population and 
the best individual evolution. 

SYSTEM COEFFICIENTS OPTIMIZATION 

Analyzing basic problems of wavelet network optimization it is possible to 
start with signal approximation of the given pattern and target values by a 
single wavelet function F\(x) = -x c-r /2 for unknown dilation a translation 
coefficients. Error surface in the vicinity of the problem solution is presented 
in Fig. 3. It is obvious that classical steepest descent approach and closely 
connected backpropagation method can be very inefficient even in such a 
simple case. 

On the other hand a genetic approach [12], [20] for system coefficients 
optimization can provide more reliable results even for relatively complicated 
nonlinear problems. Its general principle resembles a very simplified version 
of the natural evolution giving better chance to survive to the best individuals 
while others die out, Basic principles of selection, reproduction, crossover 
and random mutation can be efficiently implemented in software systems 
and applied in various engineering problems as well as wavelet networks. 

A space of the parameters (dilations, translations) in wavelet network 
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system presented above can cover the whole region of all possible solutions. 
A particular set of these parameters defines a network configuration or an 
individual (in genetic algorithm terminology). Solutions assigned to separate 
individuals are encoded in binary form to ease the following operations. As 
all solutions are expected to approximate the given signal it is possible to 
evaluate the mean square error for all of them standing for the fitness number 
and giving idea about both the population and each individual performance. 
Individuals with a relatively high fitness number obtain a higher probability 
for further reproduction and vice versa. The whole algorithm assumes 

» the selection process based upon the roullete wheel providing statistically 
better chance for reproduction of individuals (defined by corresponding 
dilation and translation coefficients) with higher fitness number 

t the mating operation based upon a random pairs selection and crossover 
application exchanging substring in selected pairs through a random 
position choice 

♦ the mutation applied with a given probability and resulting in random 
switches between zero and one of an individual's element 

For a new population fitness numbers are evaluated- again and the whole 
process is repeated. 

The process of a single wavelet neuron optimization using a genetic ap- 
proach is presented in Fig. 3. Comparing initial and final population it is 
possible to follow the result of the population mean square error decrease. 
The best individual evolution is presented as well. 

The probability values essential for genetic algorithm seems to be very im- 
portant for the efficiency of the learning process [21], [22]. The mean square 
error development for two possible approaches considering constant proba- 
bilities and exponentially decreasing mutation rate and increasing crossover 
rate is given in Fig. 4. 

MSE of a Populatloi USE ol a Population <b) 

Figure 4: 

Comparison of four mean square errors evolutions over the population for 
genetic algorithm search based on: (a) Constant mutation and crossover 
rates and (b) Decreasing mutation rate and increasing crossover rate. 
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The Average and the Lowest MSE Evolution 
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Figure 5: 

The in nan square error evolution over the whole population of 50 indi- 
viduals and that of (lie best individual for a given chaotic process using 
the wavelet, network of struct lire 1-3 — 1 and result of one step ahead 
prediction during both the learning and testing phase. 

SIGNAL MODELLING AND PREDICTION 

Nonlinear time series modelling and prediction by wavelet networks has 
been tested for a common nonlinear time series mentioned in ['2'.]] and defined 
by relation x(i + 1) = nx(i)(\ - x(i)) for i = 1,2, 3, ■ ■ •, n = 4 and x(l) = 0.1 
as a simple example of a deterministic chaos. Applying the network struc- 
ture presented in Fig. 2 restricted to system 1 - 51 - 1 the values x(i) as 
patterns and x(i + 1) as targets are considered. The record of the train- 
ing by the genetic algorithm and prediction results are presented in Fig. 5. 
During several tests the lower mean square error (MSE) has been achieved 
during significantly lower number of generations for decreasing mutation rate 
and increasing crossover rate in comparison to the same results achieved by 
constant, probabilities. 

Evaluating further the mean square error in the learning and prediction 
part of a signal it- is possible to compare results for various network structures 
and for different wavelet functions as well. Signal used to test methods pre- 
sented in the paper implied values of the mean square error summarized in 
'Jab. I giving these values in the learning part and the prediction part for the 
wavelet and sigmoidal neural network. Genetic algorithm approach assumed 
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TABLE I: 
COMPARISON OF MEAN SQUARE ERRORS DURING THE LEARN- 
ING AND PREDICTION PARTS FOR WAVELET AND SIGMOIDAL 
NETWORKS. 

Neural Network Mean Square Error 

Type Structure Learning part Prediction part 

Wavelet Network 

Sigmoidal Network 

1-3-1 

1-5-1 

0.0270 

0.0358 

0.0252 

0.0363 

population of 50 individuals and 100 generations but similar results were 
achieved for other choices as well. Errors of the same order were evaluated 
for the wavelet network of significantly lower number of network variables in 
comparison with sigmoidal transfer functions use. Genetic algorithms provide 
in all cases the method for system coefficient estimation. 

CONCLUSION 

The paper presented the application of genetic algorithms for wavelet 
network optimization process providing the population of individuals with 
improving properties evaluated by their fitness numbers. Even though other 
algorithms including the gradient descent method may converge faster the 
genetic methods avoid to be captured by local minima owing to the mutation 
and crossover operations and they are very effective in converging to the 
global optimum. Using different mutation and crossover rates it is moreover 
possible to affect the evolution speed. The paper presents comparison of these 
methods for simulated signals and provides basis for real signals modelling 
and prediction. 
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INTRODUCTION 

The incorporation of properties derived from the function of 
physiological neurons to artificial networks is actively sought in order to 
enrich the range of dynamic behavior of the networks. It is subsequently 
hoped that such "physiological" networks will respond in a way more suitable 
for pattern recognition applications, than networks distanced from biological 
reality ["1-4]. 

In the present work a novel neural network is proposed with different 
excitatory and inhibitory neural populations. This property conforms with the 
so-called Dale's hypothesis that applies to neurons of the mammalian brain. 
[5,6]. The network improves the quality of the associative memory abilities 
shown to exist in an earlier model, where synaptic activity derived from a 
neuron could be of both types ]7]. 

ARCHITECTURE AND FUNCTION OF THE NETWORK 

The model consists of N excitatory (E) and N inhibitory (I) neurons 
arranged in 2 "parallel" layers. Each E neuron corresponds to an I one. The 
network is receiving external stimuli through the Input Unit (IU), which 
projects input patterns to the network. There are 2N input neural units 
projecting   through   stable   excitatory   connections   of   strength   Rij = 5i:R, 

connecting neuron j of IU with neuron I of the network. The input patterns 
are identical for both the excitatory and the inhibitory levels. IU is activated 
with a central frequency f]F = 1/T1F, but individual input neurons have a 
uniformly distributed probability of firing in the temporal window 
|(v-l)TIF -ATp,(v-l)TIF+ATp], for the vth activation cycle. 

0-7803-2026-3/94 $4.00 © 1994 IEEE       204 



A 
The state of each neuron i . A=E or I, is described by the membrane 

potential U; at the soma of the neuron. The equations governing the evolution 
of the potential are: 

^ = -^.p^t)oVf(t))  ifUR,üf(t),UT 

dUf(t)        Uf(t) 
else 

dt 'R 

where i=l,...,N    ,    A=E or I 

A 

A,.,      ^     .A      ~  ... ,    t-tLi-TF, 

p (t) is the sensitivity function: 

pA(t) = 0(t-t^-TF)(l-exp(- 
lp/Z 

where 0(x) = x if x > 0 or 0(x)=O if x<0 

(1.1) 

(1.2) 

(2) 

E laver I layer 

Input Unii 

Network Unit 

Fig.l: The network 

The component Af (t) represents the function of spatiotemporal summation 
A 

of incoming stimuli at the soma of neuron i   and is given by the formula: 

t-tr t-tj- 
Ai

E(t) = Esij
Eexp(—-i=-)+Rexp(-     E 

j=i 

t-t 
WE   ZsE'exp(-—£■) 

JeCi 

(3-D 

t-t 
—) + Re xp( - - 

T,', T, 

where fa (x) = (1 - r]A )x + tfV  , A=E or I 

A[(t)= Ss!fexp(-^)+RexP(-^)-fIl Es»exp(- 

A^. , „A„2 

t-t 

7*» 
jeCj XU XU LjeCj 

(3.2) 

(3-3) 

and o   is the activation function described as: 
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^A     if |A?(t)|<A£   with0<>.A<l 

aA(AA(t)) = <!       '   T if  AA(t)>AA (4) 

else 

A A 

In the above equations tu is the time when the last firing of neuron i 

is communicated to other neurons and tLPi the time of the last activation of 

neuron iP   of IU. S;:1   2   is the synaptic strength of the synapse connecting 

neuron j, belonging to category A,, to neuron I, belonging to category A2. UT is 
the threshold potential and UR the refractory potential. In case Uj reaches UT 

the neuron fires and its potential is set to UR. 

Each neuron i may exert its influence to all other E neurons of the 
network but only to the I neurons which belong to its vicinity Cj, defined by 

the maximum acceptable distance between i and j in the parallel planes. The 
same restriction applies to all projections emanating from I neurons. 

IFF ^ 
In the network used it was Tc < TIT and o   ^ o   which enables U  to 

F. 
evolve faster than U . This is extremely crucial for the proper function of the 
network since the early firing of I neurons prevents the firing of unwanted E 
neurons. It should be noted that the state of the network is defined by the E 
neurons solely. This assumption is also physiologically motivated since in the 
human neocortex the main research interest concerns long range connections 

N 

t-tE 

of    excitatory    neurons.    The    parameter    a(t)=a   (t)=^exp(- ~-) 
i=l Tu 

represents the overall activity of the network. 
The synapses of the network are modified only during learning 

sessions. Each memory pattern is embedded in a separate session. The pattern 
is projected through IU. The close temporal association of the activation of IU 
neurons belonging to the pattern is the crucial factor for proper 
memorization. Furthermore neurons not belonging to the pattern should not 
be activated coherently with pattern neurons. The training algorithm can be 
classified as a generalized Hebb rule since it enables the strengthening of 
synapses of concurrently active neurons and decreases the strength of synapses 
between neurons who show uncorrelated temporal behavior. 

NUMERICAL RESULTS 

We present the case of two patterns described by the set of neuron 
A={1-10} and B={9-18}, in a network of N=100 E and I neurons, during the 
learning phase the parameters governing the evolution of the network are: 

Tu=1.0ms, Tu=0.5ms, TF=5.0ms, Ur=30mV, UR=-15mV, X =0.0189, X.=0.0114, 

Ak=15.5, A[=6.05, TI =0, TI=0.9, P=1400, Atp=0.5ms, f1F=50Hz. 
The memorization of each pattern is achieved at approximately 600ms, and is 
terminated when all the synapses have converged to stable values, which can 
only change in subsequent learning phases. 

E 
In the recall phase the following parameters are modified: R=210, A, =0.087, 

A. =0.0110, f]F=33.3Hz. When the input pattern (ip) was the set of neurons 
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(ip)={3,4,5,6,7,8,9,10,13,20,35}  the   recall   of   memory   A   was   excellent.   By 
denoting the emergent network pattern as (enp) it was: 

N 

(m, (enp).A" =1) > (m, (ipW =0.95) > (m(ip)B=0.85) where mp      = 2JPI'P2 
for 2 Patterns 

i=l 

PI and P2. In Fig.2 we present the quantity a (t) during the recall phase. 
The network proposed possesses the ability to store correlated- 

overlapping patterns and to categorize properly incomplete and noise 
corrupted inputs. Furthermore it has the ability to function at realistically low 
firing rates, such as those found in the cortex (15-40Hz), and to store sparse 
patterns [4,8,9]. Current investigations concern the assessment of the storage 
capacity of the network and its application in Massively Parallel Computers 
of the MIMD (Multiple Instructions - Multiple Data) type. 
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Fig.2  : Parameter  aE(t) representing the  overall  activity of  the 
network in the recall phase 
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Abstract 

Machine learning algorithms which adopt a state space representation 
usually assume perfect knowledge of what state the system is currently 
in. This is to guarantee that rewards and penalties are correctly assigned 
to the responsible state. This assumption, however, does not hold in most 
real world learning problems due to imperfect perception. In this paper 
estimation and control theory is used to classify the systems depending 
on the observability of the system states. This observability determines 
whether the optimal control strategy of a particular system can be learned, 
A novel approach based on enhancing the observability is used to deal with 
perceptual aliasing problem. In order to learn to perceive, the perception 
actions are directly integrated into the control actions. An example is 
shown and further applications to robot learning is discussed. 

1    Introduction 
Reinforcement learning algorithms learn an optimal control policy through trial 
and error. The basic formulation of the problem is closely related to decision 
theory. Given a dynamic system described by state vector x G X, a policy 
a = f(x), where a £ A is the action vector, and reward r* G R at timestep t, 
the total reward(or utility) U for each x G X, following the policy / can be 
calculated as follows, U(x) = ^^.07*rt, where 7 G (0,1] is the discount factor. 
The problem for the decision theory is to find the optimal policy /(•) which 
gives an overall maximum reward for each state x. Apart from very simple and 
restricted cases, the above problem can not be solved analytically. Numerical 
methods such as dynamic programming can deal with such problems in an of- 
fline manner. In the more general case in which the system must operate in real 
time, i.e. explore to be rewarded or penalized, no policy can be found before 
the system start operating. Two well known reinforcement learning algorithms 
are AHC(Adaptive Heuristic Critic) learning[7, 8], which learns an evaluation 
function of states, and Q-learning[9], which learns an evaluation function of 
state-action pairs. There are no essential differences between these two algo- 
rithms and their convergence can be proved given that the certain conditions 

are satisfied[10]. 
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In most of the real world situations, imperfect perception of the states leads 
to the violation of the Markov condition. These problems have been addressed 
in work related to active perception[12] and learning with hidden states[3]. In 
active perception certain state information may be lost due to the time or cost 
constraints of sensing operation. In problems with hidden states reward or 
penalty can not be correctly assigned. In both cases the Markovian process 
condition is violated due to the undeterministic feature of state transition. In 
[12] the lion algorithm is proposed in which a reinforcement leaning agent can 
learn to focus perceptual attention on the right aspect of the environment dur- 
ing control. Problems with hidden state can also be dealt with using memory 
methods. 

In this paper we attempt to address these problem in the framework of 
statistical estimation and control. The rest of the paper is organized as follows. 
In section 2 the limitations of the reinforcement learning algorithms with respect 
to the observability and controllability of the underlining system is discussed. 
In section 3 a simple example is introduced to illustrate the problem of learning 
with imperfect perception. In section 4 a novel approach is proposed to deal with 
the problem of learning with perceptual aliasing and hidden states. In section 
5 we propose to integrate estimation and control for reinforcement learning and 
show how it can be done using the same example. In section 6 we consider 
possible applications to real world learning problems. 

2    Learning as Estimation and Control 

Traditionally the estimation and control of a dynamic system has always been 
separated: optimal estimation algorithms are applied to perceive the real world 
and control strategies are designed based on the optimal estimated values. 
Learning algorithms aim to approximate an optimal control strategy for a dy- 
namic system instead of designing it using certain optimal criterion. In learning, 
the estimation part is usually omitted through simulation or an direct approach 
such as the neural networks are used. In this section, we attempt to categories 
various learning methods in the framework of the estimation and control. 

2.1    Categorizing Learning Algorithms 

In real world learning problems, states must be perceived before reward or 
penalty can be assigned. In this paper we categorize learning algorithms into 
three classes depending on how perception is dealt with in the learning pro- 
Cessna) real world learning; (b) simulated learning; (c) direct learning. 

In the most general case, a state space representation is constructed to model 
the real physical process. Let X be the vector describing the real state of the 
world and X its estimation. It must be noted that only this estimated value 
of the real state is available to the learning algorithms. Perceived state and 
reward are fed into the control policy which in turn chooses appropriate actions 
to change the state of the world. This is referred to as real world learning and 
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is illustrated in Figure l.Up to date, work in this field has been few due to the 
complex interaction between perception and learning[12]. 

Most of the algorithmatic machine learning methods assume perfect state 
perception. These methods have been successful in obtaining tractable algo- 
rithms with proven convergence given some restrictions. Q-learning[9] is re- 
garded as one of the most effective algorithms for reinforcement learning. These 
will be referred to as the simulated learning algorithms since perfect perception 
can not be assumed in real world. Figure 2 shows such learning systems. 

The last category is referred to as the direct learning algorithms. Neural 
network based approach belongs to this class. No state space representation 
is needed. Sensor data is directly fed to the control policy and appropriate 
actions are chosen to affect the state of the world. This is illustrated in Figure 
3. It could be argued that the perception is somewhere embedded in the neural 
networks, but we will show in the next section that why this is not the case. 
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Figure 4: 1-dimensional traversing problem 

Figure 5: 1-d traversing problem with aliased states 

3    Perceptual Aliasing and Hidden States Prob- 
lem 

The problem of learning with imperfect state perception has been investigated 
in [12, 3]. In both cases there exist discrepancies between the real states and 
perceived states. They are referred to as the perceptual aliasing problem or 
hidden states problem. In this paper the 1-D traversing problem proposed by 
Whitehead[12] will be used to illustrate the difficulties associated with learning 
with imperfect perception. This example is used again to show how the proposed 
learn to perceive approach in this paper can be used to solve this problem. 

3.1    A Simple Example 

Consider the task shown in Figure 4. In this task, the real world consists of 
eight states, SR = {so,si,S2,s3,s4,s5,s6,g}; two actions, A = {ai,ar}; and 
a deterministic transition function. Upon reaching the goal state g the agent 
receives an award R(g) — 5000. R(sk) = 0 for k = 0 to 6. Assuming that the 
sensing system is unable to distinguish S2 from S5, how would the learning be 
affected? The new system is illustrated in Figure 5. 

The original problem shown in Figure 4 can be learned using 1 step Q- 
learning algorithms. Figure 6 shows the learned Q value for action ar and a; 
for all states. A normal backpropagation three layer neural network is used. In 
fact, the optimal policy is obviously to take action ar in all states. 

However, if the sensor fails to distinguish S2 and S5, it can be shown that the 
1-step Q-learning can not learn this policy although the optimal policy remains 
the same. In this case the learning algorithm will be unstable due to the interac- 
tion of the aliased states. For a detailed discussion see [12]. This phenomenon, 
however, is not limited to the simulated algorithms. In [3], backpropagation 
neural network based learning algorithms also fail to learn the optimal strategy 
in the "two-cup collection" problem. 
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Figure 6: Learned Q-value for action ar and a; 

3.2    Why it can not be learned? 

In [12], Q-learning equations are analysed to show the unstable learning results. 
However, the fundamental reason for this problem lies in the estimation and 
control theory [4, 1, 2]. Systems such as the 1-D traversing problem shown in 
Figure 5 with aliased states are not fully observable1 thus em uncontrollable 
in general. Assuming an optimal policy does exist but the optimal actions 
associated with the aliased states are different. Unlike the original example 
where optimal strategy exists even though aliased states exist, it is impossible 
to have an optimal action for the two aliased states since the two optimal actions 
for the real states are different. 

The same rule applies to direct learning algorithms such as neural network 
based learning methods. If perceptual aliasing or hidden states exist, the in- 
put data for the neural networks does not contain the full dimension of the 
real state space, i.e. the real state is unobservable. In general such system is 
uncontrollable. 

Learning algorithm learns the optimal control strategy through trial and 
error. However, if the system is uncontrollable, it is impossible to learn the 
optimal strategy even if it exists. 

More often the system described by certain state space representation may be 
probabilistically observable. For example, a multi-sensor system provides a set 
of alternative perceptions. It is possible that the integration of multi-sensor data 
can increase the observability thus making it possible to learn the optimal or 
sub-optimal control strategies. Similar arguments goes to the memory methods 
used in [3]. Incorporation of past data into the input vector of the neural network 
will increase the observability of the system thus learning may become possible. 

^he dimension of the state space representation is smaller than that of the dimension of 
the real problem space. 
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Figure 7: Observability through state space representation restructuring 

4    Learning with imperfect perception 

Although in [12] a lion algorithm is developed to deal with perceptual aliasing 
problem, it was not applied to the 1-D traversing problem. In fact, it is not 
clear how the lion algorithm can be used in general to deal with the perceptual 
aliasing problem as it is highly dependent on the sensing system. As it is clear 
from the point of view of the estimation and control theory, learning can only 
be possible if the system becomes observable. 

In this section we present two novel approaches to deal with this problem. 
In the first approach the state space representation is restructured so that the 
system described by the new state space representation is fully observable. The 
second approach deals with the enhancement of the system observability through 
incorporating past observations. 

4.1 Restructuring State Space Representation 

In order for the system described in the 1-D traversing example to be observable, 
one more dimension must be added to the state space representation. Let us 
assume that the agent always remembers the previous state when it enters a 
new state. Furthermore let the aliased state sf

2 5 be divided into two states s13 

and s46 depending on the whether the previous state is Si,ss or s4,s6. This 
is illustrated in Figure 7. Note that this representation is almost identical to 
the original one in Figure 4 and the optimal strategy can be learned. However, 
if the agent is not allowed to know the previous state, the system will remain 
unobservable, thus no optimal strategy can be learned. 

4.2 Memory Methods 

The system observability can be improved by incorporating the past observa- 
tions. Depending on the system dynamics, different window sizes can be used 
to incorporate past observations. In [3] three memory architecture are proposed 
to solve a learning problem with hidden states. A simple, recurrent element 
is added to our neural network learning algorithm to tackle the 1-D traversing 
problem with aliased states. 
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It must be noted that the level of recurrent or the size of the memory win- 
dow depends on the dynamics of the system and can not be known accurately 
and there is no guarantee that it is always possible to construct such an neu- 
ral network architecture so that the system becomes fully observable. It seems 
that, although the observability is a necessary condition for the optimal control 
strategy to be learned, it is not clear how full observability can be achieved in 
general case. The more likely scenario is the so-called probabilistically observ- 
able systems. In the next section we attempt to address this problem and show 
how learning can still be possible under such conditions. 

5    Is It Possible to Learn to Perceive? 

In previous sections we have shown that the state representation must satisfy 
the observability condition. Otherwise optimal strategies can not be learned 
in general. However, most of the real world learning problems can be best 
described as probabilistically observable. Take the 1-D traversing problem for 
example, assuming that the sensor can recognize state S2 and state S5 with 
certain probability, is learning possible under such condition? 

As discussed previously, in the most general case, learning must deal with 
perception and other control actions at the same time. Mixing perceptual and 
control action violates the Marcov condition, hence it is not possible in general 
to learn the optimal strategy for such systems. In [12] Whitehead developed 
the so-called lion algorithm to learn and use an internal representation that is 
complete and consistent. More specifically the learning cycle is divided into 
two distinct phases: state identification and overt control. This falls into the 
traditional estimation and control paradigm, i.e. the separation of estimation 
and control. Inconsistent perceptual policies are detected by monitoring the 
sign in the estimation error in the 1-step Q-learning rule. 

A detailed look at the lion algorithm shows that, as long as there exists 
a consistent representation among the alternative ones, this consistent state 
representation can be learned through the detecting of the inconsistent states. 
This observation is significant in that, even though inconsistent states are used 
during learning, consistent state and optimal strategy can be learned provided 
that there exists a consistent representation among the alternatives. 

Based on the above observation, we propose an algorithm to fully integrate 
perception and learning and we call this learn to perceive. From the estimation 
and control theory point of view, if consistent state representation exists among 
the alternative representations, the system can be described as probabilistically 
observable. Intuitively, if we augment the action set by perturbating the alter- 
native perceptual actions and coupling them with the real control actions, the 
Q-value for actions associated with inconsistent perceptual actions will lead to 
more costly paths. If enough trials are performed, the actions which are associ- 
ated with consistent perceptual actions will be selected. From the reinforcement 
learning point of view, the reward is directing the choice of consistent perceptual 
actions as well as the choice of optimal control actions. 
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Figure 8: Utility function with perception as action 

This approach represents a conceptual change in learning as well as in es- 
timation and control theory. This shows that it is possible to fully integrate 
perception and control. Again we use the 1-D traversing example to illustrate 
the algorithm. Assuming the sensing system recognize states «2 and S5 cor- 
rectly 50% of the time2. We augment the actions for s'2 5 as follows. Instead 
of using {ar,ai}, which is the same as the actions in other states, we define 
A'25 = {a2,r,a2,i,a5,r,d5,i}- 02,1 denote the action of choosing perception S2 
and traverse left and 02,r denote the action of choosing perception «2 and tra- 
verse right and so on. Consequently, Q2(2,5) is the Q value for taking action 
02,1 m s2 5 an(^ Qf (2,5) is the Q value for taking action 051 in s'25 etc. The 
utility function for the six states(including the aliased state) is shown in Figure 

6    Relevance to robot learning 

Robot control can be regarded as the ultimate estimation and control problem. 
The robot must perceive the dynamic environment in real time and control 
its motors to move itself to new locations. Usually certain optimal estimation 
algorithm, such as the Kaiman filter[ll], is used to locate the robot and its 
surroundings. Pre-defined navigation strategies are applied to direct the robot 
to its goal. In reality, strategies thus constructed do not work well and hardly 
optimal due to the intractable interactions and uncertainties. Recently learning 
has been considered as a way to gradually adapt strategies in order to achieve 
better performance. 

Our previous investigation into the problem of learning with imperfect per- 
ception has concluded that, observability is essential for the successful learning 
of optimal control strategies. This observability is the guarantee that consis- 
tent state representation can be found either through the incorporation of past 

2This probability does not affect the existence of the solution but the time to find one 
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observations or detecting inconsistent states. For robot control problems, in 
which multiple sensors provide a large amount of competing and complement- 
ing information, learning to perceive is of great importance. Unlike the problem 
discussed previous, robot control problems concerns real physical values which 
are continuous. So far the question of existence and convergence of learning in 
continuous domain has not be satisfactorily answered. Integrating sensing with 
learning in continuous domain is, therefore, a very hard problem. 

Various researchers have investigated robot learning problems [3, 5, 6]. In 
addition to the discrete maze-like problems, navigation and survival problems 
in continuous state spaces are also been investigated[3]. Usually the continuous 
state space is represented by neural networks. However, the set of actions are 
usually discrete. Reinforcement learning has been applied in simulated robot 
world but It is not clear that how learning can be conducted using a real robot. 

Learning with imperfect perception is intrinsic to robot learning due to the 
large and diverse sensor data available to the learning agent. Can the learn io 
perceive algorithm proposed in the previous section be used in robot learning? 
First we must bear in mind that learning has always been associated with a 
finite number of strategies(value function based learning) and finite number of 
state-action pairs(Q-learning). Therefore it is natural to limit learn to perceive 
algorithm to deal with discrete number of perceptual strategies. Take a mobile 
robot fitted with sonar and infra-red sensors as an example, we propose only 
three sensing strategies: use sonar data; use infra-red data; use the average of 
both. These strategies are then perturbed and coupled with the real robot mo- 
tion control action and their Q-values can be learned. Eventually the motion 
associated with certain sensing strategy will be selected due to the highest re- 
ward it obtains. This, however, has not been implemented and the effectiveness 
remains to be seen. 

7    Conclusions and Future Work 

In this paper we have attempted to address the problem of learning with imper- 
fect perception from the estimation and control theoretic point of view. Essential 
to this problem is the observability of the state space representation. If certain 
aspect of the system is unobservable due to misrepresentation or sensor failure, 
reinforcement learning can not learn the optimal strategy for controlling such 
system. Two novel approaches, state space restructuring and memory method 
have been proposed to enhance the observability. Furthermore, an algorithm 
which directly integrate perception and learning is proposed. In this algorithm, 
perceptual actions are paired up with actual control actions and their utility 
values estimated by reinforcement learning. Consistent perceptual strategy as 
well as optimal control strategy can be learned at the same time. 

However, it must be pointed out that only finite number of perceptual strate- 
gies can be used together with finite number of control strategies. One problem 
we propose to address in future work is whether a sub-optimal strategy can be 
learned if, given that the system is probabilistically observable, none of the per- 
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ceptual strategies alone provide consistent state space representation. Another 
aspect of our future work will be the implementation of the learn to perceive 
algorithm on real robot learning scenarios, such as tracking and navigation. 

8    Acknowledgment 

The authors wish to thank Tsukasa Kawaoka and Ryohei Nakano for their sup- 
port during this work at NTT laboratories and Toru Ishida for helpful discus- 
sions. 

References 
[1] Y. Bar-Shalom and T.E. Fortmann.   Tracking and Data Association. Academic 

Press, 1988. 

[2] D. E. Catlin.   Estimation, Control, and the Discrete Kaiman Filter.   Springer- 
Verlag, 1989. 

[3] L. Lin.  Reinforcement Learning for Robots Using Neural Networks. PhD thesis, 
Carnegie Mellon University, 1992. 

[4] P. Maybeck.   Stochatic Models, Estimation, and Control, volume 1.   Academic 
Press, 1979. 

[5] J. R. Millan and C. Torras. A reinforcement connectionist approach to robot path 
finding in non-maze-like environments. Machine Learning, 8:363-395, 1992. 

[6] A. W. Moore. Efficient Memory-Based Learning for Robot Control. PhD thesis, 
Cambridge University, 1990. 

[7] R. S. Sutton.    Temporal Credit Assignment in Reinforcement Learning.   PhD 
thesis, University of Massachusetts, 1984. 

[8] R. S. Sutton. Learning to predict by the methods of temporal differences. Machine 
Learning, 3:9-44, 1988. 

[9] C. J. C. H. Watkins.  Learning from Delayed Rewards.  PhD thesis, Cambridge 
University, 1989. 

[10] C. J. C. H. Watkins. Technical note: Q-learning. Machine Learning, 8:279-292, 
1992. 

[11] W. Wen. Multi-sensor Geometric Estimation. PhD thesis, University of Oxford, 
1992. 

[12] S. D. Whitehead. Reinforcement Learning for the Adaptive Control of Perception 
and Action. PhD thesis, University of Rochester, 1992. 

218 



A LEARNING ALGORITHM FOR 
MULTI-LAYER PERCEPTRONS 

WITH HARD-LIMITING 
THRESHOLD UNITS 

Rodney M. Goodman   and   Zheng Zeng 
Department of Electrical Engineering, 116-81 

California Institute of Technology 
Pasadena, CA 91125 

Tel: (818)395-3677, FAX: (818)568-3670 
Email: rogo@micro.caltech.edu 

Abstract — We propose a novel learning algorithm to train networks 
with multi-layer linear-threshold or hard-limiting units. The learning 
scheme is based on the standard back-propagation, but with "pseudo- 
gradient" descent, which uses the gradient of a sigmoid function as a 
heuristic hint in place of that of the hard-limiting function. A justi- 
fication that the pseudo-gradient always points in the right down hill 
direction in error surface for networks with one hidden layer is provided. 
The advantages of such networks are that their internal representations 
in the hidden layers are clearly interpretable, and well-defined classifica- 
tion rules can be easily obtained, that calculations for classifications after 
training are very simple, and that they are easily implementable in hard- 
ware. Comparative experimental results on several benchmark problems 
using both the conventional back-propagation networks and our learning 
scheme for multi-layer perceptrons are presented and analyzed. 

1    INTRODUCTION 

Single-layer networks of linear threshold units (or hard-limiting units) 
known as perceptrons have been shown to have very limited learn- 

ing capacity [2]. Although multi-layer systems of such units are much 
more powerful than single-layer ones, there has been no known learning 
algorithm for such networks. 

In recent years, networks with continuous, nonlinear activation func- 
tions have been shown to be able to perform much more complicated 
tasks than single-layer perceptrons. With the differentiable activation 
functions, gradient descent can then be used to train such networks [4]. 

However, the internal representations of these networks have been 
hard to analyze, due to the fact that their activation spaces are contin- 
uous, and high dimensional. Multi-layer perceptron networks are thus 
still of interest. In addition to easily understandable internal representa- 
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tions, classification rules can be readily obtained from trained perceptron 
networks, the operations of the networks after being successfully trained 
are extremely simple, and they are easy to implement in hardware. 

In this paper, we attempt to solve the problem of training multi- 
layer hard-limiting-unit networks by using non-zero values for logic O's 
and l's, and by a pseudo-gradient descent learning scheme. Henceforth, 
these networks will be called interchangeably, as discrete networks or 
perceptron networks throughout this paper. 

2      NETWORK ARCHITECTURE 

output values 

input features 

Figure 1: A network of perceptrons with a single hidden layer 

Shown in Fig. 1 is a two-layer network of hard-limiting units. Note that 
since the output layer is "discretized", such networks are therefore used 
for classification or encoding problems. We use S\ to denote the output 
value of unit i in layer /, where the Oth layer is defined to be the input 
layer, and w\j to denote the weight connecting from unit j in layer / — 1 
to unit i in layer I. The operational equations for the network are: 

CM'-1), 

3 

, . .      f 0.8   if*> 
where  D0(x) = j Q2    .fjB< 

V/,i, 

0.0 
0.0. 

(1) 

(2) 
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Note that the values 0.2 and 0.8 are used here instead of 0 and 1 in 
order for logic "0"s to have some power of influence over the next lay- 
ers. These values play an important role in the pseudo-gradient learning 
which is explained in the following section. 

3    PSEUDO-GRADIENT LEARNING 
AND ITS JUSTIFICATION 

Our learning scheme is based on the standard back-propagation method 
[4], but with "pseudo-gradient" descent instead of gradient descent on 
the error surface. A learning method based on a similar idea for training 
recurrent networks was first introduced in [6, 7]. 

To explain the pseudo-gradient, we need to introduce another set of 
values for the output and hidden layers, which we will call the analog 
values of the units, as opposed to the discrete ( hard-limited ) values 
that are actually used during network operations: 

!.(') /M°), V/,i, 

where 

«*i0 = E»i?s?_1) 

(3) 

(4) 

and 

/(*) = 
1 + e-* 

From (1) to (5), it is obvious that 

where 

(5) 

n< \     / °"8   if 
D{x) = | 0 2   if 

x>0.5 
x < 0.5, 

For the input layer, define h[0^ — Sf' to be the ith input. 
Let L be the output layer, the error function for an input pattern is 

defined to be: 

i*= 5 I>(J0-«<>'. 

where *,- is the desired value for output unit i.   For classification and 
encoding problems, t{ is either 0 or 1. 
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In a manner similar to back-propagation [4], the error "gradient" with 
respect to each weight is computed, but instead of the true gradient, we 
compute a value which we define to be the "pseudo-gradient": 

dE   -fiCOoC-i) 
(I) - °i   üj V/, i, j, (6) 

where 

*<'> = 
dE 

dnet) (') 

/'(ne*,-°) Et *t+1)«'i?    otherwise. 
(7) 

Here -^777 is what we call the "pseudo-gradient" of x with respect to 

w, (0 

Note that from (1), (2) and (6), by making the possible values of 

3 O-i) to be 0.2 and 0.8, instead of 0 and 1, the pseudo-gradient dE 
dw VJ 

will not be reduced to 0 when SJ     ' is in the "off' (or logic 0) mode, 

thus the heuristic hint provided by 5t-' will not be eliminated. 
Note also that had we computed the true gradients, the only thing 

that would have been different in the pseudo-gradient formulae (6) and 

(7) is that the term f'{net\') in the "otherwise" case in (7) should have 
been D'0{net\ '). However, D'0(x) is zero everywhere and non-existent at 
x = 0. By using /' instead of D'0, we provide in essence a heuristic hint 
of which direction in a; a step up (or down) of Do(x) is, and also of how 
far away it is from x. 

Consider the case of a single-hidden-layer network. Since for the "out- 
put layer" case, i.e., / = L = 2, the pseudo-gradient is in fact the same as 
the true gradient, the "inaccuracy" of the pseudo-gradient only exists in 
one layer, that is, the hidden layer (/ = 1), thus in the "otherwise" case 

in (7), $1       is the true 6^        from straight back-propagation. There- 

fore, ^2k6k      vrkJ gives us the true value of Et *t   X wkj > an(^ since 

f'(net\') is always positive, 6]    truly gives us a good indication of the 
direction, distance or size of a step up (or down) in the discontinuous 

error surface E as a function of net)'J, as does g^£     give a similarly 

„O good indication in E as a function of «A. . 
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4    EXPERIMENTAL RESULTS 

Shown in Tables 1 through 4 are comparative experimental results of 
using both the proposed discrete network training method and the stan- 
dard back-propagation on the following bench mark problems, respec- 
tively: exclusive or, iris data classification [1], sonar data classification 
[3] and NETtalk [5]. All experiments are done with two-layer networks. 
Detailed parameters are described in the corresponding captions. 

#of 
hidden 
units 

discrete networks conventional backprop 
#of 

successful runs 
avg # of 

epochs 
#of 

successful runs 
avg # of 

epochs 
2 5 5000 3 4119 
3 10 2920.9 10 1154.4 
4 10 1801.5 10 642.6 

Table 1: Comparative results on the binary XOR problem. All networks 
have 2 input and 1 output units. Both the training and test data set 
contain all 4 instances of XOR. The learning rate is 0.5, with no momen- 
tum term and no weight decay. Error tolerance is 0.0000001, maximum 
number of iterations is 5000. The "number of successful runs" is ob- 
tained out of 10 runs with different random weight initializations. The 
"average number of epochs" is the averages over the successful runs. 

The training set of the XOR problem consists of all 4 examples of the 
binary XOR problem. 10 runs are done with different random weight 
initializations for each network configuration and each of the learning 
schemes. In this experiment, we intend to compare the convergence 
speeds of the two methods. A successful run is defined to be such that the 
network converged within the given maximum number of epochs (in this 
case, 5000) during training and gives correct outputs for all 4 examples. 
Note that for networks with 2 hidden units, there are unsuccessful runs 
for both learning schemes, which means that each of the corresponding 
networks reached a local minimum, instead of a global one. The number 
of unsuccessful runs for the two are comparable: 5 for our method, and 
7 for standard back-propagation. 

The iris data set consists of 3 classes of 50 instances each, where each 
class refers to a type of iris plant. Attributes are different measurements 
of the flowers. 10 runs are done by partitioning the data set and using 
the subsets in a manner similar to cross-validation. In this experiment, 
we aim at investigating and comparing the effects of momentum and 
weight decay factors on the two learning schemes. 

The sonar data set was used originally by Gorman and Sejnowski in 
their study of the classification of sonar signals using a neural network 
[3].   The task is to discriminate between sonar signals bounced off a 
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#of 
hidden 
units 

mo- 
men- 
tum 

weight 
decay 
factor 

discrete networks convenh onal backprop 
avg % 
correct 

standard 
deviation 

avg % 
correct 

standard 
deviation 

2 0.5 1.0 92.0 4.99 96.0 4.42 
3 0.0 1.0 96.7 5.37 97.3 4.42 
3 0.5 1.0 96.0 6.11 96.7 5.37 
3 0.0 .99 95.3 6.67 94.7 4.99 
3 0.5 .99 96.0 5.33 97.3 4.42 
4 0.0 1.0 96.7 5.37 94.7 6.53 
4 0.5 1.0 96.0 5.33 94.7 5.81 
4 0.5 .99 94/0 6.96 97.3 4.42 

Table 2: Comparative results on the iris data classification problem. All 
networks have 4 input and 3 output units. The learning rate is 0.5, with 
different momentum and weight decay factors as shown. Error tolerance 
is 0.0000001, maximum number of iterations is 5000. The data set of 
150 is randomly partitioned into 10 subsets, each of size 15. For each set 
of network parameters, 10 runs are made by leaving out each one of the 
subsets as the test set, and using the remaining 9 subsets as the training 
set. Performance is averaged over the 10 runs. 

metal cylinder and those bounced off a roughly cylindrical rock. There 
are 208 patterns in total with 111 belonging to the "metal" class, and 
97 belonging to the "rock" class. Again, for each network configuration, 
13 runs are done, in a similar manner to the iris data experiment. The 
purpose of this experiment is to compare the performances of the two 
network structures with different numbers of hidden units. The network 
configurations of the first 5 rows in Table 3 are the same as in [3], while 
the last 3 rows are additional experiments we did to obtain a comparison 
over a wider range. 

The task of the NETtalk problem is to train a network to learn to 
convert English text to speech. Inputs are windows of 5 letters, with 
the letter to be pronounced in the center. Desired outputs are encoded 
phonemes. Each input letter is unary encoded by a group of 27 units. 
The training set consists of 1000 most commonly used words. The test 
set consists of about 4000 words. In this case, the problem is of a par- 
ticularly large size: 135 input, 22 output, and 15 to 120 hidden units, 
about 5600 training examples, and close to 20,000 test examples. We 
used this problem to test the performance of our network on very large 
problems. 
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#of 
hidden 
units 

discrete networks conventt onal backprop 
avg % 
correct 

standard 
deviation 

avg % 
correct 

standard 
deviation 

2 73.08 11.60 82.69 8.55 
3 72.60 8.33 85.58 6.66 
6 80.77 7.93 85.58 6.19 

12 85.10 9.02 86.06 6.08 
24 86.06 7.00 82.21 8.79 
36 83.17 7.10 82.69 10.73 
48 78.85 9.35 71.63 20.89 
60 77.88 11.91 56.73 21.44 

Table 3: Comparative results on the sonar data set. All networks have 60 
input and 2 output units. The learning rate is 0.1 for discrete networks, 
and 0.2 for conventional backprop, with no momentum term and no 
weight decay. Error tolerance is 0.001, maximum number of iterations is 
300. The data set of 208 is randomly partitioned into 13 subsets, each of 
size 16. For each set of network parameters, 13 runs are made by leaving 
out each one of the subsets as the test set, and using the remaining 12 
subsets as the training set. Performance is averaged over the 13 runs. 

5    DISCUSSION 

It can been seen that in general, the performances of the proposed dis- 
crete network are comparable to those of the conventional back-propagation 
network on all the benchmark problems. 

From the results on the XOR problem, it is clear that the pseudo- 
gradient training takes longer than the conventional back-propagation, 
due to the inaccuracies introduced for gradient descent. However, we 
should note that the operations needed for one epoch of training is almost 
the same for pseudo-gradient as back-propagation, the only difference 
being the discretization operations. The experiments on all the other 
larger data sets were done for the same fixed number of epochs (300 to 
5000) for both networks, so the comparative results shown in Tables 2 to 
4 are in fact of training both networks for about the same time period. 

The iris data set results indicate that adding a momentum term helps 
to improve the performance of the discrete network but has an opposite 
effect on the performance of the conventional back-propagation network. 
On the other hand, weight decay helps to improve the performance of the 
conventional network but has an opposite effect on the discrete network. 
The reason for the phenomena is still under investigation. 

For the sonar data experiment, it is expected that the performance of 
either of the network structure goes up with the increase of the number of 
hidden units, and drops after a peak has been reached. Note that it takes 
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#of 
hidden 
units 

discrete networks conventional backprop 
% correct on 
training set 

% correct on 
test set 

% correct on 
training set 

% correct on 
test set 

15 77.05 68.41 83.72 72.64 
30 84.53 71.74 89.72 75.82 
80 90.22 72.55 93.65 75.90 
120 91.95 73.62 92.52 75.61 

Table 4: Comparative results on the NETtalk data set. All networks 
have 135 input and 22 output units. The learning rate is 0.1, with the 
momentum factor being 0.9 and no weight decay. Error tolerance is 
0.001, maximum number of iterations is 1000. The training set consists 
of 1000 most commonly used words, with 5603 letters to pronounce in 
total. The test set consists of about 4000 words, with 19994 letters to 
pronounce in total. 

more hidden units for the discrete network to reach the same optimum 
performance as that of the conventional back-propagation network. The 
reason for this can be that the internal representation capacity of a 
discrete network is much less than that of an analog network, the former 
having only two possible values for each unit, and the latter having 
infinite values theoretically. On the other hand, for the same reason, it 
also takes more hidden units for the performance of the former to drop, 
after the optimum performance is reached, to the same level as that of 
the latter. That is, the discrete network overfits more slowly than the 
back-propagation network. Thus we gain the clear understanding of a 
network by losing some representational power. However, note that, the 
performance differences of the two networks with the same appropriate 
number of hidden units are not significant. 

The results of the NETtalk experiments show that the discrete net- 
work is able to find good solutions for such a large problem, and the per- 
formance is comparable to that of the back-propagation network, though 
always a little worse. 

6     EXTRACTING RULES FROM THE 
NETWORK 

Using discrete units in the network facilitates the interpretation of the 
network representation as discrete rules. For discrete binary inputs, 
classification rules are extracted from the discrete network as follows. 
Present the trained network with all combinations of inputs in the order 
of the Gray code, with one input bit change at a time. For each output 
unit, a truth table is thus constructed for the whole input space. Simplify 
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each truth table by the standard Quine-McCluskey algorithm to obtain 
a logic expression of a minimum number of terms. Each term is then a 
classification rule for the class represented by the corresponding output 
unit. Note this rule extraction process guarantees that all rules extracted 
cover every point in the input space, and are accurate descriptions of the 
network. 

For the XOR problem, the following rules are extracted for the single 
output unit, with the two inputs represented by the symbols A and B, 

respectively: 

If A=low B=high then True. If A=high B=low then True. 

For larger problems with data sets containing noise, rule extraction 
often yields multiple high-order rules that are very specific in describing 
the input space region for which they can fire. This means that the 
network uses a very detailed partition in the input space for its classi- 
fication purposes. It is expected that the less freedom (in terms of the 
numbers of units and adjustable weights) the network is given, the less 
detail such a partition will contain, and the more general the extracted 
rules will be. In addition, training with validation to prevent overfitting 
would result in less specific rules as well. 

For problems with continuous input attributes, quantization can be 
made a priori based on domain knowledge and/or information theoretic 

criteria. 
This rule extraction method is exhaustive, so all the rules extracted 

together make a full description of the network classifier over the whole 
input space. However, the computation grows exponentially with the 
dimension of the input space. Research is underway to investigate ways 
to efficiently generate rules according to, but not strictly based on the 
network, and thus allowing more general lower-order rules. 

7    CONCLUSION 

A pseudo-gradient learning scheme for discrete networks, or multi-layer 
perceptrons with hard-limiting units is proposed. For the case of single- 
hidden-layer networks, we showed that the proposed pseudo-gradient 
always points in the right down hill direction of the error surface. The 
experiments on different benchmark data sets show that the discrete 
networks have comparable performance to that of back-propagation net- 
works. A clear understanding of the network is gained by the discrete 
structure at the cost of some loss of representational power. An ex- 
haustive method to extract rules that accurately describes the network 
as a classifier is presented. The preliminary results are encouraging for 
further study of such discrete networks. 
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Abstract - A procedure for the selection of neural models of dynamical 
processes is presented. It uses statistical tests at various levels of model 
reduction, in order to provide optimal tradeoffs between accuracy and 
parsimony. The efficiency of the method is illustrated by the modeling of 
a highly non-linear NARX process. 

INTRODUCTION 

The representation of the behaviour of dynamical processes is a conceptually 
straightforward application of neural networks, whether feedforward or 
recurrent, as non-linear regressors. In practice, however, the modeling of a 
process requires solving several problems: 
(i) the choice of the nature of the model (static model vs dynamic model, 
input-output representation vs state representation,...) requires an analysis of 
the future use of the model (for instance, whether it will be used for 
predicting the future evolution of the process, or whether it will be used 
within a control system), and an analysis of the a priori knowledge on the 
phenomena involved in the process; 
(ii) the choice of the structure of the model, defined by the number of its 
inputs, by the number of its outputs, by the type of input-output relationship 
(linear, polynomial, radial-basis function, multi-layer neural network, etc.), 
and by its structural parameters (degree of the polynomial approximation, 
number of radial basis functions, number of neurons, etc.); 
(iii) the estimation of the optimal set of adjustable coefficients (synaptic 
weights in the case of neural net models) of the chosen structure 
("identification" in automatic control, "training" in neural network parlance); 

The first problem is fully application-dependent: no general statement can be 
made. The third problem has been investigated in great depth in the case of 
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linear models [1]; in the case of neural network models, a variety of training 
algorithms is available [2], and it has been shown that the choice of a training 
algorithm, in the context of dynamical process modeling, is based on the 
nature of the noise present in the process to be modeled [3]. 

In the present paper, we investigate the second problem, namely, that of 
model selection, which is a key factor for a model to be successful [4]. We 
suggest a pragmatic model selection procedure for dynamical input-output 
non-linear models, which features three steps in succession: first, the inputs 
(external inputs and feedback inputs) of linear models of the process around 
operating points are selected; in a second step, the relevant inputs of the non- 
linear model are selected, thereby determining the order of the model; 
finally, the structural parameter of the model is determined. An optimized 
model of a dynamical process is thus derived. 

We describe the selection procedure in the case of stable (within the range of 
operation for which a model is needed), single-input-single-output processes. 
We assume that the process is NARX: 
yp(t) = <J>[yp(t-l),..., yp(t-v), u(t-l),..., u(t-n)] + w(t) 
where {w(t)} is a gaussian sequence of zero mean independent random 
variables, v is the order of the assumed model, and \i is the memory span of 
the control sequence (u(t)}. 
The following predictor is used: 
y(0 = *P[yp(t-l),..., yp(t-n), u(t-l),..., u(t-m)]; 
We know from [3] that such a predictor (trained with a directed, or teacher- 
forcing, algorithm) is optimal as a predictor for a NARX process. 
If n = v, if m = (I, and if ^(O is an accurate approximation of <&(.), then the 
predictor is optimal for the process. 
In the following, we describe the three steps of the procedure, in the case of a 
neural network model. 

THE PROCEDURE 

First step 

In the stability domain of the process, operating points (uj, yj) are chosen. 
The process is subjected to time-dependent control sequences of length N in 
the ranges [uj + Auj, uj - Auj], such that a linear model of the process can be 
considered valid in each of these ranges. For each operating point, we select, 
as described below, a linear model which is a satisfactory tradeoff between 
accuracy and parsimony. At the end of the first step, the set of all inputs 
which were selected is available for use in the second step of model 
selection. 
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For each operating point, we make the assumption that the process can be 
described as an ARX model: 

v H 

ypW=X «i yp(t-i)+ X «v+i u(t-i) +w(t). 
i=l i=l 

where v et n are unknow parameters. 

We consider a training set of size N, and a family of predictors of the form: 
n m 

y(t) = Xeiyp(t-i)+£en+iu(t-i). 
i=l i=l 

The aim of the procedure is to find a predictor such that n = v, m = |i. 
We denote by yp> x1; x2, ..., xn, xn+i xn+m, w, y the N-vectors, 
corresponding to the values yp(t), yp(t-l),..., yp(t-m), u(t-l),..., u(t-n), w(t), 
y(t), for t=l to N; thus: 
y = [xi, ... XM] 6 , whereM = m + n. 

We have to find M regressors, corresponding to M independent vectors 
{xj, ..., xM} such that the subspace spanned by these vectors is the subspace 
of smallest dimension containing E[yp]. In order to find this subspace, we 
start with a complete model, whose parameters n' and m' are chosen to be 
larger than can be expected from the a priori knowledge available on the 
process. We thus make the assumption that the subspace H spanned by the 
M'=n'+m' vectors contains E[yp], and we expect to extract the satisfactory 
subset of significant regressors from the initial set. This could be achieved by 
computing and comparing all possible regressions; however, this method 
becomes too expensive for large M'. 
In order to decrease the amount of computation, we build from the initial set 
{xj, ..., XM'} an ordered set of orthonormal vectors {pi, ..., pM>} such that 
the model defined by {ph ..., pjj, for all l<k<M', gives a sum of squares of 
errors (SSE) which is smaller than the SSE given by all other models with k 
regressors [5]. 
We first choose, among the M' vectors {xi, ..., xM.}, the vector Xjgiving the 
largest square regression Wyf, with p1= Xj/ llxjll. The (M'-l) remaining 
{XJ} vectors are orthonormalized with respect to pi. 
Consider the kth step of the ordering procedure, where p1(..., pk_, have been 
selected. We denote by SSE(k) the SSE obtained with the selected model 
having k regressors, thus : 

SSE(k-l)-SSE(k) = lpk
TypP> 

with: 
SSE(O) = llypIP. 
This contribution decreases as k increases. This procedure is iterated M'-l 
times for p2, P3,... until completion of the list. Thus : 

M' 

Hypii2=£|p£yp|2+SSE(M') 
k=l 

where SSE(M') is the sum of squares of errors for the complete model. 
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Subsequently, the above list is scanned in the inverse order of its 
construction, and each model is compared with the complete model, using 
the Log Determinant Ratio Test (LDRT). The number of models we have to 
take into account is at most equal to M'. Note that the comparison between 
these models by LDRT is easy (see Appendix for further details about this 
test), since the variable used to compare the k-regressor model and the 
complete model is : 

XLDRT=N l0fSE^ 
log[SSE(M')] . 

We select the smallest predictor model accepted by the test. 
In order to further decrease the number of tests, we introduce a simple 
stopping criterion during the formation of the subset {p„ ..., pM} : at the k* 
step, the procedure is terminated if \p[ y J  < p |lyp|l . The choice of p is not 
critical provided it is small (typically p<108). 
In the present work, we use LDRT, but Fisher-Snedecor test, Akaike's 
Information Criterion (AIC) test are also available (for a review see [4]) and 
lead to similar results. 

Thus, for each chosen operating point, a linear model is available, which 
achieves a satisfactory tradeoff between accuracy and parsimony. Note that 
the techniques which are used in the linear context of this step are not 
computationally expensive, so that a large number of external inputs n and 
feedback inputs m can be used as a starting model for selection. 
At the end of the first step, each regressor which was selected for at least one 
operating point is available for consideration in the second step of model 
selection. 

Second step 
In this step, the process is subjected to large-amplitude control signals 
corresponding to the conditions of operation which the model is expected to 
account for. A non-linear model is defined (e.g. a neural network), whose 
inputs are the set of inputs which were determined during the previous step, 
and whose structural parameters are deemed to be appropriate for the non- 
linear input-output function to be accurately approximated (e.g. a neural 
network with an appropriate, possibly too large, number of neurons, trained 
by an algorithm which allows an efficient minimization of the SSE). Such 
methods tend to be computationally expensive, so that the chosen number of 
neurons should not be excessively large. The best subset of inputs is selected 
by statistical tests (LDRT or AIC criterion (see appendix)): we compare the 
complete non-linear model with all these sub-models with one input less. If 
all the models are rejected, this step of the procedure is terminated. 
Otherwise, the best submodel is chosen, and compared with all these sub- 
models having one input less, and so on. 
At the end of this step, a non-linear model Mj is available, whose inputs 
have been selected. 

232 



Third step 
The final step aims at determining the structural parameter of the model: in 
the case of a neural network model, this parameter is the number of hidden 
neurons. Here, the accuracy/parsimony tradeoff is expressed by the fact that 
too large a number of hidden neurons leads to overtraining (small SSE on the 
training set, large SSE on the test set), whereas too small a number of 
neurons leads to poor approximation (large SSE on the training set itself). 
The model Mi resulting from the previous two steps is considered as the 
complete model, and models with a smaller number of hidden neurons than 
Mi are considered for selection. As in the previous steps, statistical tests are 
used in order to find a satisfactory tradeoff. Note that most model reduction 
algorithms used for neural networks aim at eliminating connections [6], 
whereas this final step aims at eliminating neurons. 

EXAMPLE 

The efficiency of the above procedure is illustrated by the modeling of a 
second-order, highly non-linear NARX process, which is simulated by the 
following equation: 

yP(t) = 50 tanh 2. 10 ^'-^.S-itiLy,^) 
+ 0.5u(t-l) + w(t) , 

l+u(t-l)2 

where w(t) is white noise with variance (aw)2 . The behaviour of this process 
is essentially that (i) of a linear first-order low-pass filter for amplitudes 
smaller than or on the order of 0.1, and (ii) of a second-order, oscillatory, 
linear (0.1 < lul < 0.5), or non-linear (0.5 < lul < 5) system for larger 
amplitudes; it becomes almost static for positive signals of very large 
amplitude; in addition, it is not symmetrical with respect to zero. Figure 1 
shows the response of the process to steps of random amplitude in the region 
of interest, with (aw)2 = 10"2. 

First step 

The operating points were uj = {-10, -8, -5, -2, -1, -0.5,0.1, 1, 2, 5, 8, 10}. At 
each of these points, a uniformly distributed random sequence was added to 
the control input, with maximum amplitude AUJ=0.1 (ou

2 = 3.10"3). The 
initial model was chosen to have n' = m' = 100. The training sequence was of 
length N = 1000. The orthonormalization procedure retained 15 inputs, and 
the subsequent LDRT tests (with 1% risk) led to the selection of n+m = 2 to 
5 inputs, depending on the operating points. 
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Second step 

The training set was a sequence of large-amplitude steps, such as shown on 
Figure 1. Mj was a fully connected neural network, with the 5 inputs (n = 3, 
m = 2) selected in the first step, and with 10 hidden neurons. After training, 
the variance of the prediction error (as estimated by SSE/N) was on the same 
order of magnitude as aw , which shows that the network was sufficiently 
large, and had been trained efficiently. Subsequently, the networks obtained 
by suppressing 1 input, then 2 inputs, etc., were trained and submitted to the 
LDRT procedure, as illustrated on Table 1: the full model M] is compared to 
M2, M3,..., M6. The test selected only M2 and M4 (the deletion of one input 
leads to the deletion of 11 connections; the corresponding value of the x2 

variable for a 1% risk is 24.7). Since the SSE of M4 was smallest, it was 
selected for comparison with all models smaller than M4'; M7 is the only 
three-input model which was selected. All models smaller than M7 were 
rejected. Therefore, M7 was finally accepted. The success of the procedure is 
shown by the fact that M7 is indeed the only model which has the same 
inputs as the simulated process. A similar result is obtained if the AIC test is 
used. 

Time 

FIGURE 1 
Sequence of control input and process output. 

Third step 

Model selection is performed on neural nets having the inputs of M7, and 0 to 
10 hidden neurons, with the same training set for all nets. The result of the 
selection depends on aw. With aw

2 = 10~2, a model with 9 neurons is 
selected. With aw

2 = 10_1, the same inputs are selected by the first two steps 

1 Actually, the SSE's of M2 and M4 are very close; if M2 is selected instead 
of M4, the same result is obtained, since M7 is a sub-model of both M2 and 
M4. 
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Model Vn(t-l) Yp(t-2) Yp(t-3) u(t-l) u(t-2) SSE Xi.nRT 

1 X X X X X 19.1 

2 X X X X - 19.6 11 
3 X X X - X 13.0 832 
4 X X — X X 19.5 10 
5 X — X X X 31.6 218 
6 - X X X X 31.8 221 

7 X X X — 19.6 1.2 
8 X X - X 97.7 697 
9 X — X X 11.8 980 
10 - X X X 39.4 1303 

11 X X — 25.4 1114 
12 X - X 18.7 978 
13 - X X 18.2 968 

TABLE1 
Models labelled by boldface figures are those 
whose inputs include the inputs of the process. 

and the third step leads to a neural network with 4 neurons. As should be 
expected, the procedure selects a smaller number of neurons if the noise level 
is high than if it is low. 

CONCLUSION 

A pragmatic three-step procedure for non-linear dynamical model selection 
has been proposed, which uses statistical tests at various levels of model 
reduction. It relies on the fact that efficient training procedures are available. 
It allows the selection of the delayed external inputs, of the feedback inputs 
(hence the determination of the order of the model) and of the structural 
parameters such as the number of hidden neurons. Its main shortcoming 
seems to be the fact that its application is subject to the availability of two 
types of data from the process, namely, small-signal responses around chosen 
operating points, and large-signal responses in "normal" operation. Its 
efficiency is shown on an illustrative example: the neural modeling of a 
highly non-linear NARX process. 

APPENDIX 

The Logarithm Determinant Ratio Test (LDRT) [4] 

The problem of the selection of one model out of two can be formulated as a 
statistical testing problem. We suppose that an accurate model Mu described 
by the vector of paramters 0, is available to explain a set of N experimental 
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data. The null hypothesis states that a part 92 of the vector parameter 9 is 
equal to zero; if this assumption is true, 9 =[9,, 92] can be reduced to 9t. If 
the alternative hypothesis is true, then 92 cannot be taken equal to a zero 
vector. A very efficient test to solve such a problem is the Likelihood Ratio 
Test (LRT), but this test requires the expression of the likelihood function. In 
our case, with very large N, it reduces to the Log Determinant Ratio Test 
(LDRT) : under the null hypothesis 92=0, with a scalar output, the 
distribution of the statistics : 

xLDRT=N.ogSSB(ei) 
SSE(9) 

converges to a chi-square distribution with dim(92) degrees of freedom. 

The Akaike's Information Criterion Tests (AIC) 

The AIC is an alternative way of selecting a model from a set of models, 
using statistical tests. For each model of the set, we compute the AIC value : 
AIC = 2 N log(SSE/N) + 2M 
where N is the number of data and M is the number of parameters of the 
model. 
The model corresponding to the smallest AIC value is thus selected as the 
best model of the set, with respect to this criterion. This procedure requires 
no assumptions on the models. There exist more efficient variants of the 
classical AIC [4], such as the AIC*, used in this work : 
AIC*= 2 N log(SSE/N) + 4 M 
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Abstract. The integration of Hidden Markov Models and Neural 
Networks is an important research line to obtain new speech 
recognition systems that join a good time-alignment capability and a 
powerful discrimination-based training. The Recurrent Network 
Automata model is a hybrid of a recurrent neural network, which 
estimates the state emission probability of a HMM, and a dynamic 
programming, which finds the best state sequence. This paper 
reports the last results obtained with the RNA model, after three 
years of research and application to speaker independent digit 
recognition over the public telephone network. 

INTRODUCTION 

This paper reports the last results of the CSELT neural network 
group in the field of speech recognition. 

As Neural Networks (NN) are not yet able to manage well time 
modelling, we are presently employing them in integration widi Hidden 
Markov Models (HMM). 

This approach is currently investigated by several research teams: 
Franzini, Haffner and Waibel [9] [10] [13] have introduced the 
Connectionist Viterbi Training to enhance HMM based connected digit 
recognition; [4] has described Segmental Neural Networks for phonetic 
modelling; Bourlard et alii [5] [6] have proposed connectionist 
probability estimation to significantly improve a HMM based 
continuous speech recognition system. 

Our contribution to this line was the introduction of Recurrent 
Network Automata (*) (RNA) [1] [2] which integrates recurrent NN with 
HMM word modelling, showing the advantages which can be obtained 
by exploiting the joint contextual information of feedback hidden units 
and time delayed input. 

(') patent pending 
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Presently, we are experimenting the RNA framework both for 
isolated and connected word recognition [3], trying different training 
strategies and architectures and evaluating the impact of some recently 
emerged input data pre-processing like parameter high-pass filtering. 

The paper reviews the HMM-NN integration proposed by the RNA 
model, and focuses on the last experiments. 

MODEL DESCRIPTION 

The RNA recognition model [1] [2] is a hybrid HMM-NN model 
devoted to recognise sequential patterns. Each class is described in 
terms of a left-to-right automaton (with self loops) as in HMM, and the 
emission probability of the automata states are estimated by a Simple 
Recurrent Network [7]. The transition probabilities among states are not 
considered. The RNA has an input window that comprises some 
contiguous frames of the sequence, one hidden layer with a self- 
feedback, and an output level where the activation of each unit estimates 
the probability of the input window to belong to an automaton state. 

The hidden neuron dynamics is given by the equation: 
yi(f) = F( Zj wjj xj(t) + Ek wik yk(t-D ) 

where yj is the activation of a hidden neuron, XJ is an input unit and F 
is the standard logistic function. The hidden neurons are also called state 
neurons because thanks to the self-feedback they can encode a 
contextual information about the sequence which is being recognised. 
The output neurons follow the standard MLP dynamics. 

SPEECH MODELING WITH RECURRENT 
NETWORK AUTOMATA 

The RNA model was principally conceived for speech recognition, 
and in particular for modelling words for isolated or connected word 
recognition with a small vocabulary. In RNA time modelling takes place 
in two ways: first, by an external modelling, through the HMM like time 
warping ability of the dynamic programming applied to left-to-right 
automata corresponding to words; second, by the internal modelling of 
the recurrent network. In fact, the memory capability of the recurrent 
network allows to give the states a contextual information, inside the 
word automaton, and to give a more stable evolution of emission 
likelihoods, inside the state [1]. 

The architecture of RNA has many degrees of freedom: the 
architecture of the NN, the input window width, the number of 
automaton states for the different words of the vocabulary. A lot of 
experimental activity has been performed to optimise the architecture for 
the recognition of small vocabularies (10-20 words) resulting in the 
structure depicted in fig. 1. The input window is 3-7 frames wide, and 
each frame contains 26 parameters (log Energy, 12 Cepstral Coefficients, 
and their first derivatives). The first hidden layer is divided into three 
feature detectors blocks, one for the central frame, and two for the left 
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and right context. Each block is in its turn divided into four sub-blocks 
devoted to keep into account the four types of different input parameters. 
It was empirically found that this a priori structure is generally better 
than a fully connected layer. The second hidden layer has a fully 
connected recurrence, like in Elman's nets (the double arrow means a 
copy of activation values). The neurons of this layer have a twofold 
function: first, they represent, together with the first hidden layer 
neurons, a space transform between the input parameters and some self- 
organised internal features, corresponding to acoustic/phonetic 
characteristics (e.g. silence, stationary sounds, transitions, specific 
phonemes). Besides, they encode a state information related to the 
temporal context the current input is inserted in, as described in [2]. The 
output layer estimates the emission probabilities of the states of the word 
automata, and is virtually divided in several parts, each one 
corresponding to an automaton. 

Word hodel 1 Word Model   k Word Model N 

Output 
Layer 

Status 

00000 
Emission 
Likelihoods 

t 
Hidden       O O 
Layer 

Feedback 

Speech 
feature 
vector 

Feature 
Extraction 
Hidden Layer 

Figure 1: Architecture of a Recurrent Network Automata devoted to word 
recognition 

Typical dimensions for a RNA devoted to recognise the ten Italian digits 
are: 

-    7 frame input window; 
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first hidden layer: central block with 24 units (divided in 
2+10+2+10 for the four types of parameters), context blocks 
with 36 units (3+15+3+15). 
second  hidden   layer:   70   units,   with   fully  connected 
recurrence. 
output layer: 63 units, corresponding to 63 automata states, 
pertaining   to   the   10   word   automata,   and   divided 
proportionally to the average word length. 

TRAINING RNA 

RNA training is a complex problem, because we want simultaneously 
find the best segmentation of words into a given number of states and 
train the network to discriminate that states. 

Training is an iterative procedure as follows: 

Initialisation: 

• initialise the RNA with small random weights; 
• create the first segmentation by segmenting the training 

utterances uniformly. 

Iterations: 

• load the present segmentation; 
• train the RNA some epochs to implement the automata which 

approximates that segmentation; 
• obtain a new segmentation by applying the dynamic 

programming to each utterance in the training set to re-evaluate 
the transition points proposed by the RNA; 

• update the present segmentation by using a function of itself and 
of the new segmentation: present_segm = F(present_segm, 
new_segm); 
e.g.   F(sl, s2) = asl + (l-a)s2, with a starting from 1.0 and 
decreasing during the training. 

The input to the RNA is a window sliding on the speech frames, 
including a central frame and some left and right context frames. The 
targets are generated according to the present segmentation, putting 1.0 
for the active state of the right automaton and 0.0 otherwise. All the 
automata are trained into a unique net, so performing a discriminative 
training. The NN basic learning algorithm is the back-propagation. 

Recently a variation of classical backpropagation, called Correlative 
Training has been developed and experimented [12]. Briefly, Correlative 
Training consists in changing the target definition in function of the 
correlation of the outputs of the considered unit and of the target unit. 
We redefine the target of a generic output unit k as: 

244 



tk(ok,oh) 
\ tb   if   h = k 

I o,.o,,    if   h ^ k 

where o^ is tlie output of unit k, t^ the target of output unit k, h the 
dE 

index of the output unit with th = 1.0 This leads to a change in the —— 
do. 

term   of  backpropagation   for   output   units,      that   becomes 

y- = (tj(oj,o11)-oj) 
j V 

^tj(Oj.Oh))     1 

dO; 

f-(tj-0j) if j  = h 
[0j(oh-l)2   if   j*h 

This change in backpropagation is a simple way to adaptively soften 
die strength of discriminative training for classes that cannot be 
completely put apart, widiout compromising its power on separable 
classes. That results in an adaptive smoothing of discriminative training. 

RECOGNITION EXPERIMENTS 

Since üiree years we have experimented RNA to face a difficult real 
problem, i.e. die speaker independent recognition of die digits over die 
public telephone network. This problem has been already faced in our 
labs by using Continuous Density Hidden Markov Models [8], so we 
already have a large training database and some state of die art results to 
compare widi. Preliminary results obtained and a comparison with 
HMMs were reported in [2]. 

Speech Database and Preprocessing 
The speech database we used was collected on the Italian public 

telephone network, each time using a different switching circuit. It is 
suited for speaker independent training as about 1,000 people evenly 
distributed between male and female voices contributed to it. The pre- 
processing technique consists of a Mel-based spectral analysis followed 
by a Discrete Cosine Transform to obtain Cepstral coefficients. 
Togeüier widi die cepstral coefficients, die value of the logarithm of the 
total energy of each frame is retained as it provides some information 
about distinguishing die voiced parts of die speech input from the 
unvoiced ones. 

A RNA network was trained on a training set containing about 500 
repetition for each digit. 

Input Filtering 
An input pre-processing was experimented by applying a high-pass 

filter inspired to RASTA filter [14] directly on cepstral coefficients and 
energy. 

The filter equation is 
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y(n) = x(n) - x(n-l) + X y(n-l) with 0< X < 1 

We tried several values for X, and realised that a value of 0.99, which 
cuts off only the continuous frequency component of cepstral parameters 
is the best suitable in that case. 

The results are encouraging, as can be seen in Table 1: in fact the 
input filtering always improves the recognition. 

Comparing Feedback nets with TDNN and Feedforward nets 
The basic RNA models makes use of a feedback MLP. Of course, in 

the same framework other MLP architectures may be inserted, like a 
standard feedforward MLP and a TDNN. 

In this chapter we will discuss the recognition results obtained with 
three different architectures inserted in the RNA framework. 

The first is the standard feedback MLP described in fig. 1 and in 
chapter 3 (18470 weights). The second is a TDNN a lä Waibel, with 26 
input unit (Energy, 12 Cepstral and their first derivatives) with delay = 3, 
50 hidden units with delay = 5 and 63 output units, as in the other 
models (19650 weights). The third model is a straightforward fully 
connected network with input window = 3, one hidden layer of 150 units 
and the usual 63 units output layer (21150 weights). 

From Table 1 can be seen that all the three models works pretty good 
inserted in the RNA framework. The high-pass filter is always useful, 
and in particular with feedforward and TDNN networks, where the 
improvement is very relevant. The last column (dist 1-2) shows the 
average distance between the first and die second choice of the 
recognizer, computed as the summation of -log( P(State I input frame)) 
on die best path, normalised widi die length of die word. P(State I input 
frame) is provided by die neural network while the best padi is computed 
by the Viterbi algorithm. From this point of view die feedback MLP is 
preferable because this distance is greater than in the other models. 
Besides, the feedback model obtains die best performance (99.2) widi 
less weights than feedforward one. 

RNA Architecture Filtering % Train % Test dist. 1-2 

Feedback MLP, with feat. extr. 

layer and feedback (see fig. 1) 

no 

yes 

98.8 

99.7 

98.5 

99.2 

71 

75 

TDNN a lä Waibel widi 2 layers 

of delay units widi d=3 and d=5 

no 

yes 

99.1 

99.5 

98.4 

99.1 

50 

57 

Feedforward fully connected 

MLP widi one hidden layer 

no 

yes 

98.8 

99.6 

97.6 

99.2 

42 

5 

Table 1. Recogniton results for diffcrents RNA architectures and input filterings 
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CONCLUSION 

A hybrid speech recognition model has been described which 
integrates recurrent neural networks with HMM word modelling and 
decoding. The model has exhibited a good performance on a difficult 
recognition task, showing noise robustness and results comparable with 
the mature CDHMM technology, but with the parallelization potentiality 
typical of NN. The model has been widely applied to isolated words, 
while application to connected words is under development [3]. A 
preliminary analysis of its capability to reject extraneous patterns is 
encouraging, and could be further improved through the use of closed 
decision regions MLP, as described in [11]. Another interesting feature 
is the network scalability, currently under investigation, which seems to 
indicate that, thanks to the shared information of the hidden layers, the 
network dimension grows less that linearly with the number of words. 
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Abstract: One of the limitations of linear adaptive echo cancellers in hands- 
free environments is their inability to effectively cancel nonlinearities which 
are generated mainly in the loudspeaker during large signal peaks. The soft- 
clipping effect encountered when large signals are applied to the loudspeaker 
is modelled in a neural network using a piecewise linear/sigmoid activation 
function. A three layer fully adaptive feedforward network is used to model 
the room/speakerphone transfer function using the special activation function. 
This network structure improves the ERLE performance by 10 dB at low to 
medium loudspeaker volumes compared to a NLMS echo canceller. 

INTRODUCTION 

A microphone placed next to a loudspeaker in a closed loop provides electro-acous- 
tic feedback which will spontaneously oscillate at some frequency for which the 
modulus of the gain factor is greater than one. This arrangement exists in all hands- 
free telephone systems hence adaptive echo cancellation is required to prevent 
these oscillations while communicating in full-duplex mode. 

Limitations of echo cancellers for speakerphones [4],[8] include (a) acoustic, ther- 
mal and DSP related noise, (b) inaccurate modelling of the room impulse response 
(c) slow convergence and dynamic tracking, (d) nonlinearities in the transfer func- 
tion caused mainly due to the loudspeaker, and (e) resonances and vibration in the 
plastic enclosure. 

To be commercially attractive, convergence times on the order of 100 ms with Echo 
Return Loss Enhancement (ERLE) on the order of 30 dB are necessary. Fast RLS 
based adaptive techniques can be used to reduce the convergence time, however, 
the ERLE is degraded when the input data is severely non-stationary and it has been 
found [4],[5] that for large filter orders and nonstationary environments, LMS type 
algorithms will give better overall performance than RLS type algorithms. How- 
ever, nonlinear techniques must be employed to deal with system nonlinearities and 
IIR recursive structures must be utilized when poles exist in the room/speakerphone 
transfer function [6]. In this paper, a tapped delay line feedforward neural network 
is employed in an attempt to model only the system nonlinearities. 
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Distortions in the Loudspeaker 

A loudspeaker has several sources of nonlinearity including non-uniform magnetic 
field and nonlinear suspension system [1]. Nonlinear distortion is often a few per- 
cent of the output signal and it is desirable to reduce it. A loudspeaker consists of an 
electrical part and a mechanical part as shown in Figure 1. The electrical part is the 
voice coil and the mechanical part consists of the cone, the suspension system and 
the air load. The two parts interact through the magnetic field. The resulting equa- 
tion of motion [2] is: 

d x        dx m— + rM— +fM = Bli (1) 
dt       Mdt     M 

where B is the magnetic flux density in the air gap, / is the length of the voice coil 
conductor, x is the cone displacement, m is the total mass of the coil, cone and air 
load andfM is the force deflection characteristic of the loudspeaker cone suspension 
system, usually approximated by; 

fM = ax + $x2 + 8x3 (2) 

where a, ß and 8 are modelling constants and x is the displacement of the voice 
coil. Suspension system nonlinearity manifests itself as soft clipping at the 
loudspeaker output and results in odd-order harmonics under large signal 
conditions. 

CONVENTIONAL ADAPTIVE ECHO CANCELLER MODELS 

Linear Transversal Filter Model 

Figure 2a illustrates an acoustic echo canceller (AEC) utilizing a linear adaptive 
transversal filter to model the room impulse response to cancel the reflected signal. 
The reflected signal is a combination of room echoes, direct path signals, loud- 
speaker and microphone transfer functions, and vibration and resonances emanat- 
ing through the plastics of the speakerphone as illustrated in Figure 2b. The 
normalized Least Mean Square (NLMS) algorithm [10] is the baseline by which 
performance of alternative models is measured. 

Nonlinear Adaptive Volterra Model 

Adaptive volterra filtering can be utilized to deal with loudspeaker nonlinearities 
[2], however, filter orders greater than 3 are required to effectively model the 
speaker transfer function and this very quickly leads to an unmanageably huge 
model [9]. In fact, during the course of this work, a fully connected 3rd order adap- 
tive Volterra filter with m 1=600, m2=600, and m3=50 where ml, m2 and m3 refer 
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to the orders of the linear, quadratic and cubic sections respectively, was con- 
structed in an attempt to model the loudspeaker nonlinearity. The tap updates were 
based on the LMS algorithm presented in [9] but extended to a cubic system. It was 
found that no noticeable improvement in converged ERLE could be seen using this 
technique. Neural networks offer an alternative method of dealing with high order 
system nonlinearities. 

NEURAL NETWORK ECHO CANCELLER MODELS 

Three separate adaptive AEC networks were constructed. The first AEC uses a two 
layer (100,2,1) network placed in series with a 500 tap NLMS adaptive linear filter 
as shown in Figure 3a. The 100 inputs are obtained from a tapped delay line. The 
hidden layer neuron has a nonlinear activation function and the output neuron is lin- 
ear.The neural network in this case is first batch trained on the first 500 points of 
data obtained at a medium volume and then tested on loud volume data to ensure 
that the network is not overtrained. 

The second AEC uses the same network but in this case, the neural network is 
placed in parallel with the NLMS adaptive linear filter as shown in Figure 3b. 

The third AEC model utilizes a fully adaptive (600,2,2,1) 3 layer feedforward neu- 
ral network. The 600 inputs are obtained from a tapped delay line. The two hidden 
layer neurons have piecewise linear/sigmoid nonlinear activation functions and the 
output neuron is linear. This model is shown in Figure 3c. 

In each neural network, a piecewise linear/tan-sigmoid activation function is used 
in order to mimic the soft clipping effect and the function response is shown in Fig- 
ure 4 along with its corresponding delta function. The transfer function is linear 
below a user definable point and then follows a compressed hyperbolic tangent sig- 
moid beyond this point such that the output is squashed between +/-1.0. The linear 
region was set to +/- 0.75 since it was found that this gave good results. 

In all cases, the backpropagation algorithm with a normalized step size is employed 
during the training and tracking phase. The stepsize u. is normalized [10] according 
to (3). 

H= « (3) 

2 
e + 

i = 0 

2X 
where a is a number between 0 and 2, and in all cases is set to 0.5. £ is a small pos- 
itive constant used to prevent the stepsize from becoming too large, M is the num- 
ber of delay sections in the tapped delay line (i.e. order of the input section) and xt 
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is the amplitude of the i,h delayed element. The stepsize 11 is updated after each new 
sample is shifted into the tapped delay line. 

EXPERIMENTAL SETUP 

Figure 5 illustrates the test set-up used to obtain the data. A number of commer- 
cially available speakerphones were purchased and modified to allow access to 
internal signals. The modified speakerphone is placed inside a noise shielded enclo- 
sure or anechoic chamber. Filtered "reference" signals are applied to the loud- 
speaker and the microphone picks up the reflected or "primary" signal. Both the 
reference and primary data signals are recorded on a Digital Audio Tape and later 
sampled at 16 kHz and stored to disk for off-line processing. 

TEST RESULTS 

Converged ERLE for NLMS Case 

The NLMS algorithm with 600 taps is applied to the measured data and a number 
of ERLE curves are obtained for various speaker volume levels. The algorithm is 
allowed to converge for 32000 samples and then the average ERLE is obtained 
from the last 8000 output values. The results illustrated in Figure 6, show that the 
converged ERLE is low for low speaker volumes where acoustic, thermal and DSP 
related noise are significant. This agrees with results presented in [4] and [8]. The 
ERLE increases as the reference signal increases but reaches a plateau. Any 
increase in reference signal level to the loudspeaker after this point results in a 
decrease in achievable ERLE. The NLMS results in Figure 6 are obtained from 
three different commercially available speakerphones ranging in price form $32 to 
$120. 

Convergence Curves for Parallel and Series Models Utilizing Pretrained Neu- 
ral Networks 

The ERLE convergence curves of the series and parallel structures are illustrated in 
Figure 7. Also illustrated for comparison is the 600 tap NLMS case. The series 
model has a slightly superior convergence than the NLMS case but eventually set- 
tles to the same value of converged ERLE. The parallel structure has a convergence 
essentially the same as the NLMS case but settles to a lower value of converged 
ERLE. These results were obtained at a high volume of 0.25 W which is equal to 
the rated power handling capability of the loudspeaker. 

Converged ERLE for the Fully Adaptive Three Layer Neural Network 

Figure 8 illustrates the performance of the fully adaptive (600,2,2,1) structure com- 
pared to the 600 tap NLMS case. The improvement in ERLE over the NLMS case 

252 



is significant in the low and medium volume ranges and is greater than 10 dB at 
power levels in the vicinity of lmW. However, the fully adaptive model does not 
offer significant improvement at high speaker volumes suggesting that there still 
exists a deficiency in the modelling of the room/speakerphone transfer function at 
these volume levels. A total of three speakerphones were tested. Each speaker- 
phone yielded similar results. 

DISCUSSION OF TEST RESULTS 

It has been shown in this paper that a fully adaptive three layer neural network 
offers significant improvement in converged ERLE in the low to medium volume 
range where acoustic, thermal and DSP related noise are significant. However, 
when feedforward structures are utilized at high volume levels, little or no improve- 
ment in converged ERLE is observed for filtered noise inputs, and this is confirmed 
by both the Volterra models and the three neural network models presented in this 
paper. 

It appears that the room/speakerphone transfer function may contain poles when the 
loudspeaker is at high volumes. This is most likely caused by resonances in the 
plastics of the speakerphone and to a lesser extent poles in the room transfer func- 
tion [6]. In order to more accurately model the room/speakerphone transfer func- 
tion, a recursive structure may be necessary and this is the thrust for future work. 
NARMAX [11] models, recursive neural networks, and nonlinear state-space filters 
[12] are all possible candidates. 

It is likely that the limitation in converged ERLE at high volumes is a combination 
of nonlinear effects in the loudspeaker and undermodelling of resonances in the 
plastic enclosure, and that the limitation due to nonlinearity is being masked by the 
latter. 

SUMMARY 

Nonlinear distortions and undermodelling has been found to limit the converged 
ERLE of acoustic echo cancellation in handsfree terminals. Loudspeaker distor- 
tions include nonlinearity in the suspension system which will result in soft clip- 
ping at high volumes. A piecewise linear/tan-sigmoid activation function has been 
developed to more accurately model the soft clipping effect and offers a slight 
improvement in converged ERLE. A third order Volterra model and three neural 
network AEC models have been developed which indicate that a purely feedfor- 
ward tapped delay line structure is not sufficient to accurately model the room/ 
speakerphone transfer function at high volumes resulting in no significant improve- 
ment in converged ERLE. However, a 10 dB improvement in converged ERLE can 
be obtained in the low to medium volume ranges where the primary signal to noise 
ratio is small. It is proposed that at high volumes resonances in the plastic may be 
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masking the nonlinearity of the speaker and that a recursive structure incorporating 
poles in the transfer function may be necessary to obtain further improvements in 
converged ERLE. 
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Figure 1. Loudspeaker Electro-mechanical Equivalent Model, e indicates the internal voltage 
of the generator, r is the total electrical resistance of the generator and voice coil, L is the 
inductance of the voice coil, i is the amplitude of the current in the voice coil, E is the voltage 
produced in the electrical circuit by the mechanical circuit. B is the magnetic flux density in 
the air gap, I is the length of the voice coil conductor, and x is the cone displacement. In the 
mechanical circuit m is the total mass of the coil, cone and air load. rM is the total mechanical 
resistance due to dissipation in the air load and the suspension system. CM is the compliance 
of the suspension and^ is the force generated in the voice coil. 
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Figure 2. (a) Adaptive Echo Canceller Structure (b) Room/terminal Transfer Function is a 
combination of Speaker Non-linearities, Direct path, Plastic effects and Room response. 

255 



100 taps 

N.N. k?S 
500 taps 

Prc-trained NLMS 

■111 

TX. 

600 taps in input 

2 nodes in first layer 

2 nodes in second layer 

1 linear node ouput 

(a) (b) (c) 

Figure 3. (a) Series model has a (100,2,1) 100 tap pretrained 2 layer network in series with 
the NLMS adaptive structure, (b) The parallel model has a (100,2,1) pretrained 2 layer net- 
work in parallel with the NLMS structure, (c) The fully adaptive (600,2,2,1) three layer net- 
work . In all cases the output neuron is linear and the hidden layers have a piecewise linear / 
sigmoidal activation function. The inputs are obtained from a tapped delay line. 

Piecewise Linear-SiRmoid Activation Function 

Figure 4. Piecewise linear/sigmoidal activation function and corresponding delta . The linear 
section with a value of +/-0.75 to +/-0.9 gave the best results in this study. 
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Figure 5. Experimental Setup. Primary and reference signals are recorded on DAT and later 
sampled to disk. 
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Figure 6. Converged ERLE vs. loudspeaker power for three different commercially avail- 
able handsfree telephone terminals.. An AEC using the NLMS algoritm shows a decrease in 
ERLE as the volume increases At low volume levels, noise limits the achievable ERLE.. 
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Figure 7. Convergence curves for the Series (dashed line) and Parallel (dotted line) models. 
The NLMS convergence curve (solid line)is shown for comparison. 

Converged ERLE for NLMS and 3 Layer Fully Adaptive Networks 
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Figure 8. Converged ERLE plot vs. loudspeaker volume using a three layer fully adaptive 
neural network. Three layer network(solid line) shows over 10 dB improvement in ERLE at 
low to medium volumes. The NLMS algorithm (dashed line) is shown for comparison. 
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Abstract 

In recent years several research groups have investigated the 
use of a new framework for minimizing the error rate of a classi- 
fier. The key idea is to define a smooth, differentiable loss function 
that incorporates all adaptable classifier parameters and that ap- 
proximates the (non-smooth) actual performance error rate. Us- 
ing a smoothed version of the actual error rate offers two main 
advantages: 1) the loss function can be minimized using gradient- 
based minimization methods, and 2) smoothing the error as cal- 
culated over a finite training set helps approximate unseen data, 
and thus can help generalization. This framework is applicable 
to a variety of classifier structures, including feed-forward neu- 
ral networks, Learning Vector Quantization classifiers, and Hid- 
den Markov Models. Here we describe a particular application 
in which a relatively simple distance-based classifier is trained to 
minimize errors in speech recognition tasks. The loss function is 
defined so as to reflect errors at the level of the final, grammar- 
driven recognition output. We show how the loss function can 
be made to reflect, not just correctness/incorrectness at the string 
level, but also, for instance, a word spotting loss between the rec- 
ognized string and the correct string. Thus, minimization of this 
loss can explicitly optimize the word spotting rate. 

1     Introduction 
Within the framework of Bayesian decision theory, the error rate can 
be defined along the following lines [4]. Suppose that in a classification 
task of M categories, when we observe a feature vector x belonging to 
category Ck and classify it as category Cj, we incur a loss 6jk: 

6jk = j = k 
(1) 
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The expected loss, or risk, corresponding to this loss is 

R{Cj\x) = Y.6ikp(Ck\x) (2) 

where P(Ck\x) is the a posteriori probability of category Ck given x. 
The goal is to choose the category Cj with the smallest risk. The Bayes 
rule for classification, in its most general form, is thus 

decide Cj if R(Cj\x) < R(Ck\x) for all * ^ j. (3) 

For the above zero-one loss, this risk can be written as 

R(Cj\x) = 1 - P(Cj\x) (4) 

and the Bayes decision rule to minimize the overall classification risk is 
to classify x as the category Cj with the largest a posteriori probability 
P(C,-|x): 

decide Cj if P(Cj\x) > P(Ck\x) for all it £ j. (5) 

The implementation of the Bayes decision rule requires that we know 
the a posteriori probabilities for the categories in the problem. In most 
practical situations, it is difficult to estimate these probabilities, as the 
form of the true distributions is rarely known, and even when it is known, 
only a finite set of samples is available for estimation. 

An approach that has arisen over the past few years is to overcome 
the above problems by directly formulating the classifier design problem 
as an error rate minimization problem. We refer to this approach al- 
ternatively as Minimum Classification Error / Generalized Probabilistic 
Descent (MCE/GPD) [9] and, more simply, as minimum error train- 
ing. The key idea is to directly relate the design of the classifier to the 
quality of the actual classifier performance, or more specifically, to de- 
fine in terms of the system parameters a loss function that is both 1) a 
close approximation of the real classification error rate, and 2) a smooth, 
differentiable function of the system parameters that can be used for 
practical optimization. In this paper we describe the theoretical frame- 
work of this approach applied to one particular classifier structure, a 
prototype-based system which incorporates Dynamic Time Warping'to 
link phonetic states according to the grammar of the task at hand. 

Note that the second version of the Bayes decision rule results from 
the use of the zero-one loss function above. Other losses may imply 
different uses of the a posteriori probabilities, according to (2). In speech 
recognition, and pattern recognition in general, it may be desirable to 
consider certain mistakes as more costly than others*. In this spirit 
we show how the MCE/GPD framework can accomodate losses that are 
more general than the 0-1 classification loss used so far, and thus capable 
of representing more fine-grained differences between categories. 
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Here, we present experimental results illustrating some of the prop- 
erties of the minimum error training approach applied to a multi-state, 
prototype-based classifier, and show the feasibility of training using the 
more general loss function. 

2    Prototype-Based Minimum Error Clas- 
sifier 

We here describe the minimum error training framework, from the per- 
spective of a prototype-based application of this framework, the Prototype- 
Based Minimum Error Classifier (PBMEC), first described in [11]. This 
classifier uses collections of reference vectors associated with sub-phonemic 
states to calculate distances between a speech token and the categories 
of the task. The states are linked according to the grammar of the task, 
and a Dynamic Time Warping process will be used to find the state se- 
quence that has the closest, match to a given speech token. This state 
sequence will be given as the classification of the token. In the follow- 
ing, we represent one such token using a variable xf, which corresponds 
to a finite sequence of observations, (xi,..., xt,..., XT), where T is the 
duration of the token. T could change from token to token. 

The framework for optimization used here, Generalized Probabilistic 
Descent (GPD) [6]-[7], is closely related to stochastic descent methods 
[5] and to what many researchers refer to as "online back-propagation." 
GPD can be described as the following adaptation process. For a given 
loss function ^.(x^, A), where xj is an input token belonging to category 
k, and where A represents the system parameters, we want to minimize 
the expectation of overall loss, £(A), which is the loss lk() integrated 
over all M categories and their probability densities: 

£(A) 
M . 

k J 

4(xf,A)p(x[|C't)r/x (6) 

where P(Ck) and p(x[\Ck) are the class a priori and conditional proba- 
bilities respectively. For an infinite sequence of random samples xf (r), 
and a suitably chosen step size sequence e(r) [7], adapting the system 
parameters according to 

A(T + 1) = A(r) - e(r)V4(x?>), A(r)) (7) 

has been shown to converge to a local minimum of £(A). Thus, though 
the overall loss is never directly calculated, it can be minimized by us- 
ing the derivative of the local loss £k(). In practice, as we don't have 
an infinite number of training tokens, random samples from the avail- 
able training data are presented over and over for a pre-set number of 
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iterations, and the training target is to minimize the empirical error rate, 

M    Nk 1     "'     "). 

(8) 

where xj(i, k) is the i-th token of category it, Ar is the total number 
of training samples and Nk is the number of training samples for each 
category k. 

Given this approach to optimization, the next question is the nature 
of the local loss function tk(x[,A) to use in GPD optimization. If the 
goal is accurate pattern classification, Bayes decision theory suggests a 
0-1 (0 for correct, 1 for incorrect) loss function, related to 6jk described 
above. However, GPD requires that the loss function be a smooth (i.e. 
first order differentiable) function of the input token xj and the system 
parameters A. The loss function defined in [6]-[7] thus uses a smoothed 
version of the "ideal", non-smooth, 0-1 loss. The use of this particu- 
lar loss function is referred to as Minimum Classification Error (MCE) 
learning; for a smoothed loss that closely reflects the actual 0-1 loss, 
minimizing this loss using GPD will ideally yield a classifier that closely 
obeys the Bayes decision rule in its classifications, and thus minimizes 
the expected classification error rate. 

Defining the zero-one classification loss function first involves defin- 
ing, for each category j, a discriminant function Hj{xJ) reflecting the 
extent to which token xj belongs to the category. This function is de- 
termined by the classifier structure and parameters A (we drop the use 
of the general term A in the following, and instead refer to specific clas- 
sifier parameters). The PBMEC discriminant function for each category 
is defined in terms of a DTW procedure to link reference vector based 
phoneme models together according to the grammar of the task at hand. 
At the lowest, level, the phoneme models are taken to consist of a con- 
nected sequence of sub-phonemic states, illustrated in Figure 1. Each 
state is assigned a number of reference vectors, analogous to the mean 
vectors used in a continuous Hidden Markov Model. These are used to 
generate an Lp norm-based state distance e(x,,s), which is a function of 
a single feature vector x( at time t and reference vectors belonging to 
the state s: 

e(xt,s) = 
i. 

Dte-rn'fsn-1^-!-; (9) 

where rf denotes the (adaptable) i-th reference vector of state s, S;' is 
an adaptable positive definite matrix corresponding to r', and /, is the 
number of the reference vectors assigned to s. For a large C, the state 
distance becomes the distance to the closest reference vector, and each 
state can then be seen to correspond to a category in a Learning Vector 
Quantization classifier [8] [11]. A matrix of distances Dj,r,s is defined to 
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be a matrix where each position (t,s) contains e(xt,s) for the states of 
category j. The discriminant function for each phoneme/word/phrase j 
can then be defined as: 

9j(xT) £[W;,T,S)]~ (10) 

where Vg(DjtT,s) represents an accumulated sum, or path distance, along 
a possible DTW path 0 through a region of Dj:T,s, and where S is the 
total number of states in category j. The decision rule here (rather than 
that described in (3) will be to choose the category with the smallest 
discriminant, function value: 

decide Cj if gj(xj) < gk(xj) for all k / j. (11) 

Lp norm of state distances propagated through network 

/bl/     /b2/ A>3/      /b4/ 
sub-phonemic states 

Reference vectors 
assigned to each state 

Figure 1: Structure of classifier at finest grain 

Assuming that a token xf of category k is presented to the classifier 
for training, and with M as before denoting the number of categories in 
the problem, a misclassification measure can then be defined as: 

dktf) = gktf)- 
M-l E»(*?r* 

it* 
(12) 

For a large ip, this function will be negative for correct classifications 
(9k(xi) < 9j(x-i)), and positive for incorrect classifications (öjt(xf) > 
9j(xJ))- Depending on the grammar being used, the number of cate- 
gories may be extremely large; thus, it is practical to assume a large ip 
here, and only consider the top incorrect category, or top few incorrect 
categories, in calculating the misclassification measure. 
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A loss function can now be defined in terms of the misclassification 
measure rfjt = rft(x^). Many choices exist for this function; for instance, 
a simple zero-one sigmoid: 

l*{db) 1 + e- -adk 
(13) 

with a large a. One can see that this loss approximates an ideal binary 
loss function well and is continuous. 

The adaptation process is then to perform GPD according to equa- 
tion 7. By using different grammars, PBMEC can recognize and optimize 
at the level of a large variety of speech units, including connected words 
and phrases in continuous speech. 

3     Practical Application of PBMEC to Con- 
tinuous Speech Recognition 

3.1 Use of Finite State Machine 
A grammar-generated finite state machine linking phonetic states to- 
gether is used to embed a grammar into the DTW matching procedure. 
This makes it possible to apply PBMEC to a variety of problems in con- 
tinuous speech recognition. An example of a finite state machine is given 
in Figure 2. The categories of the task are taken to be all strings allowed 
by the finite state machine. The discriminant functions i/j for each cat- 
egory j are defined over one particular set of paths through the finite 
state machine. In practice, though, only the top matching categories 
need to be considered. 

A time-synchronous DTW pass through the network similar to the 
Token Passing algorithm [14] was used, in tandem with an A* based N- 
best algorithm. During the learning phase, the top matching N incorrect 
categories will be pushed away in proportion to the derivative of the 
loss, while the correct category is pulled closer, also in proportion to the 
derivative of the loss; furthermore, categories will be pushed away only 
along the best within-category path. 

3.2 A more general MCE/GPD loss function incor- 
porating lexical / syntactic / semantic differ- 
ences between categories 

In MCE/GPD so far, whenever a category is mis-recognized as another 
category, the (ideal) loss is considered to be 1. This corresponds to 
the zero-one loss 6jk mentioned above in the description of the Bayes 
decision rule. However, other losses can be used in the same Bayesian 
decision framework, and there are reasons to believe that the zero-one 
loss may be somewhat limited as a measure of performance. It may be 
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Figure 2: The grammar represented in a Finite State Machine determines 
how to concatenate different linguistic symbols. This defines the super- 
structure of the classifier. With the simple grammar illustrated here, 
any word can follow any other word, with the possible intervention of a 
garbage model, '*'. 

desirable to consider more revealing error counts when comparing correct 
and incorrect strings, and to make the MCE/GPD classifier sensitive to 
these differences. We refer to these differences as inter-category symbolic 
distances. They could represent distances between syntactic parse trees, 
or word spotting distances between two strings of phonemes/words, using 
one of the usual ways of calculating deletion, insertion and substitution 
errors. 

We thus take usual zero-one 8jk loss to represent a more general loss, 
corresponding to an inter-category symbolic distance of the kind just de- 
scribed. The general loss 6jk can then be used to weight the MCE/GPD 
loss in a continuous manner. For an input token x of category k with 
discriminant function #j;(x), we have the usual misclassification measure 
(Equation 12) and typical loss function 4(x) (Equation 13). Then, we 
consider the expression 

*■(«)-* .... 

££.«,<*)- (,4) 

as a measure of the extent to which the incorrect category i is rep- 
resented in the bracketed term of the misclassification measure <4(x), 
from (12) above. For a large V», this expression will be close to one for 
the top matching incorrect category, and close to 0 for all other cate- 
gories. Multiplying this expression, for each incorrect category i, by the 
inter-category symbolic distance 5,-t, and summing over all incorrect cat- 
egories thus gives an aggregate, weighted symbolic distance between the 
correct category k and all other categories.   Multiplying this aggregate 
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distance by the usual loss fj.Q gives the new loss (k a 

tkAM*)) = ^A/ £*(rf*(x)) (15) 

In the simplest ca.sc, if we take if' to be very large, the new loss reduces 
to 

IkAdkW) = 6ikek(dk(x)), (16) 

where 8ik is the symbolic distance between the correct category k 
and the best matching incorrect category i. The new loss can be used 
for MCE/GPD adaptation in the same manner as before. Note that if 
all the inter-category distances, 8u-,i ^ k, are set to 1, the new loss 
becomes equal to the old loss. 

3.3    Experiments in Continuous Speech Recognition 

The experiments we describe here concerned the recognition of speech 
from a database of continuously spoken sentences from the ATR confer- 
ence registration task, spoken by 9 female speakers. We describe experi- 
ments with this task to illustrate the nature of minimum error training, 
and to contrast training at the level of word-spotting, using the extended 
MCE loss, with string-level training using the usual zero-one loss. 

Input speech was sampled at 12 kHz, Hamming windowed using a 
window size of 20 ms, and a 256-point FFT computed every 5 ins. Six- 
teen Melscale coefficients were then generated from the power spectrum 
for each frame. Seventy words were selected from the conference reg- 
istration task vocabulary as keywords. A garbage model was used to 
describe sequences of phonemes not covered by this 70 word vocabulary. 
The grammar of the task was then defined as suggested above, allow- 
ing any word to follow any other word, with the possible intervention of 
garbage phoneme sequences. MCE/GPD training was performed sub- 
ject to two separate criteria: 1) optimal string (sentence) recognition 
and 2) optimal word spotting recognition. In the latter mode, the inter- 
category symbolic distance 8JU was set to be the word-spotting string 
distance between the strings j and k, calculated using a DP procedure. 
Thus, 8jic as used in the second criterion is a finer measure of string 
similarity than the all or nothing, 0-1 6jk used in the first criterion. 

One hundred and ten sentences were available for each of the nine 
speakers; half of these sentences were used for training and half for test- 
ing. The reference vectors were initialized using K-mcans clustering. 
The training procedure was performed for both criteria of optimal string 
recognition and optimal word spotting recognition. 

Figure 3 shows the actual string accuracy, word spotting accuracy, 
and modelled accuracy (derived from the empirical error rate defined in 
(8)), for both training and testing data, for PBMEC trained using both 
string and word level training criteria.  The results show good matches 
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Training data Testing data 

Training criterion 
string      word       modelled 
accuracy accuracy accuracy 

string      word 
accuracy accuracy 

string-level 56.2         88.2         56.3 14.2        69.8 

word-level 48.4         88.9         89.0 14.8        70.3 

Figure 3: Recognition accuracies for string- and word-level criteria 

between the actual string accuracy and the modelled loss on the one 
hand, and between the actual word spotting accuracy and the modelled 
loss, on the other. 

4    Conclusion 

We have described the practical application of MCE/GPD to a prototype- 
based classifier. The classifier incorporates a grammar-generated finite 
state machine linking different phonetic states together, and can be used 
to classify continuously spoken sentences. We have shown how this clas- 
sifier can be trained to minimize the classification loss using MCE/GPD 
optimization at the level of the final, grammar driven recognition out- 
put. We have also described how loss functions reflecting the lexical, 
syntactic or semantic significance of different classification mistakes can 
be integrated into the MCE/GPD framework. In particular, we have 
illustrated the feasibility of directly optimizing the word spotting rate. 
A word spotting accuracy of 70% was obtained for a difficult continuous 
speech recognition task. Incorporation of additonal constraints into the 
classifier, such as penalties for word transitions, may improve this accu- 
racy, and reveal greater differences between training to optimize word 
spotting performance, and training to optimize sentence recognition. 
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Abstract-Recent reports in the statistics and neural networks literature have 
expounded the benefits of merging multiple models to improve classification 
and prediction performance. The Cambridge University connectionist speech 
group has developed a hybrid connectionist-hidden Markov model system for 
large vocabulary, talker independent speech recognition. The performance of 
this system has been greatly enhanced through the merging of connectionist 
acoustic models. This paper presents and compares a number of different ap- 
proaches to connectionist model merging and evaluates them on the TEVQT 
phone recognition and ARPA Wall Street Journal word recognition tasks. 

INTRODUCTION 

An acoustic pre-processor or front-end is a common feature of all large vocabulary 
speech recognition systems. The front-end maps the sampled waveform onto a lower- 
dimensional representation of the acoustic signal. Typically, the specific mapping is 
selected as the front-end which performs best on some development test set. Since 
different front-ends may provide better representations for different acoustic events 
(e.g., phoneme class, talker, etc.), it would seem advantageous to sensibly merge 
multiple front-ends and their associated models. 

There has been speech recognition research into merging multiple sources of in- 
formation. For example, work at BBN has addressed merging the parameters of 
speaker-dependent hidden Markov models (HMMs) to obtain a speaker-independent 
system [1] and Cohen and Franco at SRI have merged a conventional HMM and 
multi-layer perceptron [2]. Recently, model combination has been shown to be a 
promising area of neural network research. Techniques such as Generalized Stack- 
ing [3] and Bayesian approaches [4] have been explored as a means to most effectively 
utilize all the available information. This paper presents an application of connec- 
tionist model merging to speech recognition. Multiple acoustic representations are 
merged resulting in a significant reduction in the recognition error rate. 

THE HYBRID CONNECTIONIST-HMM 

The hybrid connectionist-HMM employs the same basic framework as described 
in [5], but utilizes a different connectionist component. The speech recognition sys- 
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tem uses a recurrent network to map a sequence of acoustic vectors to a sequence 
of posterior phone probabilities. The network outputs are used as estimates of the 
observation probabilities within an HMM framework, i.e., the observations are con- 
sidered as a stochastic process on a non-observable, first-order Markov chain. Given 
new acoustic data and the connectionist-HMM framework, the maximum a posteriori 
phone or word sequence is then extracted using standard Viterbi decoding techniques. 

The basic acoustic modeling system is illustrated in Figure 1. At each 16ms frame, 
an acoustic vector, u(f), is presented at the input to the network along with the 
previous state vector, x(f - 1). These two vectors are passed through a single-layer, 
fully-connected, feed-forward network to give the output vector, y(r), and the next 
state vector, x(f). Forward acoustic context is modeled by expanding the input vector 
to cover additional frames and by delaying the target. The state vector provides the 
mechanism for modeling the dynamics of the acoustic signal in various contexts. 

y(t) x(t) 

??? 

u(t) x(t-1) 

Time 

delay 

Figure 1: The recurrent net used for phone probability estimation. 

Each output channel corresponds to a particular phone in the phone set. The use of the 
softmax nonlinearity for the output nodes with the cross-entropy training criterion 
implies that the outputs can be considered estimates of the posterior probability 
of the phones given the (local in time) acoustic data. This network is trained by 
back-propagation through time. (A more complete description of the network may 
be found in [6].) 

THE MODELS 

Because the goal of this work is to reduce the recognition error rate through merging 
multiple recurrent networks, it is important that each portion of the speech signal can 
be modeled by at least one of the individual networks. In the experiments presented 
here, the parameters for each network are estimated on the same speech data, but pro- 
cessed with different front-ends. Two successful spectral representations have been 
found to be a 20 channel mel-scaled filter bank with voicing features [7] and 12th or- 
der cepstral coefficients derived from perceptual linear prediction [8]. The filter bank 
and cepstra are referred to in this paper as MEL+ and PLP, respectively. In addition, 
because the recurrent network is time asymmetric, training the network to classify 
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forward in time will result in different dynamics than training to classify backwards 
in time. Based on the above considerations, four networks were constructed from the 
possible representations; FORWARD MEL+, BACKWARD MEL+, FORWARD PLP, and 
BACKWARD PLP. 

MODEL COMBINATION 

Probability Domain Merging 

The most straightforward approach to merging the recurrent networks is through a 
linear combination of the model outputs. In the most general framework, the merged 
estimate of the posterior probability of phone i given the acoustic data up to time t is 
given by 

K 

where yf\t) is the estimate of the &th model and ft* are the merging weights. Note 
that the weights can be dependent on the input data, e.g., ft* = A*(u(0)- Sufficient 
conditions on the ßs to guarantee a statistical interpretation of the output are that 
they are tied across phones (i.e., fe = ft), sum-to-one (i.e., Sjtfe = 1)> an0< are 
non-negative. With these conditions, the merged output will meet the constraints 
needed for interpretation of the output as the posterior phone probabilities. As is 
seen in the results section, relaxing these constraints does not necessarily lead to 
poorer performance. 

Log-Probability Domain Merging 

For computational reasons, the mapping of the phone probabilities into recognized 
word strings is usually performed in the log-probability domain. This has led to 
experiments evaluating merges performed after the conversion of the network output 
to the log domain, i.e., 

K 

log)-,« = X>*log>f(0. (2) 

With this approach, it is difficult to assign a probabilistic interpretation to the merged 
outputs. However, if the models are assumed to be independent, then the estimated 
joint likelihood of the different data is proportional to the product (or sum in the 
log-domain) of the network outputs. 

Merge Criteria 

Given the connectionist-HMM framework, there are number of different approaches 
to determine the J3s. In all cases where training data was required to learn the merge 
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parameters, the data was taken from an independent development set. Although the 
amounts of data in the training set was quite large, this approach was taken to further 
reduce the chance of obtaining a merge with substantial bias. 

Uniform. The first attempt at combining networks assumed the merge weights were 
independent of the data with uniform probabilities, i.e., ßik = 1 / K. This approach 
maintains the probabilistic interpretation of the merged output in the probability 
domain. Good initial results using this simple merging approach [9] has led to the 
evaluation of more complex merging techniques. 

Linear Regression. Recent work has shown that merging regression predictors 
through linear regression (referred to as Stacked Regressions) produce an estimator 
that is better than any of the individual estimates [10]. The regression approach 
determines the /3s through minimizing the sum-squared error 

EE Mo-Eft^« 0) 
t       i     \ k=\ ) 

on a development set. Here, y is the desired target and the regression parameters, ft*, 
are assumed to be fixed after training. In [10], Breiman found that constraints on the 
j3s improved performance. In this paper, the regression merging is evaluated with 
and without constraints such that the merge weights are tied across models and/or 
sum-to-one. It was rarely found that any of the merge parameters were ever less than 
zero. 

Mixture of Experts. This framework (see Figure 2) employs a gating network to 
determine data-dependent merge parameters. The approach is equivalent to Jordan 
and Jacob's mixture of experts [11] with fixed experts. The data-dependent merging 
coefficients can be determined by maintaining a probabilistic interpretation and 
employing the expectation-maximization (EM) algorithm [12]. Let U = {u(t)} be 
the set of acoustic training data for each frame and let C = {c(t)} be the corresponding 
phone. Assuming each frame is independent results in the likelihood L(U) given as 

T 

Um = P(U\C, Y) = Y[p(u(t)\c(t), y^(0) (4) 

where Y = {y^(0} represents the outputs of all the models, i.e, yM(t) = {y(m)(f)}. 
The merging comes about by assuming that p(u(r)|c(0,y^(0) is a mixture density 
of the form 

K 

p(u(t)\c(t),yM(t)) = 53/>(SKi|c(0.yflf(0)/»(u(0|a4.c(r),y9f(0) (5) 
*=i 

where 5W* represents the Mi model. Here, the mixing coefficients /?(5V4|/,y^(0) = 
j3,-jt(u(0). As in [11], a generalized linear model is used as the gating network to 
compute /3;t(u(f)). 
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Figure 2: Mixture-of-experts framework. 

The generalized EM algorithm [12] is an iterative approach used to compute the 
maximum likelihood estimates of the gating network parameters. Each iteration 
applies two conceptual steps. The E-step computes the posterior probability of each 
model 

ßiäu(t))y%(t) 
p(Mk\u(t),c(t)) = 

l£,&.(u(O}>$)(0 
(6) 

for each pair {u(f), c(f)} in the development set. The M-step estimates the parameters 
of the generalized linear model using the Iteratively Re-weighted Least Squares 
procedure (IRLS) [11] with u(t) as the inputs and /?(5l4|u(f), c(t)) as the desired 
outputs. This procedure results in a method for learning the parameters of the gating 
network for each phone. The procedure insures that the merging weights do süm-to- 
one. 

The standard mixture of experts approach has the weights tied across models. This is 
accomplished by assuming /?(5V4|c(f), u(t)) = /?(5l4|u(r)) and results in many fewer 
free parameters. A variation of this approach is to replace the input of the gating 
network with the output of one of the networks. In the experiments described later 
in the paper, the gating network inputs were either three contiguous frames of the 
acoustic feature vector or a single frame of a network output. 

In addition to the above variations, the case where there are no inputs was also 
considered. In this case, the gating network outputs constant values and the EM 
algorithm [ 12] specifies an iterative solution for the maximum likelihood coefficients. 
The parameter update equation becomes simply 

h-±r. ftoTO 
rtf£li/^n)(') 

%),; (7) 
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where ß represents the updated estimate and 8 is the Kronecker delta function. 

EXPERIMENTAL RESULTS 

Recognition Tasks 

TIMIT. TIMIT is one of the standard speech corpora for the evaluation of phone 
recognition systems. It is divided into 462 training speakers and 168 test speakers. 
Each speaker utters two calibration sentences and eight sentences that are used in 
these evaluations, giving a training set of 3696 sentences and 1344 test sentences. 
In the experiments described here, 1152 of the test sentences were used for cross- 
validation estimation of the merging parameters and 192 (the core test) sentences 
were used for testing. 

Wall Street Journal. The Wall Street Journal (WSJ) is the current ARPA large- 
vocabulary recognition task. The training data used was the short-term speakers 
from the WSJO corpus consisting of 84 speakers uttering a total of 7,200 sentences. 
The November 1993 spoke 5 development test data was used for estimation of the 
merging parameters. This data was collected from 10 talkers and 216 sentences 
using a Sennheiser microphone. Results are reported for the November 1993 spoke 6 
development test. This test has 202 sentences from the same 10 talkers as spoke 5. 
The test are from a closed 5,000 word, non-verbalized punctuation vocabulary using 
the standard bigram language model [13]. 

Results and Analysis 

Tables 1 and 2 show the TIMIT and WSJ results for the various approaches to model 
merging. In the tables, frame rate is the classification rate of the merged system on 
the development data, error rate is the phone or word recognition error rate on the 
test set computed as 

# insertions + # deletions +'# substitutions ... 
100 x —  (8) 

# phones 

and improvement is measured relative to the average error rate. For the EXPERTS 
merges, ACOUS., PROB., MEL+, and PLP indicate the type of inputs to the gating 
network. For the TIMIT experiment, only the FORWARD AND BACKWARD MEL+ 
front-ends were merged. 

The tables clearly show the benefits of model merging. Each of the networks trained 
on different front-ends have similar performance, but the frame rate is substantially 
improved by merging the network outputs. This improvement is reflected in the error 
rate by a reduction of 9% and 27% for the TIMIT and WSJ tasks, respectively. For 
both tasks, the simple uniform merging accounts for most of the improvement and 
the best results were achieved by merging in the log-probability domain. 

For the regression merge approach, not much variation in either the frame rate 
or the recognition error rate is observed across the different types of constraints. 
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Merge Type Constraints Frame Rate % Error Rate % Improv. % 

FORWARD ONLY - 65.9 31.7 - 
BACKWARD ONLY - 65.7 31.8 - 
AVERAGE - 65.8 31.8 - 
UNIFORM Tied, Sum 69.3 29.4 7.5 

UNIFORM (LOG) Tied 69.2 29.0 8.8 

REGRESSION Tied, Sum 69.3 29.3 7.9 
REGRESSION Sum 69.3 29.3 7.9 
REGRESSION Tied 69.3 29.1 8.5 

REGRESSION 69.7 29.3 7.9 
EXPERTS (ACOUS.) Tied, Sum 69.3 29.2 8.2 
EXPERTS (ACOUS.) Sum 69.5 29.4 7.5 
EXPERTS (PROB.) Tied, Sum 69.4 29.1 8.5 
EXPERTS (PROB.) Sum 69.0 29.5 7.2 

Table 1: TIMIT phone recognition results for different merge approaches. Frame rate is 
computed on development data and error rate is computed on test data. 

Merge Type Constraints Frame Rate % Error Rate % Improv. % 

FORWARD MEL+ - 78.1 15.0 - 
FORWARD PLP - 76.6 15.1 - 
BACKWARD MEL+ - 73.8 15.5 - 
BACKWARD PLP - 76.1 14.4 - 
AVERAGE - 76.2 15.0 - 

UNIFORM Tied, Sum 82.5 11.4 24.0 
UNIFORM (LOG) Tied 82.8 11.0 26.7 
REGRESSION Tied, Sum 82.5 11.5 23.3 
REGRESSION Sum 82.8 11.3 24.7 
REGRESSION Tied 82.6 11.7 22.0 
REGRESSION 83.1 11.4 24.0 
EXPERTS (MEL+) Tied, Sum 82.7 11.4 24.0 
EXPERTS (PLP) Tied, Sum 82.7 11.4 24.0 

Table 2: WSJ word recognition results for different merge approaches. Frame rate is computed 
on development data and error rate is computed on test data. 
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This indicates that over-fitting of the training data does not seem to be a problem. 
Examination of the sum-squared error obtained from (3) in the merge process also 
shows little variation for the different constraints or from the uniform case. This 
implies that - at least for these networks - little improvement over the uniform 
merge can be expected. 

TIMIT results obtained with the mixture of experts approach show that a single 
gating network achieves better performance than a set of separate gating networks 
for each phone. This is most likely due to insufficient training data to estimate the 
multiple gating network parameters. Even with large amounts of training data, some 
phones occur very infrequently which makes it difficult to estimate the parameters of 
a gating network. Conditioning the mixture of experts gating network on the acoustic 
signal or network output achieved similar performance on TIMIT For WSJ, using 
MEL+ or PLP features as inputs to the gating network had no effect on the recognition 
results. 

As indicated in Tables 1 and 2, simple model merging improves performance but 
the use of more complex merging strategies does not significantly improve the 
recognition results. Analysis of the TIMIT task indicates that the different merge 
types are all reasonably close to the optimal merge. Figure 3 shows the results of 
a line search on the merge parameter with the tied and sum-to-one constraints. It 
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Figure 3: Error rate versus forward network mixing coefficient for probability and 
log-probability domain mixing on the TIMIT task. 

is easy to see that the best performance is certainly in the region around 0.5 (the 
uniform merge). The regression estimate of the merge parameter shown in the figure 
is 0.51 and the mixture of experts has a mean value of 0.52 with variance 0.005. This 
implies that better/additional acoustic models are necessary to greatly improve the 
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TIMIT results. 

To determine which front-end merge provides the most improvement, forward and 
backward models with the same spectral representation were merged. Similar merges 
were performed across spectral representations with the same time indexing. The 
results are shown in Table 3 and indicate that both the variation in spectral repre- 
sentation and processing of different data are important to the merging process. In 
addition, merging all front-ends resulted in better performance than any of the subset 
of the front-end merges. 

Merge Type 
AVERAGE FRONT-END MERGE 

AVERAGE TIME MERGE 

ins. % 
1.0 
0.8 

sub. % 
8.5 
8.3 

del. % 
3.4 
3.6 

errors % 
12.8 
12.7 

Table 3: Connectionist model subset merging results on the WSJ word recognition task. 

DISCUSSION 

This paper investigated various approaches to merging multiple, different acoustic 
models within the hybrid connectionist-HMM framework. Given the chosen acoustic 
models (recurrent networks), it was found that 

• merging results in a significant reduction in error rate, 
• the uniform, linear regression, and mixture of experts approaches all had 

similar performance, and 
• the log-probability domain merging gave consistently better results. 

The results presented here indicate the potential of this model merging approach. 
The fact that the linear regression and mixture of experts approaches did not do 
much better than the uniform merge may be a result of the selected networks. 
These techniques should show more significant gains when merging networks with 
different performance levels. As Figure 3 shows, the uniform merge of the log- 
domain probabilities may not be the best choice and research is planned in this 
area. In conclusion, this work shows model merging within the hybrid connectionist- 
HMM framework to be a very powerful mechanism for improving speech recognition 
performance. TIMIT results obtained with the merged system are the best known to 
the authors. Even with orders of magnitude fewer parameters, the merged system is 
competitive with state-of-the-art HMM systems on the WSJ task. 

ACKNOWLEDGEMENTS 

This work was partially funded by ESPRIT project 6487 (WERNICKE). Two of 
the authors (T.R. and S.R.) are supported by SERC fellowships. The authors would 
like to acknowledge MIT Lincoln Laboratory for providing the language model and 
Dragon Systems for providing the pronunciation lexicon for the WSJ task. 

277 



REFERENCES 

[1] F. Kubala and R. Schwartz, "A new paradigm for speaker-independent training," 
in 1991 International Conference on Acoustics, Speech, and Signal Processing, 
(Toronto, Canada), pp. 833-836, IEEE, May 1991. 

[2] S. Renals, N. Morgan, M. Cohen, and H. Franco, "Connectionist probability 
estimation in the Decipher speech recognition system," in 1992 International 
Conference on Acoustics, Speech, and Signal Processing, (San Francisco, Cal- 
ifornia), pp. 601-604, IEEE, Mar. 1992. Volume 1. 

[3] D. H. Wolpert, "Stacked generalization," Neural Networks, vol. 5, no. 2, 
pp. 241-259,1992. 

[4] W. Buntine, "Learning classification trees," in Artificial Intelligence Frontiers 
in Statistics III(D. J. Hand, ed.), pp. 182-201, Chapman & Hall, 1993. 

[5] H. Bourlard and N. Morgan, Connectionist Speech Recognition: A Hybrid 
Approach. The Kluwer International Series in Engineering and Computer 
Science. VLSI, Computer Architecture, and Digital Signal Processing, Boston, 
Massachusetts: Kluwer Academic Publishers, 1994. 

[6] A. J. Robinson, "An application of recurrent nets to phone probability esti- 
mation," IEEE Transactions on Neural Networks, vol. 5, pp. 298-305, Mar. 
1994. 

[7] T. Robinson, "Several improvements to a recurrent error propagation network 
phone recognition system," Tech. Rep. CUED/F-INFENG/TR.82, Cambridge 
University Engineering Department, Sept. 1991. 

[8] H. Hermansky, "Perceptual linear predictive (PLP) analysis of speech," Journal 
of the Acoustical Society of America, vol. 87, pp. 1738-1752,1990. 

[9] M. M. Hochberg, S. J. Renals, and A. J. Robinson, "ABBOT: The CUED hybrid 
connectionist-HMM large-vocabulary recognition system," in Proc. of Spoken 
Language Systems Technology Workshop, ARPA, Mar. 1994. 

[10] L. Breiman, "Stacked regressions," Tech. Rep. 367, Department of Statistics, 
University of California, Berkeley, August 1992. 

[11] M. I. Jordan and R. A. Jacobs, "Hierarchical mixtures of experts and the EM 
algorithm," Neural Computation, vol. 6, pp. 181-214, Mar. 1994. 

[12] A. P. Dempster, N. M. Laird, and D. B. Rubin, "Maximum likelihood from 
incomplete data via the EM algorithm (with discussion)," J. Roy. Statist. Soc, 
vol. B39, pp. 1-38, 1977. 

[13] D. B. Paul and J. M. Baker, "The design for the Wall Street Journal-based 
CSR corpus," in Proc. Fifth DARPA Speech and Natural Language Workshop, 
(Harriman, New York), pp. 357-362, DARPA, Morgan Kaufman Publishers, 
Inc., Feb. 1992. 

278 



NEURAL TREE NETWORK/VECTOR 
QUANTIZATION PROBABILITY 

ESTIMATORS FOR SPEAKER 
RECOGNITION 

Kevin Farrell, Stephen Kosonocky, and Richard Mammone 
CAIP Center, Rutgers University 

Core Building, Frelinghuysen Road 
Piscataway, New Jersey 08855-1390 

Phone: (908) 445-0573, FAX: (908) 445-4775 
email: farrell@caip.rutgers.edu 

Abstract - A new classification system for text-independent speaker 
recognition is presented. This system combines the output proba- 
bilities of distortion-based classifiers and a discriminant-based clas- 
sifier. The distortion-based classifiers are the vector quantization 
(VQ) classifier and Gaussian mixture model (GMM). The discrimin- 
ant-based classifier is the neural tree network (NTN). The VQ and 
GMM classifiers provide output probabilities that represent the 
distortion between the observation and the model. Hence, these 
probabilities provide an intraclass measure. The NTN classifier is 
based on discriminant training and provides output probabilities 
that represent an interclass measure. Since, these two classifiers 
base their decision on different criteria, they can be effectively com- 
bined to yield improved performance. Two combining methods are 
evaluated for several speaker recognition tasks, including speaker 
verification and closed set speaker identification. The results show 
the both methods to yield advantages for the speaker recognition 
tasks. 

INTRODUCTION 

Speaker recognition refers to the capability of recognizing a person based on 
his or her voice. Specifically, this consists of either speaker verification or 
speaker identification. The objective of speaker verification is to verify a per- 
son's claimed identity based on a sample of speech from that person.  The 
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objective of speaker identification is to use a person's voice to identify that 
person among a predetermined set of people. An additional characteristic 
of speaker identification systems is whether they are closed set or open set. 
Closed set speaker identification refers to the case where the speaker is known 
a priori to be a member of a set of N speakers. Open set speaker identifica- 
tion includes the additional possibility where the speaker may be from outside 
the set of N speakers. Open set speaker identification requires an additional 
thresholding step to determine if the speaker is "out of set". This paper pro- 
vides results for text-independent speaker verification and closed set speaker 
identification. 

The classification stage for text-independent speaker recognition is typ- 
ically implemented by modeling each speaker with an individual classifier. 
Given a specific feature vector, a speaker model associates a number corre- 
sponding to the degree of match with that speaker. The stream of numbers 
obtained for a set of feature vectors can be used to obtain a likelihood score 
for that speaker model. For speaker identification, the feature vectors for 
the test utterance are applied to all speaker models and the corresponding 
likelihood scores are computed. The speaker is selected as having the largest 
score. For speaker verification, the feature vectors are applied only to the 
speaker model for the speaker to be verified. If the likelihood score exceeds a 
threshold, the speaker is verified or else is rejected. 

The more common methods of constructing speaker models for text- 
independent speaker recognition use unsupervised training methods. These 
approaches include vector quantization [1], hidden Markov models [2], and 
Gaussian mixture models [3]. Here, only the data for that speaker is used 
to train the that speaker's model. Alternative methods for building speaker 
models use supervised training, such as that in multilayer perceptrons [4], 
radial basis functions [5], and neural tree networks [6]. Here, a speaker's 
model is trained with the data from possibly all speakers in the population. 
Speaker models based on supervised training capture the differences of that 
speaker to other speakers (interspeaker variability), whereas models based on 
unsupervised training use a similarity measure (intraspeaker variability). 

The fact that supervised and unsupervised classifiers base their discrimi- 
nation on different criteria leads one to believe that they can be combined for 
improved performance. This paper evaluates two methods for combining the 
output probabilities of the NTN and VQ classifiers and demonstrates these 
methods to improve performance for the speaker recognition task. The follow- 
ing sections review the VQ and NTN classifiers along with their application to 
speaker recognition. The hybrid NTN/VQ systems are then presented. This 
section is followed by experimental results and the conclusion of this paper. 
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VECTOR QUANTIZATION 

The unsupervised classifier considered here is vector quantization (VQ). VQ 
is a clustering algorithms, which falls under the category of unsupervised 
training, i.e., the class label is not used. The VQ algorithm uses clustering 
to automatically group the training data into its individual modes or classes. 
Numerous VQ algorithms exist, including the Linde-Buzo-Gray (LBG) [7] 
method, which is used here. 

The VQ classifier can be used for speaker recognition [1] as follows. Given 
the extracted feature vectors from a speaker, a codebook is constructed for 
that speaker. This process is repeated for all speakers in the population. For 
speaker identification, the feature vectors from a test utterance are applied to 
each of the codebooks. For a given codebook, the centroid, which is closest 
to the test vector is found and the distance to this centroid is accumulated 
for that codebook. The speaker is selected as corresponding to the codebook 
with the minimum accumulated distance. For speaker verification [8], the 
test vectors are only applied to the model for the speaker to be verified. The 
accumulated minimum distance is computed and normalized to the number 
of testing vectors. This normalized distance is compared to a threshold to 
decide if the speaker will be rejected or accepted. 

NEURAL TREE NETWORK 

The supervised classifier considered here is the neural tree network (NTN) [9]. 
The NTN is a hierarchical classifier that uses a tree architecture to implement 
a sequential linear decision strategy. Each node at every level of the NTN 
divides the input training vectors into a number of exclusive subsets of this 
data. The leaf nodes of the NTN partition the feature space into homogeneous 
subsets, i.e., a single class at each leaf node. The NTN is recursively trained 
as follows. Given a set of training data at a particular node, if all data within 
that node belongs to the same class, the node becomes a leaf. Otherwise, 
the data is split into several subsets, which become the children of this node. 
This procedure is repeated until all the data is completely uniform at the leaf 
nodes, else some pruning criteria is satisfied [9, 10]. Each leaf is assigned a 
label belonging to the class majority at that leaf. During testing, a feature 
vector is directed through the tree until it arrives at a leaf. The vector is then 
assigned the label of that leaf. 

The NTN as presented in [9] is strictly a classification tree. Here, the 
output of the classifier consists of only a class label. Thus, the posterior 
probability estimate of class C, provided by the NTN is a binary value: 

PNTN{Ci\x)   =   {1,0}, (1) 

where x is a vector to be classified. 
In [6], a modified NTN (MNTN) was presented that allows for a discrete 

estimate of the posterior probability. The assignment of probability measures 
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occurs within a technique called forward pruning. The forward pruning algo- 
rithm consists of simply truncating the growth of the tree beyond a certain 
level. For the leaves at the truncated level, a vote is taken and the leaf is 
assigned the label of the majority. In addition to a label, the leaf is also as- 
signed a confidence. The confidence is computed as the ratio of the number of 
elements for the vote winner to the total number of elements. The confidence 
provides a measure of confusion for the different regions of feature space. The 
confidence, or posterior probability estimate, provided by the MNTN is: 

PMNTN(Ci\x)  =       M'J      , (2) 

where Jfe.j is the number of samples of class i in leaf j (as determined from 
the training data) and the denominator term corresponds to the number of 
samples at that leaf. 

A MNTN can be trained for each speaker in the population as follows 
[6]. The MNTN for each speaker is presented with the data for all speakers. 
Here, the extracted feature vectors for that speaker are labeled as "one" 
and the extracted feature vectors for everyone else are labeled as "zero". A 
binary MNTN for speaker i is then trained with this data. This procedure is 
repeated for all speakers in the population. A trained MNTN can be applied 
to speaker recognition as follows. First a sequence of feature vectors x are 
extracted from the test utterance. The confidence and labels of this sequence 
can then be scored to obtain a likelihood for a given speaker model [6]. 

HYBRID SYSTEM 

Two hybrid systems are evaluated in this paper. The first system embeds the 
capabilities of the GMM within the NTN, thus creating a continuous density 
NTN. The second system combines the output probabilities of both classifiers 
as a weighted sum. This technique is known as data fusion [11]. The details 
of both implementations are provided in the following subsections. 

Continuous Density NTN 

The MNTN described in [6] uses a discrete model for the posterior probability 
estimate. This model can be further extended to use a continuous density 
estimate, thus yielding a continuous density NTN (CDNTN). Here, a GMM 
is used to model the probability density function within the local regions of 
feature space, namely the leaves. For a given feature vector x and leaf j, a 
GMM can approximate the posterior probability estimate P(C,|x) of class C{ 
as follows: 
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where 
M 

Pj(x\d)  =   53c,-raJV(a;,^,-ro,E,-m), 
m = l 

and 

JV(s ,,/i.E) =   ((21r)-<,/2|E|-i)e»p[-i(*-/i)TE-l(x-/i) 

(4) 

(5) 

Here, cjm, /firo, and Sim are the weight, mean, and variance, respectively, 
of the mth mixture for class i, N is two for a binary problem, and d is 
the dimension of the feature space. The CDNTN can be used for speaker 
recognition in the same manner as the MNTN. However, the CDNTN will 
obtain the posterior class probabilities from estimated density functions as 
opposed to being selected from a discrete set of probabilities. 

NTN/VQ Data Fusion Model 
The hybrid system considered in this paper is based on data fusion [11]. Data 
fusion has been used to combine inputs from multiple sensors in various ap- 
plications including robotics [12] and handwriting recognition [13]. Numerous 
methods exist for combining the data of several classifiers. One method is to 
take a vote among the concurrent outputs of several classifiers and use the 
vote winner as the assigned label [13]. For probabilistic outputs, a weighted 
sum of the outputs of the different classifiers can be used, as illustrated in 
Figure 1. This is the method that will be used to fuse the two classifiers for 
this paper. Here, the outputs of the NTN and VQ classifiers are multiplied 
by a and l-a, respectively, where a lies between zero and one. Hence, when 
a = 0 the system consists of solely the VQ classifier and likewise when a = 1, 
only the NTN is used. 

To enable the VQ and NTN classifiers to be used in such a system, several 
normalization steps must be used. First, the VQ distortion must be converted 
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to a probability. The method used here is to simply use: 

Pvq(Ci\x) =  e-<-e'->S, (6) 

where Cj is the centroid closest to x. The NTN must then be modified such 
that it outputs a probability instead of a confidence and a label. The confi- 
dence, which lies between 0.5 and 1.0, along with the label can be converted 
to probability as follows: 

p     ir< \  \  —   j 0-5 * (1.0 + confidence), if label = 1 . , 
fntn{^i\x)  -   |  0 5 + jL0 _ confidence^ if labei _ o   • K') 

This system will be evaluated for text-independent speaker identification and 
verification in the following section. 

EXPERIMENTAL RESULTS 

The database considered for the speaker recognition experiments is a subset 
of the DARPA TIMIT database. This set consists of 100 male speakers taken 
from the second and third dialect regions. A VQ codebook and MNTN are 
trained for each of 50 speakers. The remaining 50 speakers are reserved as 
imposters for testing the speaker verification system. 

The preprocessing of the TIMIT speech data consists of several steps. 
First, the speech is downsampled from 16KHz to 8 KHz sampling frequency. 
The downsampling is performed to obtain a toll quality signal. The speech 
data is processed by a silence removing algorithm followed by the application 
of a pre-emphasis filter H(z) = 1 — 0.95z-1. A 30 ms Hamming window is 
applied to the speech every 10 ms. A twelfth order linear predictive (LP) 
analysis is performed for each speech frame from which twelve cepstral coef- 
ficients are derived. 

There are 10 utterances for each speaker in the selected set. Five of 
the utterances are concatenated and used for training. The remaining five 
sentences are used individually for testing. The duration of the training 
data ranges from 7 to 13 seconds per speaker and the duration of each test 
utterance ranges from 0.7 to 3.2 seconds. It is noted that the duration of the 
test utterances is relatively short and that performance can be improved by 
increasing the duration. 

Speaker Identification 

The data fusion technique as applied to the NTN and VQ classifiers is eval- 
uated for closed set speaker identification. Each VQ classifier consists of a 
seven bit codebook trained using the Linde-Buzo-Gray (LBG) [7] algorithm. 
It was found that the seven bit codebook performed better than the six or 
eight bit codebooks. Each NTN is trained with the data for all 50 speakers. 
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Figure 2: Speaker Identification Using Data Fusion 

The maximum NTN level is varied from six to eight levels. The performance 
is evaluated as a function of a and is shown in Figure 2. 

The individual performance of the VQ and NTN classifiers can be seen 
as those points corresponding to a = 0 and a = 1, respectively. Here, it can 
be seen that the optimal choice of a for the six level/six bit system yields a 
classifier that performs at roughly 93%, which is 4% better than either the 
VQ or NTN classifiers used individually. 

The CDNTN is also evaluated for the identical closed set speaker identi- 
fication experiment. Two sets of CDNTNs are evaluated, where the number 
of parameters are held constant for both. Hence, a CDNTN with 128 pa- 
rameters can consist of either a seven level tree with zero mixtures/leaf, or 
a six level tree with one mixture/leaf (for each class), etc. The performance 
of the CDNTN is shown in Figure 3. Here, it is seen that the 128 and 256 
parameter CDNTNs perform at roughly 85% and 86%, respectively. 

Speaker Verification 

The next experiments are performed for speaker verification. Here, the 50 
speaker models correspond to the "enrolled" speakers and the 50 remaining 
speakers are used as imposters. The data fusion system is evaluated with the 
seven bit VQ codebook and the six and seven level NTN. The equal error 
rate, i.e., the point when P(false accept) - P(false reject), for the data 
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Figure 3: Speaker Identification Using CDNTN 

fusion system is evaluated as a function of alpha and shown in Figure 4. 
Here, it is seen that the system performance is similar for both systems 

and the optimal performance occurs when the system uses just the NTN. The 
CDNTN is also evaluated for the identical'experiment for 128 and 256 param- 
eters. The results are shown in Figure 5. Here, the best equal error rate is 
obtained with the 256 parameter model that uses a seven level NTN with one 
mixture/leaf. Note that the plot for the 128 parameter model only extends 
to the seventh level, since the eighth level would require 256 parameters. 

CONCLUSION 

Two methods are evaluated for combining classifiers based on distortion and 
discriminant measures. The first system embeds the capabilities of the GMM 
within the NTN, thus creating a continuous density NTN (CDNTN). The 
second system evaluates both classifiers independently and combines the out- 
put probabilities as a weighted sum. This technique is known as data fusion. 
Both methods are evaluated for several text-independent speaker recognition 
tasks, including closed set speaker identification and speaker verification. For 
closed set speaker identification, the data fusion technique provides the best 
performance, which is superior to that of either classifier used individually. 
For speaker verification, the CDNTN yields the best performance for a model 
that uses a NTN with one Gaussian mixture model per leaf. 
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Abstract 

In this paper we explore the averaging of mixtures of mul- 
tiple neiiral network probability estimators in speech recog- 
nition. We experiment with different ways of dividing up the 
speaker space. A division based on gender seems to be the 
most important. The division based on a priori knowledge 
(in our case, rate of speech) resulted in lower error rates than 
the use of k-means clustering. The overall accuracy of the 
Parallel Net architecture is about the same as the monolithic 
probability estimator, but communication costs on parallel 
machines can be expected to be significantly lower. Addition- 
ally, the overall product of patterns times parameters is lower 
with such a partitioning, resulting in reduced training time 
even on serial machines. 

1    Introduction 

In previous work, we have examined the factorization of Multi-layer Percep- 
trons (MLPs) that are viewed as probabilistic estimators. In two particular 
cases, we partitioned out the influence of phonemic context [Bourlard k Mor- 
gan, 1992], and of speaker gender [König & Morgan, 1993]. These partition- 
ings permitted the evaluation of the posterior probabilities of a large number 
of classes without the explicit computation of a huge output layer. 

In our current work, we are interested in partitioning not only the network 
estimators, but also the training data. This is of increasing relevance as we 
move to larger and larger data sets. Cycling through these data requires more 
than a linear increase in computation, as the estimators themselves should 
(ideally) be expanded to a greater number of parameters in order to take 
advantage of the increased coverage in the training materials. 

Parallelism is a potential remedy for this increased computational burden, 
but depending on the machine and the algorithm, communications costs can 
overwhelm any advantage due to numerical parallelization. Training set par- 
allelism is a potential cure for this difficulty. If multiple estimators are trained 

0-7803-2026-3/94 $4.00 © 1994 IEEE 289 



on disjoint elements in the training set, and then combined in some manner, 
communication is minimized. Additionally, there is some hope that the right 
partitioning and weighting of the separate estimates could provide some im- 
provement in performance; for instance, in the gender case, separating male 
and female training data has some demonstrable advantages. 

There is some evidence that data splitting should at least provide equivalent 
performance. In one report at a recent SRS meeting, R. Schwartz of BB&N 
described an experiment in which Hidden Markov Model (HMM) Gaussian 
mixture parameters were separately estimated for individual speakers and 
then averaged [Schwartz, 1993]. The resulting system was comparable in 
performance to a more standard estimator that was trained on the pooled 
data from all speakers. Of course, this experiment reported the estimation 
of data likelihoods and the averaging of Gaussian parameters, and this does 
not necessarily show that a posterior estimator like a Multi-layer Perceptron 
(MLP) will permit a similar parallelization. However, it suggests that a test 
is worthwhile. Recent results in applying the split net strategy in control 
theory [Jacobs & Jordan, 1993] are another indication that such approach 
may be advantageous. 

Another related effort was that of the Meta-Pi network [Hampshire & Waibel, 
1990]. In this approach, speaker-dependent estimators for voiced stop conso- 
nant probabilities were weighted and summed with gating elements trained 
with error back-propagation. For a source dependent speaker (i.e., one of the 
six training speakers), the performance of the Meta-Pi architecture on a six 
speaker three phone (/b,d,g/) task was comparable to a speaker dependent 
system. For a source independent (i.e., unknown) speaker, however, the error 
rate was almost tripled. 

In the work described here, we also are using an MLP trained with back- 
propagation; however, these estimators are trained to be discriminant for 
the 61 phone set of TIMIT. We have focused our efforts on the speaker- 
independent case. In other words, we would like our mixture of estimators to 
perform at least as well as a monolithic estimator (which was trained on all 
of the data) when tested on an unknown speaker (which was not present in 
the training data). 

2    Approach 

In our experiments we use estimators that are based on the hybrid HMM/MLP 
method as explained in [Bourlard & Morgan, 1994]. The main idea in this 
method is to train an MLP (using a squared error or relative entropy crite- 
rion) for phonemic classification; such a net can be used as an estimator of 
posterior class probabilities, and when divided by class priors can estimate 
scaled likelihoods. The MLP estimator has the potential advantage (over 
standard Gaussian or Gaussian mixture estimators) of the ability to estimate 
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highly-dimensioned joint probabilities, such as the scaled likelihood of the 
data including a large acoustic context. Additionally, the MLP training is in- 
herently discriminant, making effective use of parameters for limited training 
data, and estimating relatively detailed densities without strong parametric 
assumptions. Over the last few years, we have observed in a number of in- 
stances that the direct substitution of such an estimator for a tied-mixture 
module has resulted in significant improvements. 

We are currently using a recognizer called YO (described in [Robinson et al., 
1993]), which uses a single density per phone with repeated states for a simple 
durational model. The densities are trained with no explicit incorporation of 
phonemic context (e.g., triphones). Our current results on DARPA Resource 
Management (RM)1 test sets show a performance that is comparable to that 
of much more complex context-dependent systems; the recognition word error 
on the February 1989 test set of the baseline hybrid HMM/MLP system, used 
here for comparison, was equal to 5.1% (including insertions, deletions, and 
substitutions). 

In the current experiments, we train multiple networks on separate partitions 
of the training set. If Mi represents cluster i, let P{Mi) be the probability 
that Mi is a better match than Mk, Vfc ^ i. If all Mi's are mutually exclusive, 
and cover all possible cases, X)"=i p(Mi) = *i we can calculate the likelihoods 
(within a constant factor P(x) ) by: 

P{x\qk)-     E„=iF(M.)jP(%|M.) K) 

where qk is an HMM state, M» represent each of the n MLPs, and P(Mi\x) is 
the probability that Mi is the "correct" estimator of the sound class, given the 
data x. For instance, in the case of a male/female partition, this probability 
would be the probability that the speaker is male or female (2 probabilities 
that sum to 1). As an alternative, we calculate a weighted average of the 
scaled likelihoods: 

In some of our experiments, we have used a simplified form of the above 
formula and inserted an equal weight averaging factor of 1/n instead of 
P(Mi\x). This amounts to the following two assumptions: that P(Mi\x) 
is independent of the data, and that all priors of Mt are equal (i.e., male 
prior equal to female prior). 

Mixture of experts approaches are most effective when each expert has dif- 
ferent statistical properties and biases.  Therefore, each of our sub-systems 

1This is a speaker-independent continuous speech recognition task that has a vocabulary 
of roughly 1000 words and uses a word-pair grammar with a perplexity 60; it is described 
in many places in the speech literature, including [Price et al, 1988]. 
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(nets) should be trained on subsets of data with different statistical proper- 
ties. In all the experiments reported here, we use a speaker-dependent split 
in the training data. 

3    Pilot Experiments 

3.1    Using Pretrained Nets 

In our first pilot experiment, we used twelve (five female and seven male 
systems) pretrained speaker dependent (SD) estimators, each of which were 
trained on data from one speaker of the RM SD November 1989. By pretrained 
we mean that the nets were previously trained to maximize the accuracy of 
SD recognition. Each net had 1000 hidden units, 61 outputs, 234 input units 
( = 26 PLP and delta PLP features2 x 9 frame window size), and trained 
with phonetic labels which had gone through two iterations of forced viterbi 
realignment. 500 of the SD sentences were used for training, and 100 were 
held out for cross-validation. The nets were trained starting with a learning 
rate of 0.008, and the training took 4-6 epochs. The word recognition error 
rate of each system on the same speaker's test data (RM January 1990 SD 
evaluation — 25 sentences per speaker) ranges from 1.8% to 11.3%3, while 
the error rate on the RM February 1989 SI evaluation test set (300 sentences, 
10 speakers, 4 of which are female and 6 male) ranges from 64.6% to 82.0%. 

We averaged (equal weighting) the scaled likelihoods of each of the SD sub- 
systems using equation (2) and got 22.6% word recognition error, which is 
better than the performance of both the best SD sub-system and the average 
of all the SD sub-systems. However, this error rate is not comparable to that 
of a monolithic SI system (a net trained on RM November 1989 SI data), 
which has an error rate of about 5.1% for the same SI recognition task. 

Upon analyzing the results, we came across striking gender effects, as shown 
in Table 1. Sub-systems trained on male speech generalized better to male 
speech than to female speech; vice versa for female nets. This provided moti- 
vation for another experiment: if the test speaker's gender is female (male), 
we only allowed the probabilities generated by female (male) systems to take 
part in calculating the average scale likelihood. Since this was a pilot experi- 
ment, the gender of the test speakers were known to the system. It is possible, 
however, to build a gender detector which reliably (approx. 98% accuracy) 
detects the gender of the test speaker [König & Morgan, 1993]. Table 1 shows 
the strength of this effect. Averaging in a gender-based way further decreases 
the overall word recognition error to 16%. 

2PLP stands for Perceptual Linear Predictive analysis [Hermansky, 1990] 
It should also be noted that these pretrained nets were trained approximately two years 

ago so that the raw error numbers are probably somewhat higher than our current systems 
would achieve. 
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Gender Effects on Percent Word Error 
Training Speaker Test Speaker 

Male Female 
Male 45.4 111.7 

Female 106.4 38.1 

Table 1: Gender Effects on Word Error. This table shows the average error 
rate of SD Female (Male) nets when tested on SI Female (Male) data. Er- 
ror rates of higher than 100% are due to counting insertions, deletions, and 
substitutions as errors. 

There was an interesting unexpected result: the SD system with the worst 
recognition score on its own data generalized best to the speech of unknown 
speakers. On the other hand, a system which was almost perfectly tuned 
to speech from the same speaker generalized the worst. While not all the 
systems obeyed this rule, it was a general trend. This suggested that we 
should use SD nets that are not as fully tuned to the same speaker's data. 

3.2    Retraining the Experts 
In the next group of pilot experiments we examined the effect of using speaker- 
independent cross-validation to avoid overfitting to the speaker-dependent 
training data. We also reduced the number of parameters in contrast to the 
first experiment (again to combat over-fitting). We changed the size of the 
hidden layer from 1000 hidden units to 256 hidden units for each net. In 
order to reduce the training time, we bootstrapped each of the nets from 
a 256 hidden units net that was previously trained on the hand-labeled SI 
TIMIT database. Our training data for each net was 600 SD sentences. Same- 
gender SI data for cross-validation was chosen from the RM November 1989 
SI training set: 460 sentences with 23 speakers for the female set, and 490 
sentences with 49 speakers for the male set. We used a lower learning rate (a 
= 0.004) than for the ^retrained nets. Each net went through only 1-2 epochs 
of training before cross-validation performance indicated that training should 
be stopped. 

To estimate P(Mi\x), we trained a gating network [Hampshire k Waibel, 
1990]. We used a net with 10 hidden units, 234 input units, and n output 
units (where n is the number of nets). It was trained with back-prop to 
associate each feature vector with the label of the training speaker. In each 
of the experiments below, we have run Viterbi decoding on the output of each 
SD net and reported the results. 

Based on the strong gender dependencies that we observed, we chose one gen- 
der (the female set) for the following experiments. The female set comprises 
five female SD systems (RM SD training data), and four female unknown test 
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speakers (from RM February 1989 SI evaluation set, as mentioned above). 

For a fair comparison between the parallel architecture and a single-net sys- 
tem, we trained one net on the aggregate training data of the five SD systems, 
and cross-validated the training using female SI data (as explained above). 
We chose a 1000 hidden unit net that has about an equivalent number of 
parameters as the five female nets altogether. We bootstrapped this net from 
a TIMIT net in order to reduce the total training time. The initial learning 
rate was 0.008. 

A net that was trained on the aggregate data of the SD nets, the female SI 
net, has an error rate of 7.4%. All of our experimental nets performed worse 
than this, but given a small data set of only 5 speakers, the results were 
not considered conclusive. However, the average error rate for the Parallel 
Nets using eqn (2) with an equal weight for each SD system is fairly close 
to the female SI net, with the Parallel Net having 13.5% more relative word 
error than female SI (8.4% versus 7.4%). This is not a statistically significant 
difference at the p < .05 level for this test set, so that in some sense there 
is no demonstrable difference in performance. The average performance of 
the Parallel Net architecture is better than both the average error of the SD 
systems' (13.0%) and the best SD system (9.7%) (significantly so for the 
average case). 

Comparing the performance of our Female SI net with our baseline hybrid 
HMM/MLP system, we observe that Female SI has about 40% more relative 
error (7.4% versus 5.3%, which is significant at the p < .05 level) than the 
gender-independent SI net. This is unsurprising, since the baseline SI net 
is trained on over 30 speakers and is trained longer. The Female SI net, 
in contrast, is only trained on five speakers and goes through half as many 
epochs of training. The obvious remedy would be to train the Female SI 
net on more female speakers. In other words, train more SD systems to get 
a better representation of the sample space. Another possibility is to train 
each SD net on two or more same-gender speakers that are in the same region 
of the sample space, creating quasi-SD nets and increasing the coverage of 
the sample space that way. This conjecture was the basis for the main set of 
experiments. 

4    Experiments and Results 

In order to get a better representation of the speaker space, we increased 
the number of training speakers in the next experiment. We used the male 
speakers' data from the RM SI training set (November 1989), consisting of 
49 male speakers, each uttering 40 sentences. Since there is little training 
data for each speaker, training 49 SD nets was not feasible. Instead, we can 
divide the speaker space based on some criterion and train one net on each 
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section of the speaker space. We experimented with two splitting criteria: 
rate-of-speech, and k-means clustering. 

4.1    Splitting the Speakers 
First, we used a priori knowledge about the domain and allocated the speak- 
ers to groups based on their rate-of-speech, where (inverse) rate-of-speech is 
measured as average number of seconds per word. In the second method, we 
use the k-means clustering [e.g., Krishnaiah & Kanal, 1982] algorithm. 

4.1.1 Dividing the Space Based on Rate-of-Speech 

Two observations motivated us to experiment with this split of the data. 
In the most recent ARPA WSJ evaluation, researchers reported significantly 
higher error rates on two fast speakers in the evaluation test set. The second 
motivation comes from our earlier results (section 3.2). We analyzed the 
relationship between the rate-of-speech of the female test speakers & the SD 
system's training data and word error rate. In order to have sufficient training 
data for each net, we chose to experiment with two and four clusters. 

4.1.2 K-means Clustering 

For the k-means clustering algorithm, we use a distance measure explained 
below. Let X = {Xi,X2, ...,Xn, ...,XN} be the feature vector sequence cor- 
responding to the speech of speaker Sx, where each Xn is a vector, Xn = 
{xni,xn2, —,xnd,•■•,xnp)t- For each speaker Sk, we calculate a mean vector 
p{ = (/**n-.ML.-.MfcD.)' andacovariancevector a{ = {as

kl,^,a{i,...ta{D)ti 

for each broad phonetic category j = {1...J}5. Define the distance between 
speaker Sx and speakers Sk as: 

D(Sx,Sk) = ^minf^ l°s4d + (3) 

So, for calculating the distance between two speakers, we use the ß's and CT'S 
of one speaker, and the feature vectors of the other. Except for the distance 
measure, we follow the standard k-means clustering algorithm. 

We can replace the gating network by using this distance measure. In order 
to determine the weights to use for each of the scaled likelihoods, we measure 
the distance of the unknown test speaker to the cluster centers and use an 
estimated probability (computed assuming a Gaussian distribution with a 
diagonal covariance matrix), the normalized e~rfistance, as weight. 

4Covariance matrix assumed to be diagonal. 
5The five broad phonetic categories are based on the phonetic classes in the TIMIT set; 

they are fricatives, liquids, nasals, stops, and vowels. 
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Word Recog Percent Error - Male Set 

System Rate-of-Speech K-means 
2CL 4CL 2 CL 4CL 

PN, Eqn (2), eql wgts 8.1 7.0 8.8 8.0 

PN, Eqn (2), gating, +smth 7.7 8.1 8.6 8.1 

PN, Eqn (1), eql wgt 11.0 11.1 13.5 11.5 

Best Net 7.6 7.7 8.2 9.8 

Avg of Nets 9.4 9.1 10.6 11.9 

Table 2: Word Recognition Percent Error for each of the systems tested 
on RM February 1991 SI male evaluation data. The "Best Net" column 
represents the error rate of the best single net. The "Avg of Nets" is the 
average of word recognition error of the nets. 

4.2    Results 
We used the male RM SI data for training, as mentioned above. Each of 
the nets in the two-cluster experiments were 512 hidden units each, and in 
the four-cluster experiments were 256 hidden units, making the number of 
parameters to be the same across all systems. Each net was trained on a 
partition of the training data with error back-propagation, started with a 
learning rate of 0.008, and was cross-validated on male data from February 
1989 RM SI evaluation data to determine the stopping point for the training. 
The same data was also used for development purposes, for example setting 
the word transition penalty. 

In order to perform a fair comparison between the Parallel Net architecture 
and monolithic net, we trained a 1000 hidden units net on all the male RM 
SI data. We tested all the systems on the male speakers of the February 
1991 RM SI evaluation data. The word recognition error rate of our standard 
baseline system (which is trained on all genders of RM SI training data) was 
8.9% for the males only. In comparison, the error rate of the monolithic 
all-male system was 7.3%, which is significantly better at p < .05 level. 

The results of the Parallel Net architecture, presented in Table 2 are similar to 
that of the all-male monolithic net for the four-cluster cases, and the difference 
in error rates are not significant (7.0% and 8.0% for the four-clusters versus 
7.3% for the male monolithic net). Weighted averaging gives worse results to 
the equal weighted averaging approach if the weights of the gating network are 
used directly. By introducing speaker continuity constraint and averaging the 
weights over a sentence (+smth column), the results of the weighting scheme 
improves and approaches that of the equal weighting one. The total training 
time for the monolithic net on our special purpose hardware [Morgan et al, 
1992] is 18 hours. However, the total training time for the four-cluster case 
is 7.5 hours for the rate-of-speech nets and 9 hours for the k-means nets (an 
average of two hours per net). The total training time for the two-cluster case 
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the two-cluster case is 18 hours for the rate-of-speech nets, and 11.5 for the 
k-means nets (average of 7.5 hours per net). 

5 Discussion 

In this paper, we have proposed a Parallel Net architecture for reducing the 
training time of the hybrid HMM/MLP system. Each of the experts in the 
system are trained on one region of the speaker space, hence making each net 
a guasi-speaker-dependent probability estimator. In our initial pilot experi- 
ments, we observed a strong gender effect. Also, there was strong evidence of 
over-tuning to the same category data. These two observations motivated us 
to restructure our experiments to reduce over-fitting, and to factor in gender 
effects. 

We retrained the experts using same-gender SI cross-validation to avoid over- 
tuning. Also to further reduce over-fitting to the SD data, we cut the number 
of parameters by a factor of four and used a smaller learning rate. We exper- 
imented with different averaging schemes: weighted vs. equal, and average 
of scaled-likelihoods vs. sum of posteriors divided by sum of priors. The 
theory [see also Jacobs & Jordan, 1993] suggest that a non-uniform weighting 
mechanism is desirable. However, in our experiments, the weighted average 
was similar, if not worse, than an equal weighted average. This may only 
mean that we did not develop the correct method for determining the best 
weights in these examples; but in any event the evidence we have so far does 
not support computed weights, and equal weights in any event seem to work 
well enough to support a parallel approach. Also, we consistently got better 
results from averaging scaled likelihoods (equation 2 vs. 1). 

The average error rate of the Parallel Net architecture was better than both the 
best SD system and the average error rate of all the female-SD systems, and 
the four-cluster male systems. Furthermore, the performance of the Parallel 
Nets was comparable to a single net trained on the aggregate training data. 
Given the shorter training time and the potential for taking advantage of 
parallel architectures, we believe that the Parallel Net architecture is the 
preferable architecture. 
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Abstract. We present a new way to take advantage of the dis- 
criminative power of Learning Vector Quantization in combi- 
nation with continuous density hidden Markov models. This is 
based on viewing LVQ as a non-linear feature transformation. 
Class-wise quantization errors of LVQ are modeled by continuous 
density HMMs, whereas the practice in the literature regarding 
LVQ/HMM hybrids is to use LVQ-codebooks as frame label- 
ers and discrete observation HMMs to model a stream of such 
labels. As decision making at frame level is suboptimal for 
speech recognition, the presented method is able to preserve 
more information for the HMM stage. Experiments in both 
speaker dependent and speaker independent phoneme spotting 
tasks suggest that significant improvements are attainable over 
plain continuous density HMMs, or over the hybrid of LVQ and 
discrete HMMs. 

1      Introduction 
Hidden Markov models (HMM) are among the most succesfull techniques 
in automatic speech recognition with well studied and mature training 
algorithms [14]. These techniques can be roughly divided into two main 
categories: continuous observation density HMMs (CHMM) and dis- 
crete observation HMMs (dHMM) with semi-continuous (tied mixture) 
HMMs somewhere in between. Either continuous or discrete, the aim of 
the models is faithful representation of the feature vector sequence de- 
rived from the speech signal, either directly by mixtures of multivariate 
Gaussian or other distributions, or through vector quantization (VQ). 
Both the maximum likelihood training algorithms of the HMMs, and in 
the discrete case, also the codebook construction algorithms aim at this. 

In recent years many ways have been presented to enhance the discrimi- 
nation capabilities of HMMs. These include, among others, new training 
criteria [18, 2, 7] and hybrids of discriminative methods with the HMMs. 
The latter type of systems have been recently dominated by artificial 
neural networks (ANN). These hybrids can further be grouped into two 
main clusters: ANNs as probability estimators for HMMs [1, 3], or ANNs 
as codebooks or labelers [6, 16, 12, 11] for dHMMs. 

The present paper is concerned with a novel combination falling into the 
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latter category. The combination is based on Learning Vector Quanti- 
zation (LVQ) [9, 10]. In the literature, many such LVQ/HMM-hybrids 
have been presented [5, 6, 8, 12, 16, 20], in which LVQ acts as a phone- 
mic discriminative labeler. The resulting label stream is then modeled 
by dHMMs. This paper extends the previous work by presenting a way 
of extracting more information of the LVQ stage followed by continuous 
density HMMs. This is founded on viewing LVQ as a feature transfor- 
mation. 

The structure of the rest of this article is as follows. Section 2 gives 
an overview of LVQ and reviews its prevalent use together with HMMs. 
In Sec. 3 we present a way of preserving more information of the LVQ 
stage, and suggest CHMMs as the tool process that information. In Sec. 
4 we describe our experiments in two phoneme spotting tasks, and Sec. 
5 is devoted to discussion. 

2      LVQ-codebooks in speech recognition 
The role of conventional vector quantization algorithms in speech recog- 
nition, such as the Linde-Buzo-Gray algorithm, or K-means, is to rep- 
resent speech feature vectors with the smallest possible distortion. This 
is not the case with the Learning Vector Quantization (LVQ) methods, 
which try to aim at discrimination of pattern classes, whatever they 
may be [9, 10]. Codebook vectors directly define the class borders in 
the feature space according to nearest-neighbor rule. LVQ modifies the 
codebook vectors adaptively so that the borders between classes will ap- 
proximate Bayes' decision surfaces. Quantization error (distortion) is of 
secondary interest. 

In literature, the customary practice of using LVQ is as a substitute to 
conventional vector quantization. Short time feature vectors act as the 
basis for classification, most commonly to phoneme classes. HMMs are 
then employed to combine local classification decisions by treating them 
just as VQ-codebook indices are treated with dHMMs. In phoneme- 
related tasks, training has been done either by single frames [8], or by 
concatenating several frames together to represent some context [20, 6, 
16, 5]. Further, the whole (phoneme) token has been used in training. 
All of the frames or successive shifts of the concatenated frames have 
acted as examples. However, this might pose a problem as short-time 
segments of the speech signal close to transitions between phonemes 
might be extremely confusing and might resemble very much other parts 
of other phonemes. 

When the task has been speaker dependent and phoneme oriented, sig- 
nificant improvements have been observed due to LVQ when compared 
against ordinary VQ [6, 16]. Where the task has been word or phrase 
recognition, the results have been slightly controversial: no improvement 
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in [20], but significant improvements in [5]. 

In a recent study it was shown that by taking the local context into 
account (as much as 220 ms) in the construction of the pattern vectors, 
performance can be significantly increased compared to using a single 
frame or a few concatenated frames [12]. Codebooks order of magni- 
tude larger than conventionally used are needed to represent variations 
in these high dimensional "context vectors". Another LVQ-codebook, 
whose purpose is to discriminate phoneme centers from transitions, was 
introduced in parallel with the main codebook. 

In addition to enhanced discriminative properties, another advantage of 
the LVQ over conventional VQ is that the discrete alphabet in phoneti- 
cally motivated classification, i.e., the number of classes, is smaller than 
the number of codebook vectors in usual VQ (few tens as opposed to 
few hundreds). This results in an oder of magnitude smaller amount of 
output probability parameters to be estimated for the dHMMs. Com- 
plicated smoothing schemes are thus usually unnecessary. 

3     Class-wise quantization errors 
3.1    Extracting more information from the LVQ 
All previous work on LVQ-codebooks in speech recognition has concen- 
trated on using the class label of the closest codebook vector only. To de- 
code this label stream, discrete observation HMMs have been employed. 

However, the normal practice with pattern classifiers, extracting only 
the final decision of the classification (the class label) is desirable only 
when that really is the final decision stage of the whole task. This is 
not the case with the LVQ/HMM hybrids in speech recognition; the 
final decision is made by the Viterbi search at the HMM-stage. It is 
suboptimal to resort to too early hard decisions at the frame level. 

Remaining with dHMMs, an obvious improvement could be to preserve 
information about several of the closest classes, possibly weighted in 
some manner. Some kind of heuristics is required to convert the distance 
of the current feature vector to the closest classes into usable weights or 
probabilities. Techniques of fuzzy VQ might be helpful for this stage. 
Certainly more information would be acquired from the same amount 
of training data. Alternatively, less training data would result in the 
same performance, as at each time step, not only the output probability 
corresponding to the best label, but many or all of them will be gaining 
information. 

However, the idea that we pursue here, is to make use of the actual 
measure that is the basis of LVQ-classification, the Euclidean distances 
to the closest codebook vectors of each class. Although these distances 
could be; transformed into weights or probabilities, LVQ is not really 
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designed keeping probability estimation in mind. 

A step in this direction was already taken in [12]. In addition to the clas- 
sification label stream provided by LVQ, also the VQ error was exploited. 
VQ error refers now to the conventionally employed scalar quantity: dis- 
tance to the closest codebook vector, regardless of its label. In contrast to 
other related work cited in Sec. 2, LVQ was trained by context windows 
positioned at phoneme centers only. Since the input representation was 
constructed by taking into account a relatively long duration of context, 
phoneme borders appear very different from the centers resulting in high 
quantization errors at transitions between phonemes. The quantization 
error can thus both give indication of the positions of the phonemes, and 
of their closeness to the corresponding codebook vector. Multiple input 
stream HMMs were used to combine the two sources of information, one 
discrete, another continuous valued. 

In this paper, we extend the above work by discarding the label of the 
closest class. Instead, the distances to codebook vectors of different 
classes (class-wise quantization errors), can be used directly without re- 
sorting to any transformations to weights or interpretations as proba- 
bilities. Continuous observation density HMMs can then be applied to 
model a stream of these vectors. Fig. 1 illustrates the computation of 
the new feature vectors. 

Feature vectors 
10 ms apart 

Compute distances to all 
codebook vectors 

^•'A^V-V^Jii*. 

I/a/ /a/ M/Y/el hi /e/I/i/l   
;/a/ /a/ hl\hl hi h/\fi/\   
l/a//a//a/!/o/7ö/Jö//i/;  

LVQ-codebook with 
phoneme class labels 
on the vectors 

N [0 
3~K ,'' : 

IN 

/el   0 
fit   o 

5 " ,-.-'  Choose the minimum 
1 **'         distance for each group of 

codebook vectors carrying 
the same class label 

A new transformed feature vector 

Figure 1: An illustration of the feature transformation. The stream of result- 
ing new feature vectors is then modeled by HMMs. 

302 



3.2 LVQ as a feature transformation 
In pattern recognition one is always concerned with choosing or comput- 
ing such a representation of the input data, that enhances class separa- 
bility while keeping within-class variability as small as possible. Several 
linear transformations, fnat are optimal according to criteria usually con- 
nected to between-class and within-class scatter matrices can be found 
in pattern recognition textbooks, and they have been applied succesfully 
to speech recognition [4]. 

In the suggested scheme, LVQ can be viewed as a nonlinear, discrimina- 
tive feature transformation before the CHMM-stage. A simpler version 
of such a transformation has been presented for example in [15, pp. 85- 
87], where a new feature vector is formed by computing distances to 
fixed points in the feature space. These points represent the means of 
pattern classes, while in case of LVQ, there are several such points per 
class, and their locations been chosen so as to minimize classification 
errors through LVQ-training. Other kinds of non-linear feature transfor- 
mations that are derived on the basis of training by examples have also 
been used in speech recognition [17]. 

If the intent is to make a classification decision based on a single feature 
vector it does not, of course, make any sense to regard LVQ as a feature 
transformation. LVQ can then just simply do the decision. However, 
when the feature vectors are parts of a larger entity and when a decision 
has to be made taking all parts into account, as in speech recognition, 
this is a useful point of view. 

3.3 Relation to semi-continuous HMMs 
The presented scheme might also resemble superficially semi-continuous 
HMMs (SCHMM), but that is not the case. SCHMMs also utilize a 
"codebook", but it is a codebook of (Gaussian) distributions without 
any concept of classes. SCHMMs try to represent the current feature 
vector by making use of a number of the closest codebook entries, while 
the presented hybrid uses for every class the codebook entry closest to the 
current feature vector. It would not make sense to take into consideration 
the second or third closest codebook entries of a class even though they 
would be closer than the closest entries of other classes, since LVQ is 
trained in view that only the closest one matters. 

4    Experiments 
4.1    Speaker dependent phoneme spotting 
We will now describe experiments to compare the performance of the 
suggested method with some established algorithms. A comparison be- 
tween four architectures is presented in Table 1. The architectures are: 
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1. conventional CHMMs modeling a stream of cepstral vectors, 

2. LVQ/dIIMM-hybrids, where LVQ produces a stream of class labels, 
which is modeled by discrete observation HMMs, and 

3. the new approach proposed in this paper, where LVQ produces a 
stream of class-wise quantization error vectors, which is modeled 
by CHMMs, and 

4. parallel use of the class-wise quantization error with the cepstral 
vectors. 

combi- 
nation 

LVQ 
Input 

HMM Input stre- 
ams 

mixts/ 
stream 

covar error 
rate 

1 
- MFCC+A 

MFCC+A 
2 
2 

5,3 
2,1 

diag 
full 

3.2 
2.9 

2 
MFCC 
context 

LVQ-best label 
LVQ-best label 

1 
1 

- - 8.5 
4.6 

3 
context 
context 
MFCC 

LVQ-qerr+A 
LVQ-qerr+A 
LVQ-qerr+A 

2 
2 
2 

7,7 
2,1 
2,1 

diag 
full 
full 

5.4 
2.5 
4.9 

4 context MFCC+A + LVQ-qerr+A 4 2,1,2,1 full 1.8 

Table 1: Comparison between CHMMs (1), LVQ/dHMM-hybrids (2), and 
LVQ/CHMM-hybrids (3, 4) in a speaker-dependent task. "MFCC refers to 
20 component mel-scale cepstral vectors. A refers to difference coefficients, 
"context" denotes the 220 ms context vector described in [12]. "qerr" refers 
to class-wise quantization errors computed from the LVQ-stage. In all cases 

the HMMs had 3 emitting states. 

The task in this comparison is speaker dependent phoneme spotting in 
the Finnish language [12, 16]. The database contains four repetitions 
of a set of 311 utterances spoken by three male Finnish speakers. Each 
set consists of 1737 phonemes. In the original Finnish language, there 
are,only 21 different phoneme classes: 8 vowels and 13 consonants. Four 
additional phonemes have been adopted with loan words from other lan- 
guages, but none of those were represented in the database. There were 
thus 22 phonemic classes for the LVQ to differentiate (21 phonemes and 
silence), which was also the dimensionality of the class-wise quantization 
error vectors. Three of the repetitions were used each time for training, 
and the remaining one for testing. Four independent runs were made for 
each speaker by leaving one set at a time for testing. Thus all speaker 
dependent recognition results presented in this paper are averages of 12 
test runs, and based on 20844 phoneme spotting scores. 

Speech analysis conditions were the following: 12.8 kHz sampling rate, 
pre-emphasis coefficient 0.95, 25.6 ms Hamming window every 10 ms, 
and 20-component mel-scale cepstral coefficients (MFCC) computed for 
every window. Where difference coefficients (A) have been used, they 
were computed from a period of 40 ms. This applies also to the quanti- 
zation error vectors. 

For context vectors as LVQ input, the codebook size was 2000, and for 
the MFCC, it was 500.   The context vectors had a time span of 220 
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ms [12]. LVQ-training procedure was exactly the same as described in 
[12]: using only phoneme centers, initialization by K-nearest-neighbor, 
0LVQ1 for 10000 iterations with a(0) = 0.3, and LVQ1 using a(0) = 0.2 
In the LVQ1 stage, the number of iterations was 100 times the number 
of codebook vectors. An example of the output of the LVQ stage is pre- 
sented in Fig. 2. Phoneme center locations can be clearly distinguished. 
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Figure 2: An example of the output of the LVQ-stage. From top to bottom: 
the speech signal (a Finnsh word /johdosta/), its spectrogram, class-wise quan- 
tization errors with the phoneme labels on the left (darker shade denotes small 

values), and the labeling of the utterance. 

Looking at the results in Table 1, it is obvious that exploiting all class- 
wise quantization errors instead of using only the class identity of the 
closest codevector preserves more information for the latter decision 
stages. This is reflected as the difference between LVQ/dHMM-hybrid 
and LVQ/CHMM-hybrid. We can also see that the class-wise quanti- 
zation errors are interdependent, since modeling them by diagonal co- 
variances produces poorer results. We got our best results by using full 
covariance matrices, and two Gaussian mixtures. 

Though the LVQ/CHMM-hybrid is better than plain CHMMs, the differ- 
ence is barely significant. On the other hand, the LVQ+MFCC/CHMM- 
hybrid beats plain CHMMs by a clear margin. Due to a relatively large 
number of tests, the confidence limits (99%) are relatively tight: ±0.23% 
for the best result (1.8%). This enables us to state that the proposed 
architecture is significantly better than a LVQ/dHMM-hybrid (4.6%), 
or a CHMM system (2.9%) in this task. In the case of plain CHMMs, 
using second order derivatives, increasing the number of mixtures, or 
using diagonal covariance matrices with larger number of mixtures did 
not improve our best CHMM result. 
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In the LVQ/dHMM-hybrid we used only the label sequence produced by 
LVQ; not any other information, as suggested in [12]. Including another 
LVQ-codebook for phoneme center/transition classification, or the whole 
codebook quantization error, would no doubt improve the performance 
of the LVQ/dHMM-hybrid, as it did in [12]. 

4.2     Speaker independent phoneme spotting 

In this experiment, our aim was to find out whether this LVQ/HMM 
hybrid is applicable to the speaker-independent case. The database con- 
sisted of Swiss-French telephone speech with 56 speakers (about 2 hrs of 
speech). Half of the speakers were used for training and the other half 
for testing. The vocabulary also varied across the speakers. 

Speech was sampled at 8 kHz, and 12-component mel-scale cepstra were 
computed each 10 ins. As the input to LVQ, we used slightly narrower 
context windows whose duration was 140 ms. The LVQ codebook size 
remained as 2000. 36 context-independent HMM phoneme models were 
used with 4 emitting states and full covariances throughout this experi- 
ment. 

combi- 
nation 

HMM input stre- 
ams 

mixts/ 
stream 

cor- 
rect 

accu- 
racy 

1 MFCC+A 2 2,1 60.9 53.4 

3 
LVQ-qerr+A 
LVQ-qerr+A + AA 

2 
3 

2,1 
1,1,1 

61.4 
63.5 

55.8 
57.4 

4 

MFCC+A+LVQ-qerr+A 
MFCC+A+LVQ-qerr+A+AA 
MFCC+A+LVQ-qerr+A+AA 
MFCC+A+(LVQ-qerr)+A+AA 

4 
5 
5 
4 

2,1,2,1 
1,1,1,1,1 
3,1,1,3,1 

3,1,(1),3,1 

63.9 
65.3 
65.7 
67.7 

58.0 
59.4 
60.0 
61.7 

Table 2:  Comparison between CHMMs (1) and LVQ/CHMM-hybrids (3, 4) 
in a speaker independent task. 

The gain of using LVQ in this (much harder) task is not as dramatic 
as in the first one, but comparing the baseline CHMM recognizer (the 
first row) to the result on the last row we can see that the improvement 
is anyway very significant. In addition to A-coefficients we also tried 
2nd oder difference coefficients for the quantization error stream, which 
turned out to be advantageous. In addition, it seems that the actual 
quantization errors are less important than their difference and 2nd or- 
der difference coefficients. In the result of the last row of the table we 
dropped that altogether out but kept the A- and AA-streams, and the 
results improved. 

It must be noted that throughout these comparisons, exactly the same 
training conditions and algorithms (embedded Baum-Welch training) 
have been used. The basic phoneme model structure has also been 
the same throughout each experiment.   The comparison is thus actu- 
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ally made between different input representations, and not, for example, 
between different HMM-software packages. In all of the experiments we 
used a public domain software package LVQ-PAK [10], and a commercial 
package HTK [19] for the HMMs. A discrete observation version of the 
HTK was written for dHMM-experiments. 

5     Conclusion 

We have reviewed ways of employing LVQ-based codebooks with HMMs 
in speech recognition. We wanted to point out that the prevalent prac- 
tice in the literature, using LVQ as a frame labeler, and modeling the 
label stream with dHMMs, unnecessarily makes too early hard decisions. 
We have demonstrated that modeling class-wise quantization errors by 
CHMMs leads to significantly better results, and can even be better than 
the mainstream HMM-techniques. Using VQ-error as an indication of 
phoneme locations and its use as an input stream to HMMs was intro- 
duced in [12], to which this work is a direct extension. Other ways to 
employ VQ-error with HMMs have been presented, for example, in [13]. 
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Abstract - In this paper, we propose a modular architecture where 

the interactions among different modules are controled by proper au- 

toassociators. The outputs of these modules are computed by sigma 

p-neurons whose inputs come from both a feedforward network per- 

forming classification and an autoassociator. The outputs of the au- 

toassociators are used for performing pattern rejection, thus reduc- 

ing significantly the problems due to interaction of different modules. 

The proposed architecture is validated by experiments of speaker in- 

dependent phoneme recognition on continuous speech with TIMIT 

data base with very promising results. 

INTRODUCTION 

In the last few years many researchers have focussed their efforts in specializ- 

ing neural networks more or less related to Backpropagation learning scheme 

for phoneme recognition. Unlike the challenging results obtained concerning 

phoneme discrimination, so far no enough care has been placed to the scaling 

up of similar solutions. This is certainly an important issue for any practi- 

cal application. As Jacobs identified [1], there are two problems with mono- 

lithic networks, namely spatial and temporal crosstalk, which lead us to believe 

that modular systems are necessary for training nets on complex problems like 
phoneme recognition. Spatial crosstalk occurs when different groups of units 

serve different tasks; in this case hidden units being trained to resolve resid- 
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ual error will receive conflicting information. Temporal crosstalk occurs when 

different portions of the training set contain data to separate and conflicting 

functions; in this case the hidden units being trained will suffer from overfit- 

ting with consequent degraded performance. The separation of complex tasks 

into sub-tasks which are handled by a group of cooperating expert sub-nets 

allows us to avoid spatial and temporal crosstalk. In fact, each sub-network 

is trained only on training data for its particular expert task. Moreover, also 

modular schemes built up with similar architectures as modules (e.g. Waibel's 

connectionist glue [5]) have a major flaw in the impossibility of guaranteeing 

that any module, defined for dealing with a limited number of classes, is able to 

reject, effectively patterns of other classes. Rejection criteria based on the error 

with respect to the target are not very meaningful, because cases can be found 

where that error is very low, whereas the associated pattern has nothing to do 

with the classification problem. This happens because the resulting separation 

surfaces are not closed and do not "envelope" the examples by capturing their 

probability distribution. 

In order to overcome this problem, in this paper we suggest using a modular 

architecture based on the capabilities of multilayered networks used as autoas- 

sociators to offer a reliable criterion for rejecting patterns belonging to classes 

not used during the learning. The architecture is based on a set of modules 

based on multilayered networks. Each module is specialized for the recognition 

of a small phoneme subset. In order to avoid conflicts among modules due to 

their limited rejection capabilities, the patterns of the same class are autoasso- 

ciated using a multilayered autoassociator. The outputs of the autassociators 

are properly processed in order to obtain a single value that is used, together 

with the outputs coming from the classification network, for feeding the out- 

put neurons of the module that act like sigma-p neurons [2]. In so doing, the 

outputs of the modules are close to the outputs of the classification network 

only when the autoassociators "enable" the classification. This solution faces 

the fundamental limitation of feedforward networks to perform pattern classi- 

fication by open separation surfaces, which limits severely the scaling up. 

THE MULTILAYERED AUTOASSOCIATOR 

Multilayered networks working as autoassociators are forced to reproduce the 

input to the output during the training phase. The autoassociators have been 

suggested mainly for problem of image compression [6]. In this case the com- 

pression is performed at the hidden layer. The information represented by the 
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Figure 1: Nonlinear autoassociators perform pattern autoassociation of closed 

regions of the pattern space. 

hidden units can be reproduced subsequently by the computation carried out 

at the last layer. In this paper, we exploit another nice theoretical property 

of autoassociators that can easily be understood by analyzing the separation 

surfaces that are drawn by the learning algorithm. Let us consider introduce 

the concept of e-autoassociated patterns. A vector A"0 is c-autoassociated if 

H**-*°H<P 
\\XL\\ 

where XL = 'H{X0), being H the mapping provided by the autoassociator. If 

the neurons are based on squashing functions then there exits \€ > 0 such that 

||7i(AA-Q)-AA-0l|      _ 

l|W(AA'0)|| 
>S VA>A- 

This is due to the saturation of the hidden units when choosing "high" val- 

ues of A. Notice that this nice property does not hold for linear autoassociator. 

Basically, the nonlinear neurons are responsible of the closed surface depicted 

in Fig. 1. For this reason, the application of multilayered autoassociators to 

problems like speech verification seems adequate and successful [3]. For this 

kind of problems the role of the nonlinearity is very clear, whereas for problems 

of compression, one may wonder if the use of linear networks can be sufficient 

in many cases. However, also for problems of compression, the nonlinearity can 

be desirable since one may expect better interpolation capabilities. 

AMA: AUTOASSOCIATOR-BASED MODULAR ARCHI- 
TECTURE 

The problem of speaker independent phoneme recognition has already been 

faced with modular architectures by many researchers since it is well known that 
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supervised neural networks ran perform very well on small phoneme sets, but 

that the results do not scale up very well with the number of phonemes. One of 

the most, successful approaches has been proposed by VVaibel et al. in [5], where 

independent, classifiers were merged with a sort of connect ion ist glut. The basic 

idea of using separately trained modules and neurons acting as a connectionist 

glue is very good, but one basic problem seems to be that the modules use to 

react significantly also when fed on patterns of different classes. This makes 

the task of the connectionist glue very hard, since the final optimization step 

must recover all the module false reactions. The AMA (Autoassociator-based 

Modular Architecture) have been conceived bearing in mind this problem that 

is faced by the additional introduction of the autoassociators. 

In the AMA modular architecture, depicted in Fig. 2. each module contains 

as many autoassociators as classes. The output neurons receive the information 

from both the module classifier and the autoassociators as follows: 

M0 = ( — )"V'*( — I"'- (1) 

being .I:,.,- and .>■„;. with i =  1 n the i-th output, of the classifier and 

autoassociator, respectively. The output of the autoassociator is processed 

in such a way to give high score when small distance is reported from input 

and output. A possible choice is simiilv .va ,• = ....   ' .. ,.. u\. ,• and (/',, , are the 
' 11 A /. — A n 11 

corresponding weights and .s,.,, .s„ , are learneable coefficients used for re-scaling 

the inputs. The activation is mapped to the output by 

!li(t) = f(K*a,(t)~0i) (2) 

being f( ) is the squashing function /(.i) = '_,. The coefficients used in 

equation (2) are useful for proper re-scaling of the output neuron activation. 

Another possible choice for the output neurons is that of using a threshold- 

ing criterion for taking the information of the autoassociators into account: 

«/(') = <      .. (.       . (-3) 
I       Ü     : otherwise 

being T,- a threshold related to the i — th autoassociator input/output distance. 

In so doing, the output neurons act like an ordinary classifier provided that 

the thresholding criterion is met. When this does not hold, the outputs are set 

to "()", thus correcting the classifier trend to perform pattern classification no 

matter what is the input. The difference between the two solutions (1) and (3) 

is that in the first case the correction of the classifier behavior is gradual, 

whereas in the second one, it is based strictly on a thresholding criterion. 
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Input franc 

Figure 2: Nasal phoneme module: the classifier and 3 autoassociators, one for 

each phoneme 

The training phase takes place in classifiers and autoassociators indepen- 

dently. In the case of output neurons following equation (1), a subsequent 

learning step is required for assessing the optimal values of the output neuron 

parameters. This can easily and quickly be achieved since we need optimiz- 

ing the parameters of a single layer. For the output neurons of equation (1), 

one can also perform a final global optimization step for assessing the optimal 

value of all the module's parameters. The implementation of such a step is 

not very difficult since, because of the layered architecture, it can be based on 

Backpropa.gation for gradient computation. 

Feature extraction 

The experiments were carried out using RASTA-PLP [4] and Bark-scaled FFT 

preprocessing schemes. 

The PLP speech analysis technique estimates an all-pole autoregressive 

model of the auditory-like short-term speech spectrum. PLP has been shown to 

be efficient in suppressing speaker-dependent components in the speech signal. 

The auditory-like spectrum is obtained by integrating the short-term power 

spectrum of speech over simulated critical-band auditory masking curves, re- 

sampling the integrated spectrum in approximately 1 Bark intervals, modifying 

the spectral amplitude by a simulated fixed equal-loudness curve, and compress- 

ing it through the cubic root nonlinearity to simulate the intensity-loudness 

power law of hearing. This autoregressive modeling efficiently approximates 

the spectral peaks in the auditory-like spectrum.  The cepstral coefficients of 
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the PLP all pole model are recursively computed. 

An $"' order RASTA-PLP model was used with the same frame length and 

overlap than FFT preprocessing thus obtaining 9 component vectors (includ- 

ing log power). Delta coefficients were computed for each frame and the 18 

components were normalized with respect to their mean value of the training 

environment. 

When using Bark-scaled FFT preprocessing, the spectra were computed by 

the 256-inputs FFT (frame length = 16 ras) with a Hamming window. The net- 

work scanned the input, parameters every 64 samples (4 ms), thus considering 

overlapped information among contiguous frames. Each input frame was rep- 

resented as a (^-component spectral vector, grouping the channels according 

the Bark scale. The frames were normalized on a temporal window (with 500 

ms), extended in the past starting from the last frame. 

The experimental results showed that RASTA-PLP needed fewer coeffi- 

cients than (lie Bark-scaled FFT for obtaining comparable performance for the 

nasal classifier. 

In the following sections we describe the classifier and auto-associators net 

architectures and give experimental results obtained with RASTA-PLP. 

Nasal Classifier 

The experiments were based on a recurrent network classifier having self-loop 

connections only trained by BPS learning algorithm [7]. These architectures 

are particularly suitable for phoneme recognition since we can guarantee a 

forgetting behavior in advance when choosing the self-loop weights properly 

[8]. Moreover, their training with BPS is more efficient than using general 

algorithms for recurrent networks since it is local in both time and space. 

In our experiments, we tested different architectures using simply "trial 

and error" to assess the optimal number of hidden units for a given speech 

preprocessing. The best results were obtained with a 3 layer fully-connected 

net with 18 inputs, 3 exclusive static output neurons and 35 dynamic hidden 

neurons with "delay coefficients". 

For the training phase, we used nasal phonemes of 36 male speaker each 

uttering 10 sentence. After preprocessing the signal a"s previously described. 

for each phoneme, we placed supervisions only where there was clear phonetic 

evidence. For this reason we avoided supervising the speech signal around 

the transition frames. During the learning phase, we weighted the error at 

the output neurons to balance the different number of frames for different 

phonemes. 
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Table 1: EXPERIMENTAL RESULTS FOR THE NASAL CLASSIFIER. 
input/output VI n ng err. n. frames recog.   % 

m 1487 743 753 1496 2983 49.85 

n 476 1171 226 702 1873 62.52 

"g SO 144 292 224 516 56.59 

Crosstalk 556 887 979 

Recognition 54.91% 

To test, the classifier, we used a database consisting of 25 speakers. The 

results we obtained are reported in tab. 1. 

Nasal autoassociators 

We tested different autoassociator architectures. The best results were obtained 

with a 3 layer feed-forward neural network (20-6-20). We used a 50 male speaker 

database for training and we created 3 different learning environments, one for 

each autoassociator (i.e. one for each phoneme). The target on the output 

units was imposed to be equal to the input. 

The autoassociators were tested on 44 American phonetic classes obtained 

with the Kai-fu-lee table for a 18 male speaker database. Recognition and 

rejection rate results as a function of the threshold value are reported in Fig. 3. 

Experimental results for phoneme recognition 

We performed some preliminary experiments of speaker independent phoneme 

recognition for validating the AM A architecture. The output from the classifier 

and auto-associators were combined into 3 output neurons. We tested the 

architecture using a model based on both equations (1) and (3). 

The experimental results are reported in Fig. 4 for the case of output neu- 

rons following the thresholding criterion (3) and equation (1) respectively. 

CONCLUSIONS 

In this paper, we have proposed a novel modular architecture referred to as 

AMA. This architecture has been evaluated with preliminary experiments of 

phoneme recognition. Comparing Fig. 4 and Fig. 5, we can see that the rejection 
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rate frame by frame for the nasal phonemes was very high using autoassociators 

to the prejudice of the recognition rate. The idea on which AMA relies is quite 

general, and makes it attractive for any problems of pattern recognitions with 

many classes. 
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Abstract - This paper presents a recurrent radial basis function 
network as a one step ahead predictive speech signal filter. The re- 
sulting non-linear estimation of the signal state space allows accurate 
prediction using only three delayed samples of clean speech and in 
noisy speech six samples allow this performance to be maintained. 
The prediction residual can be used as a powerful speech pitch detec- 
tor and the nonlinear network shows significant improvement over 
conventional auto-regressive filters, allowing post-processors to make 
more accurate estimations of pitch pulse position, the pitch, and 
the regions of voiced speech. This represents a new form of pre- 
processing for pitch tracking of real speech in a noisy environment. 

INTRODUCTION 

Speech production can be modeled using an auto-regressive (AR) filter with 
an excitation signal comprising of a series of quasi-periodic pitch pulses during 
voiced speech and white noise during unvoiced speech. Pitch period and the 
fundamental frequency estimation are important for speech coding and recog- 
nition, however, accurate pitch detection is considered one of the most difficult 
tasks in speech processing. The variability of speech and speaking environ- 
ments causes difficulties in pitch determination with low frequency often being 
masked or lost in noise. 

The location of the pitch pulse in voiced speech is important for linear pre- 
dictive coding (LPC) where reduced sensitivity to the fundamental frequency 
provides a more accurate estimate of the filter parameters. In frame based 
speech analysis this leads to pitch synchronous prediction and in an auto- 
regressive moving average (ARMA) model of speech the pitch is incorporated 
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into the production model [12]. The pitch pulse can be detected directly from 
physical measurements of the speaker using an electroglottograph or laryngo- 
graph. This results in a two channel speech analysis system where the physical 
information is used to improve the speech model [6]. This paper proposes a 
method of pitch extraction based solely on the sampled time series of speech. 

The ability of neural networks to estimate non-linear functions and to predict 
time series [2,10] is well known and the application of neural networks for the 
identification and interpretation of speech signals is of particular interest due 
to the non-linear and non-stationary nature of speech [8]. However, neural 
network applications in speech signal processing have tended to focus on using 
extracted feature spaces such as LPC coefficients for their inputs [9], mainly as 
a result of the importance of LPC parameters in vocal tract identification. 

Lowe and Webb [7] have trained neural networks to model the dynamics 
of isolated vowels and fricatives based on the speech time series and Town- 
shend [13] has used LPC prediction residuals for the identification of non-linear 
speech elements [13]. This paper extends this work to the use of RBFNs as a 
non-linear AR filter with minimal a priori signal information. The filter is im- 
plemented for on-line adaptive prediction of speech signals in the time sample 
domain and the prediction residual is investigated for use as an accurate pitch 
detector. 

RADIAL BASIS FUNCTION NETWORKS 

RBFNs [1] arc one-hidden-layer neural networks. The hidden layer contains 
nodes which perform a non-linear transformation of the input data using a pa- 
rameter vector called a centre and the output layer consists of linear combiners 
which calculate the weighted sum of hidden layer nodes. 

At each iteration the Euclidean distance, ||a: —Cj-||, between each node centre, 
Cj, and the input vector, x, is calculated. The result is passed through a non- 
linear function, $(.), to generate the node output, hj 

hj = *(\\x - c;\\) (1) 

In this paper the thin-plate spline function, $(«/) = z/2log(i/), is chosen for 
its non-localised response. This has been shown to achieve excellent approxi- 
mation ability due to the characteristic <j>(x) — oo as x -► oo [2] and readily 
accommodates the rapidly changing speech state-space. The network output y 
is given by 

y = ^iihi (2) 

where rjj are the node weights and nh is the number of hidden nodes. 

An RBFN can approximate arbitrarily well any continuous function on a 
compact domain if sufficient basis functions are used. The changing complex- 
ity of the speech dynamics implies that, the number of nodes required will vary 
depending upon the speech frame, so Kolmogorov's theorem [5] is used to fix 
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Figure 1: An output feedback recurrent radial basis function network 

the number of nodes arbitrarily at 2d+ 1, where d = n + m is the dimension 
of the input vector x. 

Recurrent Networks 

Recurrent RBFNs (RRBFNs), figure 1, incorporate network parameters in 
the input vector, in this paper the input vector is augmented with output 
feedback. The input vector x at sample k is thus 

Xk = (s*-i, •• •, «*-n,y*-i, • ■ • ,2/fc-m) (3) 

where n is the number of lagged speech samples, s, and m is the number of 
lagged RRBFN predictions, y. 

The speech characteristics do not change rapidly outside of the sample win- 
dow and the introduction of output feedback adds context to the input vector 
without increasing the size of the speech window. In noisy speech corrupted 
samples are augmented with prediction outputs with a reduced noise content, 
allowing improved recovery of the pitch pulses. 

Centre Clustering 

Network approximation ability is dependent upon the RRBFN centre lo- 
cations. The centres are initially selected randomly within the bounds of 
the speech state-space and clustered using a variation of the Kohonen Self- 
Organising feature Map (SOM) introduced by Huntsberger and Ajjimarangsee 
[3] and extended by Zheng and Billings [14]. This fuzzy clustering approach 
avoids the sensitivity of /c-means clustering to the initial centre positions, pre- 
venting false minima being found. 
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The clustering algorithm used here is 

1. Set an initial clustering gain of Q0 = 0.2 and an initial number of neigh- 

bours Ne = nh — 1. 

2. Use a decaying clustering gain of a = a0(\ — t/T), where T is the total 
number of iterations during training and t is the current iteration. 

3. Select 30 input vectors, a;,-, from the speech at random. 

4. Calculate the distance of the centres from the input vector a;,-. 

5. Adapt closest centre Cj and its Nr nearest neighbours, cvj, using 

c. VJ cvj + Qfiv(xi- cvj) (4) 

where //„;- is the fuzzy membership function. 

6. Reduce the number of nearest neighbours, Nc = Ar
c — 1, and repeat from 

step 2 until Nc = 0. 

The fuzzy membership function used here is 

1,    if  \\x, "VJ | 

N ~ {   (Er=\ fe^f)"1'    VH*> - C'H ^ °  otherwise (5) 

During on-line adaptation the centres are adjusted using the «-means clus- 
tering technique to adjust to the changing speech dynamics [4]. It also allows 
the correction of the recurrent elements of the centres which during initial clus- 
tering are assumed to receive an input equal to the speech samples, i.e. the 
network has no prediction error and y(k) = s(k), due to the unavailability of 
network predictions. At each sample the closest centre to the current input 
vector, Cj, is updated according to 

CJ - Cj + aK(x - c.j) (6) 

where aK is the learning rate. Using a small value of aK allows weight adapta- 
tion to be considered independently of centre adjustment. 

Weight Adaptation 

The response of the RRBFN is linear with respect to the node output weights 
resulting in an output error surface with only one global minimum if the centres 
are fixed. This allows the weights to be updated using a covariance matrix 
approach based on the Kaiman filter (KF) and results in a rapid convergence 
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to the optimum weights required to minimise the mean squared prediction 
r. The KF equations for updating the hidden layer weights [11] are error. 

Kk    =    Pk-itk (*k + 4%Pk-itk) (7) 

ft    =    i-(ft_i-*t#ft-i) (8) 

efc  =  ejfe_i + uffcc* (9) 

where Kk is the KF gain and Pk is the RRBFN inverse covariance matrix. 0* 
is the vector of hidden layer weights TJJ, ik is the vector of node outputs hj, 
and ek is the prediction error sk-yk- 

\k is a variable forgetting factor (VFF) which allows the KF to estimate 
time-varying system parameters by exponentially windowing the speech, with 
an effective memory of 1/(1 - Afc) samples. \k is based on the filter error 
information content [12], defined as the weighted sum of squares of the residual 
errors, Vk, and which can be expressed recursively as 

Vk = \kVk-i + el(l-fäKk) (10) 

Applying a constraint of constant error information, Vk = V*_i = Vi, allows 
the VFF to be defined from (10) as 

Xk = 0.99-yet (l-4lKk)/Vi (H) 

where Vx can be taken as the average filter error information. 
A lower limit of Xk = max [A* ,0.9] and a gain factor of j = 0.15 give Xk 

the range 0.9 < A* < 0.99 as suggested by Salgado [11] for a compromise of 
adaptive speed and memory. The error information content is constant for a 
signal with a Gaussian driving source, but large values occur when the source 
signal changes, such as at pitch pulses [12]. This results in a small A, and 
the KF estimates are then based on a shorter window of speech allowing rapid 
adaptation to the changing dynamics. This creates a sharp error at the point 
of glottal closure which when observed against the average filter error provides 
a good indication of the onset of the pitch pulse. Simple post-processing tech- 
niques can then be used to select the most likely pitch positions from these 

pulse candidates. 

SPEECH PREDICTION 

The performance of an RRBFN for the one step ahead prediction of speech 
was compared with that of a RBFN and a linear AR filter for the noise free 
utterance of the word "five" sampled at 20kHz. The RRBFN had an input vec- 
tor of dimensions n = 3, m = 3, hence a network size of nh = 13 was selected 
to satisfy Kolmogorov's theorem [5]. In order to obtain a fair comparison^ 
RBFN also had 13 hidden nodes, but used an input vector of n = 3, m - 0, 
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Figure 2: Normalised voice source estimates for the noise free word "five" 

and the AR filter used 13 lagged speech samples. The weights in all three 
networks were updated using the KF approach (7-9) with a VFF defined by 
(11). The basis function centres were positioned initially using fuzzy cluster- 
ing and adapted on-line using «-means clustering (6), with an adaptive rate of 
or* = 0.01. 

Voice Source Estimation 

The accumulated squared prediction residual for the filters was calculated 
over an eight sample window to generate an estimate of the speech voice source. 
The normalised voice source estimates are shown in figure 2. Even though the 
KF has a speech window four times wider than the RBFN, the RBFN can 
detect the change in signal driving function at the pitch pulse with greater 
precision than the KF and has a lower noise floor between pulses. The increased 
contextual information inherent, in the RRBFN is a marginal improvement over 
the RBFN, but its most significant contribution occurs when noise is present 
in the speech signal. 

The networks were tested using the word "five" corrupted with additive noise 
to give a signal to noise ratio (SNR) of 3dB. Due to the poor performance of all 
networks using only 3 speech samples the speech windows were increased. The 
RRBFN was extended to n = 6, m = 3, nh = 19, the RBFN to n = 6, m = 0, 
nh = 19, and the AR filter used a 19 sample speech window. Figure 3 shows 
the resulting voice source estimates. The AR filter residual becomes lost in the 
noise floor, making pitch prediction difficult even with a large speech window. 
The RBFN fares better, with distinguishable peaks at pitch pulses and an even 
noise floor. However, the RRBFN is better still with more distinctive peaks 
and a lower noise floor. 
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Figure 3: Normalised voice source estimates for the word "five" with an SNR of 3dB 

Speech 

Figure 4: Pitch candidates for the word "five" with an SNR of 3dB 

Pitch Detection 

Pitch detection was achieve by thresholding 15ms windows of the voice source 
estimate at twice the standard deviation of the voice source over several several 
windows. A pitch candidate is observed when the voice source rises above the 
threshold and figure 4 shows the pitch candidates obtained from the three fil- 
ters in noisy speech. The improved peaks at pitch events and the reduced noise 
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Figure 5: Pitch track and spectrogram for a male TIMIT speaker 

floor of the RRBFN ensure that fewer peaks on the voice source estimate are 
classed as pitch candidates. Therefore the RRBFN is a better filter for voice 
source estimation with more consistent pitch candidate statistics which allow 
the easy elimination of false candidates. 

Pitch Tracking 

An RRBFN pitch detector of the type used for noisy speech was applied 
to real speech obtained from the DARPA TIMIT continuous speech corpus. 
Using a sliding window of 15 pitch candidates, the speech was classified as 
voiced when the median pitch period exceeded the standard deviation of the 
pitch period within a given window. The median was preferred as it is resilient 
to extreme pitch estimation errors. Figure 5 shows the pitch frequency tracks 
of voiced speech obtained when this method is applied to the phrase, "Don't 
ask me to carry an oily rag like that", spoken by a male. 

The tracks have been laid over the FFT derived spectrograph for compari- 
son and can be seen to lie along the fundamental resonance in the spectrogram 
which suggests the correct determination of the pitch period. The algorithm 
provides a very clear indication of the areas of voiced speech, with no obvious 
mis-classification of unvoiced speech as voiced. The largest errors occur in quiet 
speech where the SNR is lowest and the speech dynamics are changing which 
could be overcome by incorporating an overall signal power weighting into the 
algorithm. 
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DISCUSSION 

This paper has demonstrated the ability of RRBFNs to estimate the non- 
linear system dynamics of both noisy and continuous speech. The prediction 
residual provides a powerful pitch pulse detector and the improvement com- 
pared with a linear AR predictor supports the proposition that a non-linear 
speech model is more accurate. Signal noise causes significant deterioration of 
this result in an RBFN filter which is overcome by incorporating output feed- 
back which inherently offers a reduced noise content into the input vector of 
an RRBFN. 

Despite the use of a simple pitch post-processor, the pitch candidates pro- 
duced by the RRBFN have provided excellent pitch tracks for continuous speech 
using only the time domain representation of the signal and limited a priori 
information. These pitch candidates are suitable for pitch synchronous esti- 
mation, although it is preferable to use the initial voice source estimate as a 
more accurate guide to the areas of consistent dynamics within speech. This 
will enable future work to concentrate on the incorporation of the pitch into a 
non-linear ARMA model of speech which will be adapted on-line. 

The prediction of speech using only three sample also provides a firm basis 
on which to investigate further the underlying non-linear dynamics of speech. 
The final objective of this work will be the extraction of a minimal feature 
space for use in speech recognition, encoding, noise reduction, and synthesis. 
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Abstract: We have developed a speaker-independent, isolated-word recognition 
system using a neural network to recognize the underlying sequence of phonemes 
and a DTW technique to time-align the recognized sequence of phonemes with 
corresponding lexical sequences of phonemes. A significant feature of this system 
is the ability to easily change the vocabulary, since the lexical entries are simply 
derived from their phoneme sequences. 

INTRODUCTION 

Because of its ability to time-align two perceptually-equivalent spoken words, 
Dynamic Time Warping (DTW) is a technique that is often used in speaker- 
independent, isolated-word recognition systems [1][2]. As initially formulated, the 
DTW technique compares the sequence of spectra comprising a spoken word with 
the corresponding spectral sequences from each word in the lexicon. The most 
similar lexical entry, as measured by the minimum amount of distortion in both 
time and frequency, is declared to be the recognized word. However, it is well 
known that two spectral sequence patterns of the same word spoken on different 
occasions by the same speaker or by two different speakers may differ appreciably 
in both duration and frequency aspects. Duration variations are implicitly 
accounted for by using the DTW alignment technique. Frequency differences are 
minimized by averaging the component spectral patterns of multiple versions of 
each word spoken by multiple speakers. Creating the average patterns of spectral 
sequences for each word in the vocabulary to be recognized requires exemplars of 
actual speech, including multiple versions of each word spoken by multiple 
speakers. This requirement makes it very difficult to change the vocabulary of the 
recognition system, perhaps intractable for large vocabularies. In this paper we 
will present a word recognition system to solve the difficulty in changing the 
vocabulary. 

DESIGN OF THE WORD RECOGNITION SYSTEM 

Outline of Design 

To overcome the problem inherent in vocabulary modification, we have developed 
a speech recognition system (Fig. 1) which uses phoneme recognition as a prelude 
to word recognition. Phoneme recognition is accomplished using a neural network, 
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with spectral patterns as input and recognized phonemes as output. Word 
recognition is achieved by applying a DTW technique, which aligns phoneme 
sequences rather than spectral sequences of the spoken word with the words in the 
vocabulary. A simple method is applied to calculate the distance between two 
phonemes, instead of calculating Euclidean distance between two spectra. The 
feature extraction, phoneme recognition by a neural network and word recognition 
by DTW matching are realized on CNAPS, which is a parallel processing system 
[6]. 

PHONEME RECOGNIITONT 

SIGNAL CAPTURE 

I SPEECH DATA 

FEATURE EXTRACTION | 

I SPECTRUM 

^HONEME RECOGNIITON 

WORD RECOGNITION 

PHONEMES 

)ICTIONARY> WORD RECOGNITION   | 

t WORD 

FIGURE 1. SYSTEM ARCHITECTURE 

Phoneme Recognition Component 

The speech recognition system operates over the telephone. The received analog 
signal is sampled at 8 kHz, and translated into a sequence of 27-component mel 
spectral feature vectors by Hanning window for window widths of 16 ms. advanced 
at 12 ms intervals. Each feature vector, together with the two preceding and two 
following feature vectors, is fed to a back propagation neural network (NN). The 
outputs of the NN arc the 23 possible phoneme categories, with the category 
receiving the highest activation being the identity associated with the center 
input feature vector. The total architecture of the NN is 135 input units (27 x 5), 
220 hidden units (as determined by experiment), and 23 output units (Figure 2). 
The NN was trained using 2 repetitions of each of the 101 words in the vocabulary 
by 15 different male speakers. The vocabulary is determined so that it covers all 
possible consonant-vowel, vowel-consonant vowel-vowel phonemic environment 
in Japanese. During the recognition of an unknown word, the phoneme 
recognition component uses the trained NN to determine the first and second 
candidate phoneme identities corresponding to each feature vector, which it passes 
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on to the word recognition component. 

•aiueo   
?«oooooooooooooc 23 OUTPUT 

iCXXXXXXX3000C>C>OOOOOOOOOOOOOC)OOOb  220       HIDDEN 

27x5  INPUT 

FIGURE 2. NEURAL NET FOR PHONEME RECOGNITION 

Word Recognition Component 

The word recognition component receives the sequence of first and second best 
phoneme guesses from the phoneme recognition component. This input sequence 
is compared with each of the phonemically-encoded templates of the words in the 
current vocabulary, and the most similar one is declared to be the recognized word. 
Since the domain of representation of the unknown word and the vocabulary 
templates is phoneme sequences, a simple method is used to perform the 
comparison (DTW matching) instead of the Euclidean distance. If the first and 
second guesses of the i-th frame data of a spoken word are P,(i) and P2(i), and the 
j-th phoneme of the template t is Pt(j), then the distance at (i, j) is decided 
according to (1). 

d(i,j)-if 
P,(i)-P,(j) 
Pi(i)-P,(j) andP2(i)-Pt(j) 

P^O-P.Ü) andP2(i)*Pt(j) 

then (1) 

The DTW path algorithm allows three choices: right-one, right-one-and-up-one, 
and right-one-and-up-two, all with the same weight. In other words, when 
calculating the accumulated distance g(i, j) at (i, j), (2) is used. 

g(i,j)-min 
g(i-lj) 
g(i-lj-l) 
g(i-lJ-2) 

+ d(i,j) (2) 

Templates 

To create the phoneme sequence representation for a word in the recognition 
vocabulary, the required information is a phonemic transcription, and the duration 
of each of the component phonemes. The phonemic transcription is a trivial 
matter especially in Japanese, and the associated duration is defined by a technique 
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for speech synthesis technology [4]. It determines the duration of the phoneme 
considering the one preceding phoneme and one following phoneme using a table, 
which was beforehand obtained from duration information of real spoken words. 
The duration is calculated with the table and a rule according to the length of the 
word. The duration L(P^, )of the i-th phoneme P^ of a word w whose mora is 
Mw is calculated by (3). 

L(P; ) - *(p;', p;, p;+1) MW +b(p;', P; , P;
+1
 ), (3) 

where k(x, y, z) and b(x, y, z) are coefficients for the phoneme y between the 
phoneme x and z. Those coefficients were beforehand obtained from duration 
information of real spoken words. 
Finally a phoneme sequence like "zzzeeerroooo" is generated from a transcribed 

word "zero" and its duration information obtained by the technique. 

RECOGNITION EXPERIMENT 

Phoneme and Word Recognition Experiment 

An experiment was conducted to measure the performance of this speech 
recognition system. As already mentioned above, the NN for phoneme recognition 
was trained using 2 repetitions of each of the 101 words by 15 male speakers 
(training speaker set 1 as seen in Fig. 3). The data for testing consists of 2 
repetitions of the 101 words by 5 male speakers excluded from the training of the 
system (testing speaker set 1 as seen in Fig. 3). Table 1 shows the results of 
phoneme recognition. Each recognition rate is the average of those of the 23 
phoneme categories. Table 2 shows the results of word recognition. 

TABLE 1. PHONEME RECOGNITION RESULTS 
SPEAKER SET FIRST GUESS (%) SECOND GUESS (%) 

TRAINING SPEAKER 1 82.63 89.63 
TESTING SPEAKER 1 70.10 83.10 

TABLE 2. WORD RECOGNITION RESULTS (101 WORDS) 
SPEAKER SET RECOG. RATE (%) 

TRAINING SPEAKER 1 98.45 
TESTING SPEAKER 1 97.23 

Open Word Recognition Experiment 

Another word set was also tested as open word recognition test. It has 100 words 
different from the 101 words used for the above experiment. It consists of 2 
repetitions of the 100 words by 6 male speakers. The content of 6 speakers is 3 
training speakers out of 15 training speakers and 3 testing speakers out of 5 testing 
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speakers (training speaker set 2 and testing speaker set 2 as seen in Fig. 3). 

TABLE 3. WORD RECOGNITION RESULTS (100 WORDS) 
SPEAKER SET RECOG. RATE (%) 

TRAINING SPEAKER 2 98.00 
TESTING SPEAKER 2 97.50 

Incidentally, the word recognition rate was calculated with the data of the 101 
words only by the 6 speakers which are same as those of this experiment. The 
results are shown in Table 4. 

TABLE 4. WORD RECOGNITION RESULTS (101 WORDS) 
SPEAKER SET RECOG. RATE (%) 

TRAINING SPEAKER 2 98.35 
TESTING SPEAKER 2 97.69 

As seen in the tables, over 97% recognition rate is achieved with testing speakers 
and over 98% for training speakers. Since there are few differences between the 
results of 101 word-set and those of 100 word-set, it can be said that the system 
has vocabulary independence. 

TRAINING SPEAKER 1 

m 

TRAINING SPEAKER 2 
3 

TESTING SPEAKER 1 
\ 

< 

TESTING SPEAKER 2 
111 

J 

FIGURE 3. SPEAKER SET 
SHOWS NUMBER OF SPEAKER 

CONCLUSION 

A speech recognition system has been developed which achieves 97% isolated- 
word, speaker-independent recognition for an untrained word vocabulary. A 
significant feature of this system is that the vocabulary templates are represented 
as phoneme sequences, which enables the capability to easily change the 
vocabulary. 
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Abstract. In this contribution we report about investigations concern- 
ing the application of fully recurrent neural networks (FRNN) for speaker 
independent speech recognition. In a phoneme based recognition system 
separate FRNN are used for feature scoring as well as for compensat- 
ing variations in time durations of speech segments. A recognizer with a 
FRNN for feature scoring achieves the same recognition rate as a recogni- 
tion system where the context information is provided. The performance 
of the FRNN used for time alignment is comparable to that of a viterbi 
based alignment with durational constraints. Additionally, a monolithic 
speech recognizer is realized by FRNN which directly classifies feature se- 
quences. The performance of this FRNN is comparable to that of speech 
recognition systems which are based on discrete Hidden Markov Models 
and use a sophisticated durational modeling. Furthermore, simulation 
experiments revealed that FRNN are able to extract relevant informa- 
tion for speech recognition from noise contaminated speech and thus 
achieve a robust recognition performance. 

1. INTRODUCTION 

Speech recognition sytems (SRS) are faced with two basic problems. Ex- 
ploiting of contextual information between feature vectors during the fea- 
ture scoring and compensation of variations in time durations of speech 
segments. 

In SRS feature scoring is the process of assigning a feature vector 
likelihood values characterizing its belonging to the phoneme or word 
categories. The more contextual information about a feature vector is 
taken into account in this process the more uniquely the likelihoods 
indicate a specific category. Speech recognizers based on Hidden Markov 
Models use time derivatives of feature vectors to incorporate contextual 
information. SRS with artificial neural networks (ANN), like time-delay 
neural networks (TDNN) [1, 2], use a sliding window containing several 
consecutive feature vectors as input and delayed versions of hidden layer 
activities in order to exploit dependencies of these vectors. 

The variations in time durations of speech units are usually compen- 
sated during the calculation of word hypotheses by means of a dynamic 
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programming method which is usually the viterbi algorithm. In the time 
alignment via viterbi algorithm the feature scores are mapped onto the 
phoneme sequence denning a word in such a way that the accumulated 
scores achieve a maximum value. 

As a consequence, the different algorithms for feature scoring and the 
time alignment lead to a heterogeneous structure in realization of SRS. 
In this contribution we report about investigations to realize SRS with 
FRNN. FRNN is the most general type of recurrent network because all 
neurons are connected to all other neurons and to itself. Therefore, the 
performance of FRNN is not limited due to structural constraints. Two 
different FRNN based recognition approaches are investigated. Firstly, a 
phoneme based recognizer in which the feature scoring as well as the time 
alignment is performed by FRNN. The performance of the FRNN used 
for feature scoring is compared to that of a TDNN with optimized delay 
structure in order to evaluate the capability of FRNN to extract contex- 
tual information. The performance of the time alignment network FRNN 
is compared to that of viterbi alignment procedures including different 
types of phoneme duration modeling. Secondly, a monolithic SRS con- 
sisting of a FRNN which directly classifies feature vector sequences and 
thus combines feature scoring and time alignment is presented. The ro- 
bustness of this FRNN against additive noise contaminating a speech sig- 
nal is discussed in comparison to SRS based on discrete Hidden Markov 
Models. 

2. FULLY RECURRENT NEURAL NETWORKS 

Time discrete FRNN are neural networks with dynamic behaviour. Be- 
cause of the fully connected recurrent structure, each connection has a 
minimum time delay of one time step. With each input pattern x(t) the 
activities of all neurons are updated and an output pattern is emitted. 

To distinguish between different types of neurons, the indices of the 
input neurons are denoted as I, the indices of the internal neurons as U, 
and the indices of the output neurons as O. The activity of neuron j at 
time t + 1 can be calculated as 

hj(t + l)=  J2 «WO. w 
tewuz 

xj(t + l) = Fj(hj(t + l))    . (2) 

with W = {wij} denoting the weigth-matrix, F, a differentiate activa- 
tion function and x,(t) the activity of neuron i at time t. 

The dynamic behaviour of a FRNN up to time t can be equivalently 
described by a feedforward multi-layer-perceptron (MLP) with t layers 
[3]. Therefore, the weights Wij can be calculated using a modified version 
of the gradient descent algorithm error back-propagation (EBP). In con- 
trast to MLP-networks, the input, the output, and the target patterns 
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are functions of time t. The time parameter t is equivalent to the layer 
index / of a MLP. EBP through the layers / can be interpreted as an 
"error backpropagation through time" (BPTT) [4]. 

The error-function which has to be minimized is the sum of the 
quadratic errors of the network over the time period ta to te, i.e. 

(3) 

where Zk{t) denotes the desired target function. 
In BPTT the weights are changed in direction of the error-gradient 

de(ta,te) 

^ dE(t) 

For t-- = te the gradient can be written as 

d-^ = -ei{te)F<(hj{ie))xi{te-l)    , (4) 

with 

e*w ~ { 0                  k £ 0 

and 
6j(U) = ejiQFJihjiU)). (5) 

The weight change arising at time te can be written as 

Awij(te) = T)8j(te)xi(te-l)    . (6) 

For earlier time steps two forms of errors have to be considered. First, 

(7) 

the error which corresponds to the error in the hidden layers of a 
and second, the error resulting from the output pattern which is 
by 

6](t) = ej(t)Fj(hj(t))    . 

MLP 
given 

(8) 

Denoting the sum of these two error components as 

=    ei{t)Fj(hj(t))+ £ *»Mt + l)Fj(hj(t)), 
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an analog weight change formular for times ta < t < tt 

Awij(t) = T)6j(t)xi(t-l) 

results. Starting at time t = te, the actual weight change can recursively 
be calculated for all times t < tt. Applying BPTT iteratively leads to a 
decrease of (3) till a minimum is reached. 

For efficient implementation of BPTT the gradient calculation is lim- 
ited to a time-period tr and BPTT is initiated only once after every 
tv < tr time steps. In this case, Sj(t) has to be calculated according to 

es(t)Fj{hj(t)) ;t = tB 

ejMFjihjtt)) + £ wik6k(t+l)F}{hj(t)) 

;t -tv < t < tB 

Yd
wi^k{t+l)F'j{hj{t))-tB-tr<t<tB-tv 

Sj(t)={ 

where tB denotes the time when a BPTT has been initiated [5]. The 
gradient resulting in this so called truncated BPTT is an approximation 
to the real gradient. The discrepancy depends on the parameters tr and 
tv. Therefore, tr and tv have to be optimized empirically for each task. 

3. SPEECH DATA 

The system vocabulary consists of the 10 German digits, the word Zwo, 
and 12 telephone command words. The speech signals were limited to 
telephone bandwidth and sampled with 8kHz. From these signals fea- 
ture vectors were extracted every 12ms, each consisting of 12 cepstral 
coefficients derived from LPC parameters. 

In the case of phoneme based recognizers for training of the net- 
work parameters the hand-labeled feature vectors of 50 utterances of 
each word, from different male and female speakers, were used. In the 
case of word based recognizers for the computing of the SRS parameters, 
feature vectors from 100 utterances of each word spoken from different 
male and female speakers, were used. In both cases speaker independent 
recognition rates were measured on the same disjunct set containing 100 
utterances of each word from speakers not included in the training set. 

4. FRNN FOR FEATURE SCORING AND TIME ALIGN- 
MENT 

First, feature vector scoring with FRNN was investigated. Networks 
with two different input constellations were considered. In the network 
FRNN1 an input pattern consists of a single feature vector, while in 
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internal neurons 

Figure 1: Recognition results for FRNN with different number of internal 
neurons in comparison to TDNN 

the network FRNN2 two consecutive feature vectors are combined to 
an input pattern. The networks have 24 output neurons, one for each 
phoneme category. For an input pattern the target output pattern used 
in the training of the connection weights contains a 1 in the place of the 
correct phoneme and a 0 in every other place. 

To evaluate the capability of FRNN to exploit automatically con- 
textual information, the recognition rates of the FRNN based SRS were 
compared with the rates of a SRS using TDNN with optimized delay 
structure. Word recognition rates were measured by feeding the out- 
put activities into a viterbi based time alignment including minimum 
phoneme duration constraints. The TDNN use a window of 3 consec- 
utive feature vectors as input and 40 hidden neurons, which activities 
together with the delayed activities, were connected to 24 output neu- 
rons. 

Figure 1 shows the recognition results of SRS with FRNN1 and 
FRNN2 for different numbers of internal neurons and for comparison the 
rate obtained with TDNN. As can be seen, using FRNN1 with about 115 
neurons for scoring of the feature vectors yields a recognition rate compa- 
rable to that achieved with TDNN. For adjusting the 15500 connection 
weights of FRNN1 150 training epochs were needed. In comparison to 
the TDNN, for which 2000 training epochs were necessary to optimize 
the 3400 connection weights, the training time is reduced by the factor 
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Table 1: Word recognition rates (WR) for different realizations of time 
alignment 

Alignment WR[%] 

TAFRNN 96.9 

VIT 96.0 

VITMD 96.9 

VITPDM 97.8 

of 2. With FRNN2 the recognition rates of the SRS with FRNN1 or 
TDNN for feature scoring are achieved with only 45 neurons. This result 
indicates that in FRNN1 some neurons are required for storing input 
information. Increasing the number of neurons in FRNN2 increases the 
recognition rate only slightly. The highest recognition rate of 96.9% was 
achieved by a network with 121 neurons after 200 epochs of training. 
Due to the decimation of the number of input vectors by a factor of 2, 
the training time of FRNN2 is also reduced by a factor of 2 as compared 
to FRNN1. These results indicate that both FRNN variants are able to 
extract contextual information automatically. 

In further simulation experiments it was investigated whether a 
viterbi alignment procedure could be replaced by a FRNN. This time 
alignment network, further denoted as TAFRNN, was trained to map 
the feature scores onto word scores. Therefore, the TAFRNN has 24 in- 
put neurons in which the phoneme scores of FRNN2 were fed in and 
11 output neurons, one for each word of the system vocabulary. Word 
hypotheses were generated by accumulating the activities of the output 
units over the duration of an utterance. 

In order to evaluate the performance of TAFRNN, viterbi based align- 
ment procedures using different types of phoneme duration modeling 
were simulated. VIT is a time alignment module consisting of an uncon- 
straint viterbi algorithm. In VITMD minimum phoneme durations are 
forced by transition constraints applied to the viterbi-path. VITPDM 
includes a sophisticated phoneme duration modeling. Each phoneme is 
modeled with a markov chain. The transition probabilities between the 
states of a markov chain are chosen in accordance with the duration 
distribution of the corresponding phoneme [6]. 

As can be seen from Table 1, using TAFRNN with 120 neurons a 
recognition rate of about 97% is obtained. TAFRNN outperforms VIT 
and achieves a result comparable to that of VITMD. Only VITPDM 
achieve with about 98% a higher rate than TAFRNN. 

The results of these simulation experiments indicate that the task of 
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time alignment in an SRS can be accomplished with FRNN. However, 
further investigations are necessary to see what network sizes have to be 
considered for larger system vocabularies. 

5. SPEECH RECOGNITION ON THE BASIS OF MONO- 
LITHIC FRNN 

5.1 Configuration and Performance of a Monolithic Recognizer 

In a second set of simulation experiments it was investigated whether 
FRNN are able to combine feature scoring and time alignment in a 
single network, further denoted as MFRNN. In these experiments the 
system vocabulary was extended to 23 words which arise in a telephone 
task. To evaluate the performance of FRNN, two SRS (Dl, D2) based 
on discrete Hidden Markov Models were realized . While in the case of 
Dl 12 weighted Cepstral coefficients are used as feature vectors, which 
are quantized using 128 codebook vectors, in the case of D2 12 Delta co- 
efficients, which are also quantized with 128 codebook vectors, are used 
in addition to the cepstral coefficients. A word model consists in both 
systems of 5 states each with 5 substates. This allows a sophisticated 
modeling of state duration and is comparable to VITPDM. 

The MFRNN was trained to estimate word probabilities for each in- 
put pattern consisting of five consecutive feature vectors. As in TAFRNN 
word hypotheses were generated by accumulating the word probabilities 
represented by the activities of the output units over the duration of 
an utterance. Therefore, MFRNN has 60 input neurons and 23 output 
neurons. Experiments concerned with the optimization of network size 
revealed that about 160 internal neurons are sufficient to manage the 
task. This MFRNN achieves a recognition rate of 96.7% and thus out- 
performs Dl which achieves only 95.2% on the same task. Obviously, 
MFRNN is able to exploit automatically information about the dynamic 
of the feature vectors. This is also confirmed by the fact that D2, which 
uses DCep for representing dynamical information of the feature vectors, 
achieves with 97.3% about the same recognition rate as MFRNN. 

In Figure 2 the activities of the output neurons representing the digits 
are shown during recognition of the utterances Zwei, Eins, Neun, Null, 
Sieben, and Sieben. This string of digits is arranged in order to investi- 
gate the capability of MFRNN for continuous speech recognition. The 
word Zwei and the word Eins share the same phonetic unit / al/ at their 
boundary as well as the words Neun and Null share /n/. As can be seen 
from Figure 2, at both boundaries the output neuron belonging to the 
preceding word shows a high activity for a small number of input pat- 
terns. Nevertheless, the activity of the output neuron belonging to the 
right word is dominant. The last word pair consists of two utterances 
of the word Sieben. Obviously, this is a hard task for MFRNN because 
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Figure 2: Activities of the output neurons representing the digits during 
recognition of the utterances Zwei, Eins, Neun, Null, Sieben, Sieien with 
MFRNN 

it could be expected that the output neuron corresponding to the word 
Sieben will show an activity near the value 1 during both utterances. As 
can be seen from Figure 2, the curve representing the activity of the neu- 
ron belonging to the word Sieben has a minimum at the boundary which 
is remarkable because MFRNN receives no explicit information about 
word boundaries. These results indicate that MFRNN is a promising 
tool for continuous speech recognition. 

5.2 Evaluation of the Monolithic FRNN Recognizer in Noisy 
Environment s 

In order to assess the robustness of MFRNN utterances distorted by 
additive white gaussian noise (WGN), office noise (ON) recorded at a 
big computer fair, and running car noise (RCN) recorded in the cabin of 
a running car at different speed and driving situations were recognized. 
The noise was added such that a signal-to-noise ratio (SNR) of OdB, 
lOdB, and 20dB for each word resulted. As can be seen from Table 2, 
the recognition performance of MFRNN break down when confronted 
with noisy speech while Dl and D2 are more robust. Especially, for 
speech signals distorted by ON or RCN with a SNR of 20dB D2 achieves 
recognition rates of about 93%. However, for speech with additive noise 
at OdB all sytems reach only very poor results. 

In former work [7] it has been shown that SRS based on discrete 
Hidden Markov Models yield good recognition results if the model pa- 
rameters were trained with noisy speech. Therefore, noise classification 
methods have been developed for SNR independent classification of the 
noise type. Using the noise classifier a robust speech recognizer can be 
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Table 2: Recognition rates for the speech signals of the test sequence 
contaminated with WGN, ON, and RCN with SNR values of OdB, lOdB, 
and 20dB for non adapted and noise type adapted SRS 

non adapted                noise type adapted 
SNR Dl D2    MFRNN       Dl      D2    MFRNN 

WGN 
clean 95.2 97.3 96.9 95.1 96.7 95.7 
20dB 58.7 78.7 19.1 88.0 93.3 93.4 
lOdB 16.7 29.1 6.5 77.3 83.4 86.4 
OdB 5.3 6.1 4.4 39.7 48.0 64.6 

ON 
clean 95.2 97.3 96.9 94.8 96.5 94.7 
20dB 91.2 94.7 34.0 93.5 96.2 93.8 
lOdB 62.3 73.0 9.5 79.4 87.1 83.2 
OdB 18.6 25.0 3.7 31.7 38.9 35.5 

RCN 
clean 95.2 97.3 96.9 93.9 96.6 95.2 
20dB 91.0 95.1 31.3 93.3 95.8 93.6 
lOdB 59.7 79.8 6.2 80.0 89.3 84.8 
OdB 21.8 34.4 5.2 32.5 46.9 52.0 

realized by switching between noise type adapted SRS. Here we inves- 
tigated the capability of MFRNN to adapt to a noise type by using a 
mixture of 40% clean speech signals and 60% noisy speech signals, con- 
taining OdB, lOdB and 20dB signals, in the training sequence. It has 
to be noticed that the paramaters of the noise type adapted SRS has 
not been enlarged. As can be seen from Table 2, the adapted SRS show 
significantly improved recognition results for noisy speech while recog- 
nition rates for clean speech decrease only slightly. Especially, MFRNN 
outperforms Dl after adaptation. Moreover, in the case of WGN the 
recognition rates of MFRNN are substantially higher than those of D2. 
But in the case of ON or RCN the results of Table 2 show that D2, which 
receives explicit information about the dynamic structure of the feature 
vectors, achieves higher rates than MFRNN. 

These experiments demonstrate the capability of MFRNN to ex- 
tract relevant information for speech recognition from noise contami- 
nated speech and thus achieve a robust recognition performance. Further 
experiments to train MFRNN for recognition of speech signals contam- 
inated with different noise types as well as different SNR levels show 
promising results. 
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6. CONCLUSIONS 

The investigations show that FRNN are trainable whithin reasonable 
training time to solve basic problems of speech recognition. It has been 
revealed that FRNN are able to exploit contextual information of fea- 
ture vectors automatically as well as to compensate the variations in 
time durations of speech segments. Furthermore, it has been shown that 
incorporating feature scoring and time alignment in a single FRNN is a 
adequate concept for realizing a monolithic SRS for small vocabularies. 
The monolithic FRNN achieves recognition rates which are comparable 
to SRS based on discrete Hidden Markov Models using Cep and DCep 
feature vectors and a sophisticated modeling of state duration. Moreover, 
monolithic FRNN show a great capability to adapt to a special noise 
type. These results indicate that FRNN are powerful tools for robust 
recognition of isolated words and a promising concept for recognition of 
continuous speech. Especially, the monolithic SRS consisting of a single 
FRNN is well suited for an efficient hardware implementation. 

Current investigations are concentrated on using DCep feature vec- 
tors as additional input patterns in FRNN. In further investigations 
problems important for hardware realization of monolithic FRNN will 
be considered. 

This work is supported by the Deutsche Forschungsgemeinschaft in the 
research program 'System- und Schaltung st echnik für hochgradige Paral- 
lelverarbeitung'. 
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1. INTRODUCTION 

Fuzzy neural networks are known to be better classifiers than non-fuzzy neural 
networks in speech recognition [1][2]. In this paper we show that fuzzification of 
formant data of a sequence of frames in the transition region of a CV utterance 
improves recognition of CV utterances. Reliable spotting of CV segments in 
continuous speech can significantly improve the performance of a speech-to text 
system [3]. CV segments also form the basic speech production units in most 
languages, and as such carry significant information content about the message in 
the speech utterance. Formant transitions in the transition region of a CV segment 
provide important clues for recognition of stop consonant CV segments [4]. There- 
fore, it is necessary to obtain a suitable parametric representation of speech data 
in the transition region of a CV segment to be used as input to a classifier. In the 
next section we discuss the choice of formants as features representing the CV 
segments and the fuzzy nature of these features. The details of a fuzzy neural 
network classifier based on the ideas in [1] are discussed in Section 3. We present 
methods for fuzzification of formant trajectories in Section 4. We present the results 
of studies on recognition of CV segments using different methods of fuzzification 
of formant data in Section 5. 

2. FUZZY NATURE OF FORMANT FEATURES 

In continuous speech the same CV may occur in different contexts. Moreover, 
there will also be variability in speech production due to different speakers. 
Therefore there may be variability in the features of the utterance due to variability 
in speech production as well as due to context. All these factors lead to feature 
data that can best be described in linguistic terms, such as 'low5, 'medium' and 'high', 
which in turn can best be expressed as values of membership functions of fuzzy sets. 

It is necessary to represent the production information in the speech signal in 
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suitable parameters or features for input to a classifier. Parameters like spectral 
coefficients, ccpstral coefficients, etc., are likely to be influenced by the nature of 
signal processing as well, besides the natural variations in the production process. 
Variations due to signal processing operations contribute to distortion and noise, 
rather than fuzzincss. Therefore it is preferable to consider articulatory or related 
acoustic parameters like formants as features representing the CV segments. 
Formants are relatively easier to extract compared to the articulatory 
parameters[5]. Formant features also reflect the dynamics of the vocal tract system 
in the form of formant trajectories. Therefore the formants were selected as 
parameters to represent the CV segments in this study. 

Speaker variability is caused due to differences in the dimensions of the vocal tract 
systems. In order to compensate this to some extent, ratios of formants may be 
considered as features. Since we are considering in this study only data from two 
speakers, we have decided to consider only the formant values as features. Formant 
data is collected for successive frames of speech signal data in each CV segment. 

Formants are resonances of the vocal tract system, and hence any natural varia- 
tions in the shape of the vocal tract are reflected in these resonances as well. Since 
variability due to speech, context and speaker is all reflected in the formant 
trajectories, the formant data can be assumed fuzzy, and the data is fuzzified before 
feeding it to a neural network classifier for training and testing. 

Fuzzification of formant data involves several issues. For example, one could 
fuzzily the features individually in the frequency and time domains. But it appears 
more logical if the fuzzification could be done knowing that the three formants 
should occur together as a set in each frame. Also the formants in successive frames 
are not independent. Hence this dependency should also be considered in fuzzi- 
fying the input data to the neural network classifier. 

It is natural to expect that the class labels will not be crisp either, due to significant 
overlap of features across the different classes of CV segments. Therefore, for 
effective classification, it is preferable that the output classes are fuzzy. In the next 
section we describe a fuzzy neural network classifier that takes fuzzy input data. 

3. FUZZY NEURAL NETWORK CLASSIFIER 

It was shown in [1] that fuzzification of input data and the output class label data 
improves the classification performance of a multilayer perceptron network for 
recognition of vowels using formants as features. The network takes as input the 
values of fuzzy membership functions for each of the three formants. Each input 
feature Fj in quantitative form is expressed in terms of membership values to each 
of the three linguistic properties 'Low', 'Medium' and 'High'. The membership 
function is used to assign membership values for the input features. The member- 
ship function in one-dimensional form, with range [0,1], is defined as given below. 
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f 2(l-( | x-c |/r))2, forr/2 < | x-c| < r, 

ji (x:c, r)  = \ 1-2 ( | x-c | /r)2, for 0 < | x-c | < r/2, (1) 

0, otherwise, 

where x is a pattern point, r is the radius of thejt function and c is the central point. 

The fuzzy sets for the linguistic properties 'Low', 'Medium' and 'High' for each 
formant are represented by membership functions x\_, jrMand Jt H respectively. 
The parameters of these membership functions are defined below. 

Let Fjmax- and Fjmin be the upper and lower bounds of feature Fj in all pattern 
points. For the three linguistic property sets, parameters are defined as 

rM(Fj) = 0.5 (Fjmax - Fjmin) (2a) 

CM(FJ) = Fjmin + rM(Fj) (2b) 

ri/Fj) = (cM(Fj) - Fjmin)/fdenom (2c) 

CL(Fj) = cM(Fj)-0.5rL(Fj) (2d) 

rH(Fj) = (Fjmax - CM(Fj))/fdenom (2e) 

CH(Fj) = CM(Fj) + 0.5rH(Fj) (2f) 

where 'fdenom' is a parameter controlling the extent of overlapping. 
The three n membership functions are defined for each of the three formants and 

for each of the N frames in the transition region of a CV segment. Thus a CV 
segment is represented by an Nx9-dimensional matrix of membership values. Such 
Nx9-dimensional patterns derived from formant feature vectors of CV segments 
are used as input to a neural network classifier. 

During the training phase, the desired output vector is expressed as the desired 
membership values, lying in the range [0,1]. To obtain these membership values, 
the distance of a training pattern F from the average pattern Ok for the kth class is 
defined as 

<= v ~ 2 i (F(ij)-ok(ij))
2 Zk= v <wv if. .if  CWJ-<^W) <3) 

The membership value for the training pattern F to the kth class is defined as 
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ä,(F)   = fe 

where the positive constants fd and fe control the amount of fuzziness in the 
class-membership set. The desired output vector for a training pattern is obtained 
by computing the membership values for the pattern to each of the classes and used 
in training the multilayer perceptron network. 

In fuzzification of the input data, the formant features for each frame are fuzzified 
independently. But, there is a sequence of frames in each CV segment, and the data 
in each frame depends to some extent on the adjacent frames. This fact must be 
used in fuzzification of formant trajectories. Two methods of fuzzification of 
sequences of formant data are presented in the next section. 

4. FUZZIFICATION OF FORMANT TRAJECTORIES 

The formant data for one frame is dependent on the adjacent frames. This 
time-dependency can be incorporated in the fuzzification of the trajectories by 
reducing the variability allowed for the subsequent frames given the variability of 
the current frame. The reduction in variability allowed for subsequent frames can 
be realized by decreasing the radii of the membership functions for fuzzy subsets 
of features in those frames, and correspondingly modifying the centers of the 
functions. 
The parameters of the membership functions for the features in the first frame 

are defined as in (2). The parameters of the functions for subsequent frames are 
obtained from those of the first frame as follows: 

riM(Fj) = (1 - a) * r (i-i)M(Fj) (5a) 

CiM(Fj) = Fjimin + ß * riM(Fj) (5b) 

riL(Fj) = (l-«)«r(i-i)L(Fj) (5c) 

CiL(Fj) = CiM - 0.5 * ß * riL(Fj) (5d) 

riii(Fj) = (l-a)*r(i-i)H(Fj) (5e) 

Cin(Fj) = ciM + 0.5 * ß * riH(Fj) (50 

where i is the frame number and 2 < i < N. The constants a and ß are chosen 
such that the distance between the average patterns of the classes is maximum. 
Typical values for the constants a and ß are 0.075 and 1.30, respectively. 

Another way of incorporating the time dependency is to use multi-dimensional 
membership functions for groups of adjacent frames. The parameters for the 
multi-dimensional membership functions are obtained from the parameters of the 
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one-dimensional membership functions of features for individual frames. The 
definition of one-dimensional function in (1) is extended for an n-dimensional 
function of a group of n adjacent frames as given below: 

r2(l-( || x-c  || IT))
2
, for r/2 <   || x-c ||  < r, 

jr(x:c,r)=« 1-2 ( ||x-c  ||   /r)2,  for  0<   ||    x-c||   < r/2, (6) 

0,   otherwise, 

where x is the vector of values of a feature in n adjacent frames, c is the mean vector 
of x's for all patterns, and r is the radius of the n-dimensional function. The radius 
of the n-dimensional function is obtained from the radii, T\, of one-dimensional 
functions of feature in individual frames. 

-VT 2>? (7) 
i = l 

A two-dimensional K function was used in our studies on recognition of CV 
segments in continuous speech. We present the effects of the methods of fuzzifica- 
tion on the performance of a classifier for CV segments in the next section. 

5. STUDIES ON RECOGNITION OF CV UTTERANCES 

Speech data for the studies described in this section was collected from utterances 
of several sentences in Hindi (an Indian language) spoken by two male speakers. 
From these utterances, occurrences of CV segments are manually excised by visual 
inspection of the speech signal waveform and by careful listening of the segmented 
data. Data for the following 9 CV classes have been collected: /ka/, /ke/, /ko/, /ga/, 
/ta/, /to/, /dha/, /pa/ and /ba/. The choice of these classes was mostly dictated by the 
availability of sufficient numbers of these segments in the speech data collected for 
several sentences. 

For each CV segment only a fixed 40 msec portion around the vowel onset point 
was considered. This portion generally reflects the transition of the vocal tract 
system from the place of articulation corresponding to the consonant position to 
the shape of the vocal tract corresponding to the following vowel, including some 
steady vowel part. Formants were extracted using linear prediction analysis for 
each frame of size 128 samples at 10 kHz sampling rate, with a shift of 32 samples. 
The formant contours were hand edited and smoothed to remove spurious peaks. 
From the resulting smooth contours the first three formants were obtained for each 
of the 10 frames in a CV segment. 

The formant data is fuzzified using methods discussed in Sections 3 and 4. Thus 
for each CV segment, a 90-dimensional vector of membership values is generated. 
This representation is used as input to the classifier. The desired output data is also 

349 



fuzzificd as discussed in Section 3 for training the neural network classifier. 
The classifier is a multilayer feedforward network trained using back propagation 

algorithm. Three hidden layers were used in the network. The number nodes in 
each of the hidden layers was chosen as 50. A total of 150 patterns belonging to 9 
CV utterance classes were used for training the network using backpropagation 
algorithm. A total of 150 patterns were used as test data. The classification 
performance on test data for different methods of fuzzification is given in Tablel. 
The performance is given for two cases of deciding the correct class: (1) correct 
class is the class with the highest output and (2) correct class is amongst the classes 
with the highest and the second highest outputs. 

TABLE 1: COMPARISON OF CLASSIFICATION PERFORMANCE FOR 
DIFFERENT FUZZIFICATION METHODS 

Fuzzification Method Casel Case2 

Non-fuzzy inputs 

Fuzzification of individual frames 

Fuzzification by variability reduction 

Fuzzification using 2-dimensional function 

29.5 

62.9 

70.2 

73.5 

46.3 

82.1 

84.8 

85.4 

6. CONCLUSIONS 

The studies reported in this paper show that fuzzification of input and output 
data improves the recognition accuracy of CV segments. In particular, fuzzification 
of input data taking into account the fact that the formant data is for a sequence of 
frames, improves the recognition of CV segments significantly. In these studies only 
a simple method was used to implement the dependence of fuzziness on the 
sequence. But a more sophisticated data dependent approach for determining the 
fuzzy membership values for data both along frequency and along time may improve 
the recognition performance still further. 
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Abstract — A novel spotter design method, i.e., Minimum 
Error Classification of Keyword-Sequences (MECK), is pro- 
posed. In contrast with conventional approaches, the proposed 
method directly aims at reducing errors of classifying keyword- 
sequences (strings of prescribed keyword categories) through a 
mathematically proven, GPD-based optimization process. Ex- 
periments in Japanese keyword spotting tasks clearly demon- 
strate the utility of a MECK-trained, prototype-based spotter. 

1     Introduction 
The recognition of natural and spontaneous speech utterances is an 
important issue for realizing a user-friendly human-machine interface. 
Since natural speech often contains ill-conditioned phenomena such as 
hesitations or repetitions, it has been considered that a word-by-word 
modeling approach to recognition is insufficient (e.g., [1]). Recently, 
keyword spotting has been studied as an alternative to this conventional 
approach with increasing vigor [2]-[5]. 

The goal of spotting is to correctly spot (detect) all of the prescribed 
keywords included in an input utterance; in other words, to correctly 
classify the input as one of the possible keyword-sequences (strings of 
prescribed keyword categories). The keyword-sequence itself can be an 
input to a post-end process such as context, modeling or semantic mod- 
eling. Spoiler (spotting system) performance should thus be evaluated 
by the classification accuracy of the keyword-sequences instead of the 
accuracy of individual spotting decisions. However, as seen in litera- 
ture [2]-[5], recent, efforts have actually been made in reduction of indi- 

This study was conducted while (lie authors worked at ATR Human Information 
Processing Research Laboratories. 
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vidual spotting decision errors and also been entailing no optimality in 
the sense of minimum error classification of keyword-sequences. 

In light, of this, we propose in this paper a novel design method 
for spotters, i.e., Minimum Error Classification of Keyword-sequences 
(MECK). Key concepts of this method are 1) to formalize the spotting 
process as a. smooth and trainable functional form with the design objec- 
tive being the keyword-sequence classification accuracy, 2) to formulate 
an individual keyword spotting as a two-class segmentation/classification 
by using the a posteriori odds-based discriminant function, and 3) to in- 
troduce a mathematically proven, GPD-based optimization to achieve 
the optimal (minimum keyword-sequence classification error) status of 
the spotter. 

MECK is quite general and can be applied to any reasonable spotter 
structure, including artificial neural networks. By way of example, we 
present a prototype-based spotter whose structure has been widely used 
in the Learning Vector Quantization (LVQ) application, and evaluate 
this one in several Japanese keyword spotting tasks. 

2    Definition 

2.1    Problem formalization 

Classification is a simple process to assign one of the possible classes to a 
given pattern, and it does not include a process to segment (extract) the 
pattern from its background's wider or larger signal. Similarly, spoken 
word classification is defined as a process to classify a word segment pre- 
segmented from a continuous speech utterance as one of the possible word 
classes. Obviously, for continuous speech recognition, this simple-minded 
classification is insufficient and an appropriate link of segmentation and 
classification is required. Spotting can be considered the very framework 
to achieve this link directly. However, in reality, these two processes 
are designed separately, entailing no guarantee of the resulting spotting 
optimality. A main effort in our formalization is therefore to embed this 
complicated process in a unified functional form that is suited for the 
use of mathematically proven optimization techniques. 

For clarity of presentation, in addition to the term of keyword-sequence 
classification (word-sequence classification for short), we define here the 
following two terms: 1) keyivord-sequence spotting (word-sequence spot- 
ting for short) being used to decide whether a sequence of keywords is 
included in a given utterance and the location of these keywords, and 2) 
keyword-spotting (word-spotting for short) being used to decide whether 
a. keyword exists in a preset segment. 

Assume that our task is to classify a. given speech utterance X as one 
of C possible keyword-sequence classes, each consisting of only prescribed 
keyword names. Each utterance is represented in the form of an acoustic 
feature vector sequence; A' = {xif..., a;,;,..., xj). We denote the entire 
set of prescribed keywords by W = {wi,..., wt,..., wj<} and the entire 
set of possible keyword-sequence classes by Q = {Qj,..., fic,..., Qc}. 
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Let us focus on the Jfc-th word w*.'s spotting decision in the segment 
XI = {xs,xs + i,.. .,xc-\,xe}. We denote this decision for wu as a.k,e- 
The ak,c is a kind of indicator function that becomes one (1) for a correct 
decision and zero (0) for an incorrect decision. This indicator function 
can be defined in principle for all s, e, and lc. Nevertheless, due to 
several realistic restrictions on combinations of s, e, and k, the functions 
are defined in a set of limited cases, which is denoted by Q. 

In this view, one word-sequence classification decision can be consid- 
ered a sequence of word spotting decisions a = {ak,e}, each are included 
in a word-sequence class, e.g., Qc. Therefore, the goal of the spotter 
design should be to achieve a state of adjustable spotter parameters, de- 
noted by A, that emulates the following Bayesian decision theory-based 
rule [6]: 

c(A') = c    ifc=argmaxPr(fh|A), (1) 
c 

where Pr(Sh | A") is the a posteriori probability of the word-sequence 
class Qc given A, and c(X) denotes the operation of making a word- 
sequence classification decision. Note that this c(A') is known to lead to 
the minimum error classification. 

To define our design algorithm in a practical and effective fashion, 
we embody several operations/concepts in a mathematical form. 

First, we approximate the a posteriori probability of a word-sequence 
class Pr(fic | A') by the a posteriori probability of the dominant (most 
probable) word-sequence spotting in the class: 

Pr(fic|A')« maxPr(a|A), (2) 
at Ac 

where AC(C G) is a set of word-sequence spotting decisions, each corre- 
sponding to fic, and Pr(o | A) is the a posteriori probability of a given 
A. Accordingly, (1) becomes equivalent to 

c(A') = c    if arg max Pr(o | A) = Q, (3) 
a£Ae 

where 
a = arg max Pr(o | A'). (4) 

This rule more closely represents an actual spotting procedure. 
Second, on the assumption that all of the individual a posteriori 

probabilities of wk.'s existence in A!f, i.e., Pr(»7- | AJ)'s, are independent 
of each other, we represent. Pr(o | A") as 

Pr(n | A) = H IM«* I \V""' {1 - IM«!* I -V.:)}1-"1", (5) 

which is rewritten as 

'" Pr<« I A') = E «*« '« l-Pr(!k7l) + E hl{1 - Pr( 

(6) 
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Now, Pr(a I X) is represented by a set of more elemental a posteriori 
probabilities. However, in practice, even these a ■posteriori probabilities 
are rarely known and thus we must further replace these probabilities 
with some proper estimate that is a function of A. Note here that the 
first term on the right-side of (6) includes the a posteriori odds 

^^-l-PrKlA-) (?) 

that have been widely used in artificial intelligence and statistics. Natu- 
rally, we then use a keyword possibility score, denoted by T]A(u>k | XI), as 
the estimate of the logarithmic a posteriori odds, which is a function of 
A. Moreover, to find a, we can ignore the second term of the right side 
of (6) that always takes a constant value. Therefore, we can simplify (4) 
to 

a — argmaxYA(« | A'), (8) 

where 
YA(a | A) = }2 a*«»M(u>* I *')> (9) 

k,s,e 

and accordingly rewrite (1) to 

c(A') = c    if c = argmax(7A(A'), (10) 
C 

where gA(X) is defined as a generalized discriminant function for fic, 
i.e., 

»*<*> = ) 1" \TT\ E «P(^A(« I A))    , (11) 

with £, being a positive constant and YA(a\X) being referred to as a 
word-sequence spotting score for a. Note that g%(X) expresses an aggre- 
gate possibility that A" includes fic. 

Consequently, g%(X) is used in place of Pr(fic | A); similarly, (10) is 
used in place of"(l)'. Now it turns out that finding the optimal status of 
A is our design target. 

As in conventional classifier designs, there are two main approaches to 
the design of A: 1) the maximum-likelihood design, and 2) the discrim- 
inant function method. Taking account, of the findings of MCE/GPD 
studies [7],[8], we chose to use the second approach. Therefore, we next 
define the loss function 

£(X ; A) = 1 (-gZ(X) + maxr/A(A)J , (12) 

where 
r   0, if x < 0 

l(x)= {   0.5,        if a: = 0 (13) 
1, if x > 0, 
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and c* is the correct word-sequence class index. This loss is zero (0) 
for a correct, word-sequence classification; one (1) for correct. This loss 
represents an ideal error count but is discontinuous in A and causes 
mathematical problems in formalization as discussed in [7]. In our ap- 
proach based on the MCE/GPD concept, we therefore use a smooth loss 
defined as 

C(X ; A) = 1 (-gA\X) + I ]„ I ^ £ exp(C,A(A)) 1 j ,     (14) 

where 1() is a smooth step function such as \(x) = (1 + exp(-r/c))-1 

with <r being a positive constant and (," a positive constant. 
In principle, the loss must be evaluated over all of the possible sam- 

ples. We thus introduce the expected loss 

L(A) = EX[((X;\)] (15) 

as the design objective to be minimized, where Ex is the expectation 
over the A'-space. 

2.2    Computation reduction 

The design problem is now formalized as the minimization problem of 
the expected loss. However, full computation of YA(a | A) is hopelessly 
time-consuming. There is a clear need for reduction of the computation. 
A natural way of such attempt is to focus the computation on plausi- 
ble word-spotting decisions (remove probably incorrect decisions before- 
hand). In light of this, we introduce a pruning function wA(u't | A'/) that 
indicates zero (0) when the corresponding word-spotting decision should 
be ignored and one (1) otherwise. Then Y'A(o | A) is replaced with the 
following practical version of the score: 

VA(« I A') = J2 «*« {'M(«'t I A'/) + \nuA(wk | A/)} . (16) 
k,s,e 

Note that u>A(wk | A'*) being zero makes the above practical score YA(a | A) 
negative infinity, which means that the corresponding word-spotting de- 
cision does not contribute to computing the sequence-spotting score, and 
that YA(a | A) can be substituted for VA(o | A) in (10) and (11) without 
any serious mathematical drawback. 

The choice of pruning function still affects the computation. If the 
number of hypotheses pruned by this function is small, computing the 
scores problem would be still resource-consuming because of combination 
explosion, especially in a large-vocabulary case. Since an attempt to 
solve this problem in a separate, heuristic manner, such as the beam- 
search algorithm, does not allow one to achieve a consistent minimization 
of the loss, we also consider another attempt of reduction by introducing 
the loss 

.    f(A';A)=]Ta;A(ua.|A7) (17) 
k,),e 
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that approximates the number of keyword hypotheses being not pruned. 
If this number is counted as loss (cost) in the same manner as (12), one 
can reduce the computation by explicitly attempting to decrease this 
count. Consequently, incorporating this new loss, the expected loss can 
also be re-defined as 

Z(A) = EX [£(X ; A) + 7I(X ; A)], (18) 

where 7 is a controllable weighting factor. 

2.3    Optimization algorithm 

In accordance with the adaptive adjustment rule of GPD, we use 

At+1=At-etUVAe(Xt;\t), (19) 

which has been shown to lead to the optimal state of A that corresponds 
to at least the local minimum of the expected loss, where A* denotes the 
parameter set at the t-th iteration, et is a learning factor that satisfies 
J2^1 j it = 00 and Yluzi €t < °°> U m a positive definite matrix, VA is 
the gradient symbol with respect to A, and Xt denotes the t-th speech 
utterance given randomly for training. 

3     Implementation 
MECK can be applied to any reasonable spotter structure such as a 
prototype-based system or an IIMM system. Each keyword can be ei- 
ther directly modeled (represented in spotter parameters) or indirectly 
modeled by concatenating subword models. Among these many choices, 
this paper specially presents an implementation example for a prototype- 
based spotter consisting of subword models; \j (C A) denotes a. class j 
subword model consisting of a sequence of acoustical feature vectors. 

3.1     Log Estimate of A Posteriori Odds 

Due to our preference for using subword models, we shall first define 
a subword-based log a posteriori odds estimate. Our prototype-based 
spotter basically computes the distance D(X%, Xj) between the subword 
model and a speech segment. We thus need to convert this distance 
measure to the a posteriori odds form. Among many possible ways of 
doing so, we use the following function form: 

IJA^- I X't) = </>j0 + 4>jiD{Xl, A,-), (20) 

where cj>jo and <j>j\ are constants. The use of this form is motivated 
by the estimation of Pr(Aj | A'*) using a logistic function of D(Xe

s,\j). 
Each subword model is represented by a set of reference vectors and the 
distance D(Xe

s,\j) is defined following McDermott's formalization [9] 
and our previous work [5]. A word-level log a posteriori odds estimate, 
il,\{wk\Xe

s), is then denned by accumulating ??A(AJ |Ar«)'s considering 
time warping variations. In both cases, similar to (11), smooth functional 
form is used. See the detail in [10]. 
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3.2 Pruning Function 

Pruning always suffers from the risk of a decrease in accuracy because it 
often misses some of the correct word-spotting hypotheses. Therefore, 
the pruning function must be designed carefully. Our actual pruning 
strategy is summarized as follows; i.e., u)A(wk | A'3

e) is set closer to zero, 
if one of the following manifolds is correct. 

1. A'*; (*' ^ s) is more likely than A'' for spotting wk. 

2. Xf, («' is arbitrary, e' ^ e, and e' « e) is more likely than Xe
s for 

spotting wk. 

3- I]A{WI.- I A's
e) is less than a preset threshold hk. 

This pruning criterion has actually been used in conventional spotting 
techniques using starting-end-frce dynamic time warping and is not so 
specific one. Rased on our policy of formalizing the process rigorously, 
we define the pruning function uA(((> | A'f) as the product of three 
continuous auxiliary pruning functions, uj\(wk | A'/), w\(wk | X$), and 
WA ("'<•• 1^7)- eafn approximating one of above three conditions in a 
smooth functional form, e.g., 

WA(«'* I xt) « 1 ( '?A(«'A- I A;) -   max  VA(ivk \ A\e) ) , (21) 
V *€St(e) '    / 

where l(-) is a step function defined in (13) and Sk(e) is the entire set of 
possible beginning endpoints of key word wk, given the ending endpoint 
e. See [10] for details of u\(ivk | A/), ^(«'t | A'/) and ul(wk\X;). 
Similar forms to (11) and a smooth step function 1() are again used 
in these approximations. Consequently, the resultant pruning function 
WAI'I'I' I A'') is also a continuous and differentiahle function. 

3.3 Simplification for Practical Use 

MECK is not sufficiently easy to perform in practice yet. In our ex- 
periments described in the next section, we used following simplification 
techniques: 1) letting the power parameter of all L,,-norm function (e.g.,£ 
in (11)) go to infinity, 2) using a piece-wise smooth step function for rep- 
resenting pruning function uA(wk | AJ), 3) tying some parameters, and 
4) using a finite, LVQ-like adjustment [11]. 

4     Experiment 

We conducted evaluation experiments for a task of spotting samples of 10 
keyword-classes, i.e., kaigi, kokusai, denwa, kyoulo, liappyou, tsuuyaku, 
nihongo {nippongo), touroku, jimukyoku, and ronbun, from 115 different 
Japanese sentences, each spoken by 10 female and 10 male speakers. 
Speech was converted to a 1 r2-dimensional acoustic feature vector every 
5 msec based on a spectral analysis.   The sentences were divided into 
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Table 1: Characteristic of Speech Corpus 

Set 1    Set 2    Set 3    Set 4 Total 
# Sentence 
# Keyword 

500       500       500       800 
480       620     1320       300 

2300 
2720 

Table 2: Initial Spotter Performance 

Set 1      Set 2     Set 3      Set 4 Total 
# Correct-K-S 
# Possible-K-S 
# Spotted-W 

58          93          23        250 
491        489        476        791 

20241     15612    23147     17932 

424 
2247 

76932 

4 independent sets; Sets 1-3, each consisting of 25 sentences, and Set 
4 consisting of 40 sentences. Each Set included at least one sample for 
every keyword class. Three Sets were used for design and the remaining 
Set was used for testing; e.g., Set 1-3 for design and Set 4 for testing. 

The reference vector set of subword models was initialized by run- 
ning it-means clustering over manually selected phoneme segments. The 
coefficient set </>• = {<j>jo,<j>j\\ was preliminarily initialized based on the 
sample distribution of each cluster. Also, Q was set so that the unre- 
alistic overlap between adjacent word hypotheses could be eliminated. 
Neither grammatical nor semantic constraints were used. 

Table 1 summarizes the statistics of our tasks. In the table, for each 
data, set, "# Sentence" and "# Keyword" indicate the total number of 
sentences and the total number of keywords, respectively. 

Table 2 shows the testing accuracies of the spotters after above initial- 
ization. Note that the accuracies for each set were obtained by a spotter 
designed using the other three sets of data. In the table, "# Correct- 
K-S" represents the number of correctly classified keyword-sequences; 
"# Possible-K-W" represents the number of correct keyword-sequences 
that remained after pruning the keywords in the spotting stage; and 
"# Spotted-W" represents the number of keywords that remained after 
pruning, i.e., keywords actually spotted. The table shows that the spot- 
ters spotted an enormous number of keywords, most of which retained 
the correct keyword-sequences in the beginning of the keyword-sequence 
classification process, and correctly classified these sequences with an 
accuracy range of only 5-30%. 

After this initialization, we trained the spotters using the method 
described in 2.3. Following learning-when-incorrect strategy, we actually 
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Table 3: Spotter Accuracies after MECK Training 

a) 7 = 0.0 
Set 1      Set 2 Set 3 Set 4 Total 

# Correct-K-S 
# Possiblc-K-S 
# Spotted-VV 

379         361 
500        495 

20884     13624 

152 
365 

15184 

695 
800 

15226 

1587 
2160 

64918 

b) 7 = 1.0 x 10~3 

Set 1 Set. 2     Set 3 Set 4 Total 

# Correct-K-S 
# Possiblc-K-S 
# Spotted-W 

257 
356 

2510 

273       127 
400       236 

2426     5067 

701 
797 

5212 

1358 
1789 

15245 

defined the loss £(■) in (14) using the following smooth step function: 

0, 

l(-i-) = {    l-cxp(-*/c) 

l+exp(-:i:/0' 

if x < 0 

if x > 0. 
(22) 

0.0 We specially chose two different conditions of simplification: 1) 7 
and 2) 7 = 1.0 x 10"3. 

Table 3 shows the accuracies for these two cases. The keyword- 
sequence classification accuracies were increased to a range of 25-87%, 
while "# Spotted-W's", i.e., the computation amounts, stayed at a range 
of 66-103% for 7 = 0.0 and were reduced to a range of 13-29% for 
7 = 1.0 x 10-3. The results clearly proved the high utility of the proposed 
design method. 

5     Summary 
We have presented a new spotter design method, called the Minimum 
Error Classification of Keyword-sequences method (MECK), that is di- 
rectly linked with continuous speech recognition. The method is char- 
acterized by 1) formalizing the spotting-bascd keyword-sequence classi- 
fication (continuous speech recognition) in a quite general but rigorous 
manner, 2) introducing the a posteriori odds-based discriminant function 
that, allows one to greatly reduce computation and to easily incorporate 
a wide range of artificial intelligence techniques in speech recognition, 3) 
making possible a spotter design that does not use labeled design samples 
which is necessary in conventional design methods, and 4) incorporating 
keyword hypothesis pruning process for unified loss minimization. 

Experiments in Japanese keyword spotting tasks clearly demonstrated 
the marked utility of our design method. 

Finally, it should be worth addressing that the design method pro- 
posed in this paper is a quite general framework useful to solve combi- 
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nation search problem. The method can be applied to a wide range of 
inference problem by selecting log a posteriori odds estimator functions 
and pruning functions adequately. 
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Abstract. In this work the output density functions of hid- 
den Markov models are phoneme-wise tied mixture Gaussians. 
For training these tied mixture density HMMs, modified ver- 
sions of the Viterbi training and LVQ based corrective tuning 
are described. The initialization of the mean vectors of the 
mixture Gaussians is performed by first composing small Self- 
Organizing Maps representing each phoneme and then combin- 
ing them to a single large codebook to be trained by Learning 
Vector Quantization (LVQ). The experiments on the proposed 
training methods are accomplished using a speech recognition 
system for Finnish phoneme sequences. Comparing to the cor- 
responding continuous density and semi-continuous HMMs in 
[9] and [8] in the respect of the number of parameters, the 
recognition time and the average error rate, the performance 
of the phoneme-wise tied mixture HMMs is superior. 

INTRODUCTION 

Hidden Markov models are widely used in automatic speech recognition 
as phoneme models to combine the modeling of stationary stochastic 
processes producing observable short-time features and the temporal re- 
lationships between these processes. The temporal model in HMMs relies 
on a relatively simple structure of successive states and a probabilistic 
model of their mutual transitions. 

The modeling of the stochastic observation processes associated with the 
states of HMMs is based on estimation of the probability density function 
of the short-time observations in each state. Several different approaches 
have been proposed to represent these output probabilities ranging from 
the estimation of parameters of multivariate Gaussian density [1] to the 
construction of multilayer perceptrons [3] or LVQ codebooks [5]. 

A common model category for the observation densities is the mixture 
density functions normally accomplished as a linear combination in a set 
of Gaussian densities. If the mixture densities are tied between all the 
IIMM states the models are often called semi-continuous HMMs [4]. 
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Figure 1: The output probability of state C; at time t is computed using a tied 
mixture density function for K nearest mixture densities. The K nearest of 
all M mixture densities to the current observation xt are indicated by indexes 
k = 1, • • •, K. The mixtures are tied for states representing the same phoneme. 
The HMM is completely defined by the set of transition probabilities a,^, 
mixture densities bk(x) and mixture weights c;,*. 

In this work the tying of the mixture densities is applied in a novel way so 
that the states belonging to the same HMM (Fig. 1), i. e. representing 
the same phoneme, use a common codebook of Gaussian densities. Thus 
there are as many sets of Gaussians as there are HMMs, which is a kind of 
intermediate for continuous density HMMs (different set for each state) 
and semi-continuous HMMs (only one large set of Gaussians). 

The reason for the phoneme-wise tied Gaussian codebooks is to balance 
between a vast number of mixture mean vectors and covariances, like in 
large continuous density HMMs (CDHMMs), and an excessive amount 
of mixture weights, like in large semi-continuous HMMs (SCHMMs) (Ta- 
ble 1). From the CDHMM point of view, having common Gaussians for 
states of the same phoneme seems to be an appealing approximation, 
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since the output densities of successive states are often highly overlap- 
ping. From the SCHMM point of view, this means that the normally 
quite a large set of very small weight values can be reduced, because 
most of the large weights are often nicely localized around Gaussians 
resembling to one phoneme [8]. 

LVQ FOR TIED MIXTURE DENSITIES 

The Learning Vector Quantization (LVQ) [6], [7] methods are applied in 
the present paper to increase the discrimination between the phoneme 
models. This is a very important objective, since the primary interest in 
phoneme recognition is to find out the best-matching phonemes instead 
of estimating the correct probabilities for different phonemes. 

In [10] the LVQ methods were applied to provide a discriminative ini- 
tialization for the Gaussian mean vectors of CDHMMs leading to good 
recognition results with only a few iterations of the actual HMM param- 
eter estimation performed by Baum-Welch reestimation. In [8] the same 
ideas were brought to the SCHMMs causing a significant drop in the 
average recognition error rates. 

In the present paper with phoneme-wise tied mixture densities, the LVQ 
training is similar to the normal SCHMMs [8], except that the initial 
codebook for LVQ is combined from several smaller codebooks first pre- 
pared for each phoneme separately. After LVQ, the codebook is again 
split among the HMMs. The advantage of this combine-and-split pro- 
cedure is that in contrast to the labeling method proposed in [8], the 
satisfactory representation of each phoneme can be guaranteed in addi- 
tion to the enhanced discrimination between phonemes. 

The small codebooks including only representatives of one phoneme can 
be efficiently trained by Self-Organizing Maps to capture the most es- 
sential features of each phoneme and provide a good basis for LVQ. 
The same initialization procedure could be successfully applied also to 
the mixture densities in CDHMMs by setting identical mean vectors for 
the output densities of states of one HMM. A separately trained small 
codebook of one phoneme is presented in Figure 2 as well as the same 
codebook after LVQ. 

By examining carefully the differences between the corresponding cep- 
stra in the upper and in the lower part of Figure 2 the development of 
the codebook can be recognized. The upper part is a small SOM (6x4 
units) for phoneme /A/ trained in two phases. The first is a short order- 
ing phase with large, but quickly reducing neighborhood radius 5 and 
learning rate 0.2. The second is a longer specialization phase starting 
with radius 2 and rate 0.02 reduced to 1 and 0, respectively. The result 
does not provide very low quantization error, but instead gives a rough 
representation of the pdf of the corresponding feature space. As an ini- 
tialization, this presents a smooth two-dimensional surface fitted to the 
set of training samples with the borders more folded than the center. 

The lower part of Figure 2 includes the same codebook vectors, but 
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Figure 2: The Gaussian mean vectors of short-time cepstral features for the 
tied mixture HMM of phoneme /A/ in the different training phases. First 
(top), after initialization by SOM, and second (bottom) after the LVQ training 
together with the other phoneme codebooks. 

after the combine-and-split procedure and LVQ training. First, all the 
small SOMs, each representing one phoneme, are concatenated into one 
large LVQ codebook. The LVQ is started by a short training using the 
Optimized learning rate LVQ (OLVQ1) [7] followed by a longer training 
using LVQ3 [6]. The codebook vectors are divided into the same groups 
as in the original SOMs and each of these groups is converted to the set of 
mean vectors of the mixture Gaussian densities. Comparing to the upper 
part of Figure 2, the cepstra are now more distinct, providing a smaller 
quantization error and, which is more important, a better discrimination 
between the codebooks of other phonemes. In spite of the changes, some 
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Training Phoneme /A/ only Whole data set 
Phase Qerror% MMdist Cacc% Cacc% Rerror% 
SOM 17 3 85 61 24 
+LVQ 13 13 87 66 8 
+Viterbi 13 14 87 66 7 
-f Tuning 13 13 87 66 7 
SOM 17 3 85 61 21 
+Viterbi 13 14 87 66 8 
+Tuning 15 14 77 61 7 
KNN 19 17 83 53 34 
+LVQ 16 8 94 49 55 
+Viterbi 13 14 88 65 8 
+Tuning 15 16 73 60 8 
KM 17 10 80 57 18 
+Viterbi 14 15 82 65 7 
+Tuning 18 20 54 58 7 

Table 1: Various statistics in different training phases for one data set (one 
speaker, 311 words). Qerror% is the average quantization error of the samples. 
MMdist is the median of distances from each codebook vector to its nearest 
neighbor. Cacc% is classification accuracy of sample vectors. Rerror% is the 
phoneme recognition error rate by corresponding tied mixture density HMM. 
KM is Kmeans clustering and KNN is the method to select the prototypes so 
that the majority of the K (K=5) nearest data points refer to correct classes. 

structure is still visible giving smoothness to the codebook. 

In Table 1 some characteristics of codebooks, i.e. the sets of Gaussian 
mean vectors, are shown numerically. In contrary to the statistically 
more covering experiments presented at the end of this paper, the values 
of Table 1 are not average rates but results from single experiments 
(one speaker, 311 words) and thus insignificant by themselves but only 
reflecting some general trends. 

In Table 1 the characteristics of codebooks during four different train- 
ing combinations 3-4 distinct phases in each have been analyzed. (The 
codebooks of phoneme /A/ of the two topmost rows were illustrated in 
Figure 2.) Kmeans clustering has been used as a substitution of SOM 
for minimizing quantization error without creating any structure. KNN 
refers to the basic initialization method for LVQ [7], which creates the 
codebook by directly selecting valid prototype vectors among the train- 
ing samples. 

The average quantization error reflects, how tightly the codebook is 
bound to the training samples of that phoneme. Generally, the Viterbi 
training, being based on the maximum likelihood principle, provides 
small quantization error. The corrective tuning, while increasing the 
differentiation between models, tends to increase the quantization error. 
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The median of the nearest neighbor distances is a measure of the general 
density of the codebook vectors, i. e. how close they are to each other. 
This measure shows quantitatively the phenomena observable from Fig- 
ure 2 that SOM produces tight codebooks avoiding outliers. 

The classification accuracy of the training samples simply shows how 
many of the samples will get the right lable in nearest neighbor clas- 
sification without any context information. The low total accuracy is 
due the samples taken from the transition areas between phonemes and 
from certain plosives that are practically indistinguishable without wider 
context information. 

Because the phoneme recognition error rate is the only measure here that 
takes account the temporal structure of HMMs, the Viterbi training, by 
enhancing directly the temporal model, naturally introduces a signifi- 
cant drop of errors. However, the LVQ, if suitably initialized, seems to 
provide mean vectors that, when combined with simple temporal model, 
are able to produce comparable error rates. Apparently, the short-time 
classification accuracy is not directly proportional to the phoneme recog- 
nition error rate. 

VITERBI TRAINING AND CORRECTIVE 
TUNING 

After the LVQ initialization, the next task in the estimation of the tied 
mixture density HMMs is the determination of the mixture weights and 
state transition probabilities. The initial values for the mixture weights 
can be simply assigned by finding the nearest Gaussians for a set of 
training vectors and computing the portion of hits for each Gaussian. 
If no pre-segmentation is available, the training samples can be divided 
into parts of equal lengths for this initialization. The actual training is 
accomplished by a version of Viterbi training, i. e. using an initial model 
to recognize the training words and to segment the sequence of obser- 
vations into the parts corresponding to each HMM state. Parameter 
values for each state are then updated using the segmented feature vec- 
tors. For example, the resulting mixture weights of the different states 
representing phoneme /A/ with a tied Gaussian codebook of 24 mixtures 
are shown in Figure 3. 

In Figure 3 the weights in each state are displayed as a surface over the 
mixtures. It is easy to notice that although some mixtures are used by 
several states, the main trend is that the center of greatest activation, i. 
e. largest weights, move from one corner of the codebook to the other. 

The Viterbi search for the best path can be constrained on the available 
information about the phonemes in the training words to produce as 
correct path as possible [9] to reduce the number of required iterations. 
That information can include, for example, some pre-segmentation by 
other models or by hand. The search can be also made more efficiently 
by approximating the output density probabilities of the tied mixture 
density functions by using only a couple of the nearest mixtures to the 
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Figure 3: The mixture weights for the Gaussian mean vectors in the four states 
of tied mixture density HMM of phoneme /A/. The weights are grouped into 
a 6x4 array corresponding to the dimensions of the Self-Organizing Map used 
in the initialization (Figure 2). 

current observations [2],[9]. 

To enhance the recognition ability of the models, the LVQ-based correc- 
tive tuning methods [9] can be applied to the tied mixture density HMMs 
of the current paper. These methods are approximative probabilistic de- 
scent algorithms tuning the HMMs to produce correct transcriptions by 
gradually decreasing modifications, if some phonemes in the training 
words get misclassified. Other methods with some common character- 
istics are introduced in, e. g. [11] and [12]. The main idea is to use 
the current models to find misrecognized words and the misrecognized 
phonemes in them. The incorrect part of the state sequence is then in- 
spected state by state tuning the closest Gaussians that would give the 
correct result closer and the nearest incorrect ones away [9]. 

EXPERIMENTS 

The experiments involve testing the phoneme recognition accuracy for 
four sets of 311 Finnish words uttered by three different speakers. By 
leaving one set at a time for testing totally 12 independent runs are 
obtained and their average error rates are used in comparison of the 
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version error% iterations 
SOM 5.7 1000+10000 
S0M+LVQ2 5.7 1000+10000+10000 
KM 5.8 200 (rounds) 
LVQ3 5.8 5000+50000 
SOM* 6.6 1000+10000 
SOM+LVQ3 5.7 1000+10000+5000+50000 
SOM+LVQ3+Tuning 5.6 +5 times all words 

Table 2: Average recognition error rates for variations of training combina- 
tions used for the Gaussian mean vectors for 5-state phonetically tied mixture 
HMMs. KM is the Kmeans algorithm, where 200 is the maximal number of 
rounds of the all training data for each phoneme. SOM* a reference experiment 
with SOM of zero neighborhood. SOMs are iterated in two phases (shorter 
and longer) for each phoneme. LVQ is iterated for all phonemes at the same 
time and a short OLVQ1 phase precedes the LVQ3 training. The corrective 
tuning is applied by presenting one word at a time and only misrecognized 
phonemes cause modifications. 

Type of Number of Parameters (xl0a) Recognition 
HMM mixtures weights means time/word error% 
CDHMM 4 0.4 9 0.5 7.9 
PWMHMM 24 3 11 0.7 6.9 
SCHMM 494 54 10 1.8 8.1 
CDHMM 24 3 55 2.2 5.8 
PWMHMM 70 8 32 1.5 5.7 

Table 3: Some comparisons between different continuous density HMM struc- 
tures. The abbreviation PWMHMM refers to the phoneme-wise tied mixture 
density HMMs proposed in this paper. The CDHMM and SCHMM experi- 
ments, reported in earlier papers of the author, use the same speech database 
and basicly similar training phases as set up here for PWMHMM experiments. 
No corrective tuning has been used in these experiments. 

training methods. The error rates are denned by the sum of missing, 
changed and extra phonemes divided by the correct sum of phonemes. 

The phoneme recognition experiments are performed using the speech 
recognition system of the Laboratory of Information and Computer Sci- 
ence of Helsinki University of Technology [13]. 20 dimensional cepstral 
feature vectors concatenated with the energy of the signal are used as 
the short-time acoustical features. New feature vector is computed every 
10 ms using 20 ms signal window. 

5 states left-to-right HMMs with no skips are trained by the described 
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methods for 20 common finnish phonemes and for the silences occurring 
between the words. The differences of the average error rates in Table 
2 are so small that, for example, the Matched Pairs test does not give 
any significant statistical differences between the various experimented 
training combinations, except that the experiment of SOM with zero 
neighborhood is worse than the others. 

When comparing the performance of corresponding training combination 
between different continuous density HMMs the Table 3 reveals that the 
phoneme-wise tied HMMs provide clearly the most appealing configu- 
rations, when the number of parameters, the recognition time and the 
error rate are compared. The recognition times per word are computed 
as the average of 311 different finnish words and do not include the pre- 
processing which is same for each model. The experiments for CDHMMs 
and SCHMMs were explained in [9] and [8], but the construction of the 
experiments and the training algorithms are basicly the same and thus 
the results are comparable. 

CONCLUSIONS 

A new method to group the Gaussian codebooks for tied mixture den- 
sity HMMs so that the mixtures are phoneme-wise tied is presented. The 
aim is to create an intermediate solution between the continuous density 
and semi-continuous HMMs gathering the best characteristics of both 
approaches. A hybrid training scheme that tries to combine the discrim- 
ination powers of LVQ and the presentation ability of Viterbi training 
is described for the new models. Some numerical and visual analysis of 
the created phoneme-wise codebooks of the Gaussian mean vectors are 
carried out as well as a comparison of different combinations of training 
algorithms. The performances of the best combinations are not sig- 
nificantly different but when comparing to the previous, corresponding 
experiments with continuous density and semi-continuous HMMs, signif- 
icant improvements are achieved in respect of the number of parameters, 
the recognition time and the average error rates. 
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Abstract-In this paper, we present a moving object recognition 
system. A description is given of the whole system from the image 
acquisition through the preprocessing and feature extraction stages 
to the classification of objects. We use Quadratic Neural Networks 
(QNN) to model the input data and then extract features from the 
model which are translation and rotation invariant. We have ap- 
plied the idea to a practical problem of classifying moving objects 
in a domestic environment such as a moving heads, curtains blown 
by the wind and external events such as moving tree branches. 
Reasonable results are obtained using only the spatial information. 

INTRODUCTION 

In this paper, we present a moving object recognition system for a domes- 
tic environment. In section 2, we briefly describe the system and introduce 
new techniques for building the system using Quadratic Neural Networks 
(QNN). We show that a QNN is not only powerful as a classifier [1], it is 
also capable of other functions such as data modelling. Section 3 discusses 
the idea of a quadratic neuron and how it can be used in data modelling. 
A practical case study of a moving object recognition system is presented in 
Section 4 using QNN and finally conclusions are drawn in Section 5. 

A MOVING OBJECT RECOGNITION SYSTEM 

The system that we are describing here attempts to recognise only mov- 
ing objects, in particular, objects that move in a specific environment, for 
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A quadratic neuron, that is, models a probability density function locally 
and responds to a particular set of points in R^. For example, given a data 
set of points in R2, we can compute the mean, m, and covariance matrix, 
C, of the set of points and this gives rise to a gaussian distribution with 
Q — C~x. In our neuron model, the response of the neuron may be treated as 
the log likelihood of the set evaluated by the associated gaussian distribution. 
Although our commitment to gaussian distributions is not absolute, they 
allow us to relate neural models to conventional statistical models to some 
degree. 

Response of the neuron modelling the set of points in R2 shown in Figure 
1(a) will be high whereas the response for Figure 1(b) will be low as it is a 
poor fit to the data. Given another set of points as shown in Figure 2(a), in 
order to achieve the maximum likelihood of the distribution, more than one 
ellipse (or neuron) is required, Figure 2(b). In this case, we have a mixture 
of gaussian distributions. 

(a) (b) 

Figure 1: Response of neurons (a) High response, (b) Low response 

CASE STUDY 

We are interested in building a moving object recognition system that 
can classify objects in a domestic environment. What one finds in this case 
is moving human heads, curtains blown by the wind and external events seen 
through windows such as moving tree branches. 

Input Acquistion 

Images are collected using a CCD-camera and a frame grabber board. 
The resolution of the images is 256x256 pixels with 128 grey-levels. Figure 
3(a) shows two consecutive frames of the three different classes of object. 
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Figure 2: Data Modelling (c) Two clusters of points, (d) Gaussian Mixture 
Modelling 

Preprocessing Stage 

First, we detect the motion of the objects by differencing two consecutive 
frames. The moving parts are shown in white, Figure 3(b). 

Next, we apply a border tracing algorithm [2] to find the starting point 
and the chaincode of all the isolated regions. We remove regions with 'short' 
chaincode; the border image is shown in Figure 3(c). 

Feature Extraction 

We use a QNN to model the border image of the objects. We fit ellipses 
along the border by taking C consecutive elements of the chaincode for some 
suitable C, and compute the mean and covariance matrix for the set. C must 
be chosen so that the quadratic forms are not degenerate, but not so large 
that the structure is distorted. 

The resulting image shows the border of the moving parts represented by 
sequences of ellipses, Figure 4. The effect of this is to smooth the noisy 
boundary contour and compress the representation of the objects. More 
importantly, the structural information of the objects is not distorted and the 
ellipse representation can easily be made translation and rotation invariant. 

We have assumed that the moving object recognition system knows ex- 
actly what it is looking for. In this case, we are looking for a head, curtain 
or tree. It will be observed that the characteristic of the curtain is that it is 
made up of mainly vertical edges with some random 'noise', whereas a head 
composed of more or less curved edges. The tree basically has no structure 
and has a high entropy. This term makes sense if we regard each ellipse as 
a predictor of the orientations of its neighbours: recall that the chaincode 
establishes an ordering on the quadratic forms. 

We look at the change of angle between consecutive ellipses and plot the 
histogram with an intervals of five degrees. Figure 5 shows histogram plots 
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Figure 3: Examples of the three different objects: Faces, Curtains, Tree 
Branches; (a) Original image, (b) Difference image, (c) Border of the differ- 
ence image, (d) Border of the difference image with ellipses along it. 

for all three objects. The fact that there is a high frequency of small angular 
change in the curtain histogram reflects that it is made up mainly of vertical 
edges. The flat distribution of the tree histogram justified our claim that 
the tree has a complex structure with irregularly placed ellipses. The head 
is somewhere in between because it has curved edges which are still highly 
regular, and which leads to a slightly bigger angular change in the mean. 

CLASSIFICATION 

We classify a new object by computing its histogram and comparing it 
with the mean histograms for each of the three object classes. There are 
several possible ways of measuring a distance between histograms; we have a 
preference for information theoretic methods and therefore use the KullBack- 
Leibler distance for the classification. Thus we compute the KullBack-Leibler 
distance of a new histogram from the average distribution for each class using 

£^"°^ (2) 
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(a) Face (b) Curtain (c) Tree 

Figure 4: Fitting ellipses along the border of the difference image 

where P(xi) is the average model for class i, 
and Q{xi) is the new distribution, to be classified. 

Classification is done by finding the minimum KL distance between the 
new histogram and the category means. A small constant value is added to 
each bin in the histogram to avoid the problems of zero probability events. 

RESULTS 

Using the Kullback-Leibler measure of discrepancy between histograms, 
the classification rate for the training set is 92% and the testing set is 82%, 
Table 1. Histograms were formed based on the angular change between 
consecutive ellipses from the ellipse sequences. We compute the mean distri- 
bution for the curtain, head and tree classes from 26, 29 and 37 histograms 
respectively. Table 1(a) shows the confusion matrix of the results of the 
histogram classification. Some of the data was obtained by taking a sequence 
of time slices of the same scene, others from different scenes. 

CONCLUSION 

We have shown that using a QNN to model objects with a set of ellipses, 
we can easily extract features of the objects that preserve the translation and 
rotation invariance properties. Reasonable results have been obtained using 
only the spatial information. By this we mean that if we restrict ourselves 
to consecutive frames only, we still obtain a reasonably high level of correct 
classification given the inherent complexity of the problem: real images ob- 
tained in real time tend to be rather resistant to analysis. Our results showed 
that there were no significant correlations between the misclassifications for 
images obtained from differencing slices which are quite close in time, so it 
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Classes Curtain Face Tree 
Curtain 1.0 0.0 0.0 
Face 0.0 1.0 0.0 
Tree 0.0 0.22 0.78 

(a)Confusion matrix for training Data: 26 curtains; 29 faces; 37 trees 

Classes Curtain Face Tree 
Curtain 0.88 0.06 0.06 
Face 0.12 0.82 0.06 
Tree 0.0 0.23 0.77 

(b)Confusion matrix for testing Data: 17 curtains; 17 faces; 13 trees 

Table 1: Classification results using Kullback-Leibler distance between his- 
tograms of angular change 

would be simple to use temporal information to improve the results further. 
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Abstract. In this work, the hand-written digit recognition problem is 
studied. Sell' organizing Feature Maps (S( )FM) are mainly considered. 
The unsupervised Kohonen as well as the Hybrid Learning Vector 
Quantization algorithms are applied. The main objective is to obtain a 
topology preserving map having high recognition rates. This is 
essentially due to the fact that this kind of maps is very useful in 
realising results interpretations and in the definition of a rejection 
strategy during the recognition phase. 

INTRODUCTION 

Pattern recognition is a challenging problem whose solution is 
very useful for applications in which large volume of data is 
processed. The case of hand-written digit recognition is of special 
interest because it has considerable practical applications. 

Hand-written digits suffer not only from scale, location and 
orientation variations, but also person-dependant deformations which 
are neither predictable nor mathematically formulated. Therefore, 
research on hand-written digit recognition has never been easy. 
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Approaches generally used in solving this problem fall in one 
of two categories : the global analysis and structural analysis 
approaches. The use of neural networks offers an alternative and easy 
method for hand-written digit recognition. 

By directly training the network with sufficiently large data 
set, the recognition rate can be quite high. Multilayer perceptron 
(MLP) neural network associated with the backpropagation supervised 
learning algorithm have received more and more attention. This is 
essentially due to the fact that the recognition rate obtained by this 
network is very high. 

Clustering based neural networks are rarely used in hand- 
written recognition. The most known clustering neural network is the 
Self Organizing Feature Map (SOFM) introduced by T.Kohonen [1]. 
This network will be discussed briefly in the next section. The learning 
algorithm proposed by T.Kohonen associated with this network, uses 
the non-supervised paradigm. Obtained results are thus of great 
interest in terms of obtained cluster centres (also called prototypes) 
and in terms of topology preserving. 

The characteristic of topology preserving is extremely 
important if one needs to obtain more information concerning the digit 
to be recognized and if a rejection strategy has to be integrated to the 
recognition system. Nevertheless, this network suffers greatly of 
having a very low recognition rate when the trained network is used as 
a pattern recognition system. This is absolutely normal since the 
SOFM has never been developed in order to obtain a pattern 
recognition system. 

T.Kohonen has also suggested a supervised algorithm called 
the Learning Vector Quantization 2 (LVQ2),[2], in order to comply 
with Bayes making theory. In the LVQ2 algorithm, different neurons 
are treated independently in the sense that there in no topological 
relation among them. 
Obtained recognition results with this algorithm are comparable to 
those of the Bayesian classifier. 

In this paper, a hybrid learning algorithm called the Hybrid 
Learning Vector Quantization (HLVQ),[3], is applied in training a 
SOFM. The main objective of this study is to obtain a SOFM having 
both characteristics: l)a topology preserving mapping, and 2)high 
recognition rates. 
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The SOFM and the LVQ2 networks 

The Self Organizing Feature Map (SOFM) introduced by 
T.Kohonen, is one of the most successful models in the area of 
unsupervised learning. This model builds up a mapping from the N- 
dimensional vector space of real numbers 9vN to a two dimensional 
array S of cells. Each cell is given a virtual position in 9vN. This 
position is given by the synaptic weights connecting this cell to the 
input vector (figure. 1). 
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ooo oooooo,' ooo 

s 
o  / 

ooo oooooo  boo 

000,000000,' 000 
000,000.000  000 

000 'oooooo- 000 
000 , o o o o ,0! 0  000 

,    synaptKiue weight vector 
(virtual position) 

Input Vector ( X) 

figure. 1. The Self Organization Feature Map 

The purpose of the self organizing process is to find the 
position vectors such that the resulting mapping is a topology 
preserving mapping (adjacent vectors in 9vN are mapped on adjacent, 
or identical, cells in the array S). The learning algorithm that forms the 
feature maps selects the best matching cell according to the minimum 
distance between its position W(^ and the input vector X. This cell is 
referred to as the winning cell. All position vectors in the 
neighbourhood of the winning.cell are adjusted in order to make them 
more responsive to the current input. Positions adjustment is given by : 

AWC (t + 1)   = ß(t) *  ( X - WC(t) )        (1) 

A decreasing step function ß (t) and a slowly size decreasing 
neighbourhood with time, ensure the stability of the process of weights 
adjustment. 
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The LVQ2 algorithm has also been suggested by T.Kohonen 
as a supervised learning algorithm. In this algorithm, different decision 
neurons have no topological relations among them. The main idea is to 
adjust the synaptic weights of the best matching and the next best 
matching cells (noted respectively C* and C"). The learning algorithm 
is only applied if the three following conditions are verified: 

1) the input vector X is miss classified by the best matching cell C*, 

2) the next best matching cell C" has the correct class, 

3) the input vector is close enough to the decision boundary. 

Position vectors Wc* and Wc" are then adjusted as follows : 

AWC* (t+1) = - a (t) * ( X - WC*(t) ) 

AWC" (t+1) = + a (t) * ( X - WC"(t))       (2) 

where a(t) is a decreasing step function. 

The Hybrid Learning Vector Quantization 

Learning capability is the most salient feature of neural 
networks. Learning paradigm largely depends on the neural network 
structure and the characteristics of the data which the neural network 
deals with. 

The most widely used are the supervised and the non 
supervised learning algorithms. The combination of the supervised and 
the non supervised learning paradigms is generally performed 
sequentially. The non supervised learning is first used in order to 
extract important features from the learning examples. 

Secondly, the supervised learning is used in order to separate 
the learning patterns using the features already determined by the non 
supervised approach. 

In this study, a new algorithm called Hybrid Learning Vector 
Quantization(HLVQ), combining the supervised and the non 
supervised paradigms is presented. The aim of the HLVQ algorithm is 
to obtain an array of cells, S, realising a topology-preserving mapping. 
At the same time, those labelled cell positions must be well distributed 
in 9vN giving good classification results. 
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The first version of the HLVQ algorithm consists on the 
application of the LVQ2 algorithm over a background of the 
unsupervised self-organizing feature map algorithm. This means that 
the supervised learning paradigm plays the role of "attention 
focusing" applied over the unsupervised background learning. 

In fact, after each digit presentation, both best matching and 
next best matching cells are determined. 

First, positions of all cells in the neighbourhood of the best 
matching cell are adjusted using the unsupervised learning algorithm 
(1). 
The decreasing step function used is given by : ß(t) = T| . a(t), where 
r| is an attenuation factor assuming small values (r| e [0.05,0.2]).This 
algorithm can be resumed as follows : 

Step-»- Given the labelled data set { (Xl,dl), ...., (Xk.dk)), where Xk 
e 3\™, and dk is the corresponding desired output vector representing 
the class to which the digit Xk belongs. 

The dimensions of the array S, the maximum number of 
learning iterations (Maxjterations), the decreasing step function cx(t) 
and the attenuation factor r| are fixed. 

Step-1- All cells of the map are labelled. Labelling affects to each cell 
Ce S, the class for which the cell was the best matching more than 
other classes. 

Step-2- 
For iterations 1,2,..., Max_Iterations , 

A) Learning Iteration: 
for k= 1,2,... ,K, 

a) Present the digit Xk to the input, 
b) Find the best matching C* and the next best matching C" 

cells, 
c)The background unsupervised learningxells in the 
neighbourhood of the best matching cell ;ire adjusted 
according to (1). 
d)Attention focusing :if the three conditions of the 
application of the LVQ2 algorithm are verified, then cells C* 
and C" are adjusted according to (2). 

next k, 

B)LaheIling iteration : All cells of the map are labelled, 
C)Adjust the learning rate, 

Next iteration. 
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The second version of the HLVQ algorithm concerns the 
attention focusing aspect. In fact, in the first version, the attention 
focusing consists on the application of the LVQ2 algorithm. Two cases 
are mainly considered: 

1) the best matching and the next best matching cells answer 
correctly, 

2) the best matching and the next best matching cells answer 

badly. 

In the first case, both the best matching and the next best 
matching cells are very close to the input digit. 

Therefor, and in order to optimize the global use of different 
prototypes, the next best matching cell has to change its position in 
order to capture other digits information. 

In the second case, and this happens generally at the 
beginning of the learning procedure where different cells are not well 
assigned to their appropriate classes yet, the best matching and the 
next best matching cells answer badly. In the HLVQ algorithm a 
neighbourhood area of the best matching and the next best matching 
cells is used in order to find a labelled cell corresponding to the class 
of the input digit. 

This neighbourhood area is not necessarily the same as the 
neighbourhood area of the unsupervised SOFM learning algorithm. 
Thus the attention focusing used in the second version is resumed as 
follows : 

Attention focusing : 

1) if the three conditions of the application of the LVQ2 algorithm are 
verified, then cells C* and C" fire adjusted according to (2). 
2) if the best matching and the next best matching cells answer 
correctly, then the following adjustment rule is applied : 

AWC* (t+1) = + a (t) * ( X - WC*(t) ) 

AWC" (t+1) = - a (t) * (X - WC"(t))      (3) 

This rule constitutes a "punishment" to the next best matching 
cell. 

3) if both the best matching and the next best matching cells give bad 
classification results, a third winning cell C3 from the neighbourhood 
of the C* or C" corresponding to the class of X is searched for. 
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If C3 is found, then (he updating rule (1) is applied in 
adjusting the position of this cell. 

If no cell corresponding to the class of X is found in the 
neighbourhood, the algorithm searches a non labelled cell C3 in the 
same neighbourhood. If such a cell exists, then the updating rule (1) is 
applied in adjusting the position of this cell. 

Simulation results 

In this study, the French Postal Service (SRTP) data base 
containing 6000 hand-written digits was used. This data base has been 
divided into a learning data base (4000 hand-written digits) and a test 
data base (2000 hand-written digits). 

Each hand-written digit is given as a 16x16 pre-processed 
image (256 grey levels). Pre-processing consists on scale 
normalization. All simulations conducted in this study are based on 
the use of a 10x10 lopological map witli the same random synaptic 
weights initialisation. The first simulation consisted on training the 
SOFM with the non supervised Kohonen algorithm. In figure.2., 
synaptic weights of trained map are visualised as a 160x160 image. 

Figure.2. Synaptic weights of the Kohonen SOFM 

As can be noticed, the topology preserving characteristic of 
the Kohonen learning algorithm is obtained in terms of resemblance 
between adjacent synaptic weights. 

Neurons having synaptic weights not clearly distinguishable 
are simply those having a position very close to decision surfaces. In 
terms of recognition rate, obtained results are very bad : 75% for the 
learning data base and 65% for the test data base. 
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The second simulation has been conducted using the same 
SOFM trained by the first version of the HLVQ algorithm. In figure.3., 
the synaptic weights image of the SOFM is shown in different stages 
of the learning procedure. 

Figure.3. Synaptic weights image in different learning stages: 
(a) after 10 iterations, (b) after 20 iterations, (c) after 50 iterations, 

and (d)converged synaptic weights(first HLVQ version), 

These results simply mean that the first version of the HLVQ 
algorithm in the early learning stages produces very similar results to 
those of the Kohonen non supervised learning algorithm (in terms of 
topology preserving). 

On final learning stages, the topology preserving is lost and 
results are essentially obtained by the LVQ2 algorithm.Obtained 
recognition rates are of : 97% concerning the learning data base, and 
90% concerning the test data base.As can also be noticed, synaptic 
weights obtained by this version of the HLVQ algorithm, can be 
considered as a kind of important visual features that can be treated by 
other recognition systems. 
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In the last simulation, the second version of the HLVQ 
algorithm is applied. Obtained results in terms of recognition rates are 
nearly the same as those of the first version of this algorithm : 96.8 % 
concerning the learning data base, and 89.8 % concerning the test data 
base. Obtained synaptic weights image is given in figure.4. 

Figure.4. Synaptic weights image obtained by the second 
version of the HLVQ learning algorithm 

As can be noticed, the topology preserving characteristic of 
the Kohonen non supervised algorithm is maintained by the use of this 
second version of the HLVQ algorithm. 

CONCLUSIONS 

In this study, the use of Self organizing Feature Maps (SOFM) 
in hand-written digit recognition problem is mainly considered. The 
unsupervised Kohonen as well as the Hybrid Learning Vector 
Quantization algorithms are applied. The main objective is to obtain a 
topology preserving map having high recognition rates. This is 
essentially due to the fact that this kind of maps is very useful in 
realising results interpretations and in the definition of a rejection 
strategy during the recognition phase. Obtained results show that the 
SOFM trained by the second version of the HLVQ algorithm allows to 
obtain high recognition rates while maintaining the important 
characteristic of a topology preserving map. In order to show the 
quality of the obtained results in terms of recognition rate, a multilayer 
neural network (with one hidden layer) was trained using the 
Backpropagation learning algorithm. Obtained results are as follows : 
96%. concerning the learning data base, and 93 % concerning the test 
data base. Keeping in mind that the SOFM decision strategy 
(attribution of the class of the best matching unit to a given input) is 

392 



piecewice linear decision strategy, and that the MLP is a non linear 
decision strategy making, it seems that obtained results by the use of 
the SOFM trained by the HLVQ algorithm are of great interest. 

Further work concerning the definition of more sophisticated 
attention focusing of the HLVQ algorithm and taking into account the 
decision quality of each neuron of the map, is actually under study. 
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Abstract- We describe the first-phase of an investigation into techniques for automatic 

cloud masking in remote sensing data. BCM Projection Pursuit networks are explored as 

a method of unsupervised feature extraction from AVIRIS images. Search vectors in this 

method discover directions in the data in which the projected data is skew or multi-modal, 

by minimizing a projection index which depends on higher moments of the projected data 

distribution. Ensemble methods are used to fuse information from extracted BCM features 

and to smooth the mapping of these features to classification of image pixels. Ensemble 

hierarchies contain multiple levels of networks, combining BCM at the lowest levels with 

backward propagation algorithms, based on cross-entropy minimization, at higher levels 

in the ensembles. Predicted cloud masks are compared against cloud masks derived from 

human interpretation; ensembles achieve better overall classification accuracy than single 

BP networks. 

Introduction 

The automatic identification of clouds and cloud type in remote sensing data 
poses a significant technical challenge to researchers in climate modelling. Hu- 
man analysis of images is time-consuming, and automatic methods of scene- 
level and pixel-level identification are needed to cope with large volumes of 
image data. A number of researchers have investigated multi-class scene- 
and pixel-level identification of cloud type based on textural and spectral 
features [6], [7], [31], [29] using AVHRR (Advanced Very High-Resolution 
Radiometer) [10], [17] images. Examples of such features are moments of 
gray-level difference vector (GLDV) statistics [32], [4], sum and difference 
histograms (SADH) [30], [4] and gray-level run length (GLRL) [32]. Neural 
network techniques based on backward propagation (BP) [26], the probabilis- 
tic neural network (PNN), [28] and Kohonen's Learning Vector Quantization 
(LVQ) [18] have been used successfully to find meaningful information in 
these features and their inter-relationship for classification [31], [29] ; results 

0-7803-2026-3/94 $4.00 © 1994 IEEE        394 



compare favorably to traditional statistical analysis of the same textural fea- 
tures [31]. 

The present study examines techniques for pixel-level classification in 

AVIRIS (Airborne Visible and Infra-Red Imaging Spectrometer) imagery. In 

the first phase of our investigation, we looked only at the raw intensity data 

without textural and spectral pre-processing steps; a future paper will de- 

scribe ensemble methods which simultaneously examine both raw data in- 

puts and textural and spectral inputs as found in [7], [31], [29]. In this paper, 

we describe ensemble techniques which incorporate both unsupervised fea- 

ture extraction networks, in this case BCM Projection Pursuit, as well as a 

supervised learning algorithm, BP, for mapping BCM features to a final clas- 

sification. These results are compared against backward propagation alone. 

Classification results are generated for low-level cloud masks which only dis- 

tinguish between pixels containing cloud and those containing no cloud. The 

problem of identifying cloud-type will be addressed in a future publication. 

Unsupervised Feature Extraction Using BCM Projection Pursuit 

Recent treatments of the BCM model [3] [5] [27] have shown its relation 
to the statistical approach known as Projection Pursuit [15] [16]. A Lyapunov 
function (cost function or projection index) for the modification rule can be 
defined for BCM; minimization of this function will favor directions where 
the projection distribution (projection onto the search vector) is statistically 
skew, i.e bi-modal or multi-modal (Figure l).The BCM model uses a semi- 
local learning rule: search vectors are modified based on the information 
available within a single layer without reference to training labels; in contrast, 
supervised networks such as BP modify network connections in all layers 
based on a global error measure in the last layer. 

FlgUre ll (Left) Multi-modal response histogram from a BCM cell in a network trained 

with 16x16 pixel patches from AVIRIS Imagery ; (middle and right) two-dimensional 

scatter-plots from pairs of BCM cells reveal clustering of responses in trained networks. 

The ith cell in layer n of a multi-layer BCM network responds according 
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where Li"' is the fixed lateral inhibition 3 matrix of weights in layer n, tu--B 

is the vector of connections to cell j in layer n from the prevous layer, (n — 1), 

and bj     is the bias of cell j in layer n.   The Lyapunov function in layer n 
is a function of higher order moments which will favor projection vectors for 
which the distribution of cell responses is skew or multi-modal:    4 
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7Ö; is the dynamic modification threshold which separates regions where the 

^-function yields Hebbian reinforcement and anti-Hebbian weakening in the 

single-cell theory. For a small and decreasing step-size, Equation 5 can be well 

approximated by stochastic gradient descent (see [16] for further details). 

Ensemble Methods 

A number of researchers have explored the use of ensemble methods for the 

purpose of enhancing overall performance of neural network classifiers [12], 

[19], [13], [22], [23], [24].   The notion of pooling a set of "experts"  is by no 

1The sigmoidal function is typically of the form: c(i) = atanh(aAx), which 
has the derivative:  c'(x) — A(a — c(i))(o + c(x)). 

Superscripts denoting layer indices appear in parentheses. 
3The choice of Z;" places each cell in a field proportional to the aver- 

age response of the other cells in the layer. Other choices could be used to 
establish different fixed influence fields, for instance the Mexican Hat [18]. 

41?[] represents the expectation value. 
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means confined to research in adaptive neural network algorithms. Whatever 

the nature of the underlying estimation process, ensemble methods can be 

employed profitably [11], [14], [22]. We illustrate the general framework for 

ensembles of estimators in Figure 2. 

Figure 2: Schematic diagram of an ensemble of estimators. Each individual estimator 

may have a very large number of parameters as in non-parametric methods, e.g. neural 

networks, and the input data to each may be identical data sets or different representations 

of the same problem such as in sensor fusion. The ensemble estimator weights the estimates 

of members of the ensemble, and the relative weighting may be adapted. 

Cloud Masking for AVIRIS Images: Experimental Design (First 

Phase) 

In the initial phase of our research as described in this paper, we investigated 
ensemble networks. In one version of these ensembles, multiple BCM Projec- 
tion Pursuit networks performed low-level, unsupervised feature extraction 
from input patches of AVIRIS images. Inputs to these networks were vectors 
containing the pixel values as a percentage of the dynamic range over the en- 
tire image. In some experiments, we normalized inputs to the dynamic range 
within the input patch and then renormalized the input vector to a unit vec- 
tor representation; such a transformation emphasizes the local structure and 
texture of the input patch by preserving the direction of the high-dimensional 
vector in input space, at the same time, information about overall intensity 
is removed by normalizing the vector onto the unit sphere. The ouput of the 
BCM networks was fed to the input layer of a BP network which performed 
the mapping to pixel-level predictions. All backward propagation networks 
described in this paper used a cross-entropy objective function [25]. Error cor- 
rection in the BP networks was done by comparing network pixel predictions 
against a ground truth mask generated by human interpretation. The unsu- 
pervised BCM networks were trained independently before being attached to 
the BP networks. As a baseline, results were also obtained for 3-level BP net- 
works operating directly on the input patches. A third experiment consisted 
of pooling the ensembles in the first set of ensembles to obtain an ensemble 
of ensembles. This last experiment is closer in spirit to the ensemble concept 
in [13] and [24], in which the actual output classifications of estimators are 
pooled. Network configurations for the experiments described here are re- 
ported in Table 1. LIBP [1] refers to BP run with fixed lateral inhibition, as 

397 



in the feedforward rule for the BCM network; inhibition in the BP networks 
was found to be important for obtaining reasonable performance with 3-layer 
networks. 

Table 1 
Network Configurations:  Single & Ensemble Nets 

Experiment   |    Net Type Configuration 
BP1                    Single Level :  1 LIBP: (256-100-16) 

Input: Band 17 
ENSSD1            Ensemble Level 2: BP (136-100-16) 

Level 1: 10 BCM Networks: 
8 of size: 256-12 ; 2 of size 256-20 

Preprocess: 8 Nets:  Pixels as Ä of Dynamic Range of Whole Image 
2 Nets:  Pixels as % of Dynamic Range of Input Patch; 

Renormalized to Unit Sphere 
Input: Individual Nets Receive Input from a Single Band 

Either Band 52 or Band 17 
ENSSD4            Ensemble Level 2: BP (72-100-16) 

Level 1: 6 BCM Networks:  AU of size 256-12 
Preprocess: 2 Nets:  Pixels as % of Dynamic Range of Whole Image 

4 Nets:  Pixels as % of Dynamic Range of Input Patch; 
Renormalized to Unit Sphere 

Input: Individual Nets Receive Input from a Single Band 
Either Band 52 or Band 17 

ENSSD5            Ensemble Level 2: BP (46-100-16) 
Level 1: 4 BCM Networks:  All of size 256-12 

Preprocess: 2 Nets:  Pixels as % of Dynamic Range of Whole Image 
2 Nets:  Pixels as % of Dynamic Range of Input Patch; 

Renormalized to Unit Sphere 
Input: Individual Nets Receive Input from a Single Band 

Either Band 52 or Band 17 

SUPSD1            Ensemble 
of 

Ensembles 

level 2: BP (48-100-16) 
level 1: ENSSD1 ENSSD4 ENSSD5 

The AVIRIS data used in this set of experiments were comprised of 10 

different images derived from 6 different locations under a variety of weather 

conditions; they included a variety of terrain, for example a land-sea interface 

and agricultural areas; a number of different cloud types were also present. 

For each location, 4 bands were made available to us, three in the visible and 

one in the near infra-red, although the experiments in this phase only used 

two bands, Band 52 (near infra-red), and Band 17 (visible). Eight images 

were used for training and two for testing. More complete statistics using the 

bootstrap method will be obtained in the future. Note that in general setting 

a single threshold for the entire image will not suffice since this would lead 

to unacceptably high levels of false alarms in many of the images (Figure 3). 

During training, images in the training set were selected at random and from 

each image, 16x16 patches were sampled at random as input to the networks. 

A number of different input patch sizes have been explored (8x8, 16x16, 32x32 

and 64x64) to examine the qualities of the BCM feature vectors on different 

scales of area, although in the experiments described here for prediction input 

patches were all 16x16. An example of BCM feature vectors obtained from 

experiments with different input patch sizes is shown in Figure 4. The figure 

shows some particular network solutions which were strong edge detectors. 

Notice that local structure found in smaller patch vectors appears as a sub- 

component of the larger patch feature vectors.   Feature vector structure in 
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Jt lgUre  3:   The results of using a global threshold lor cloud-masking in AVIRIS Band 

17: in many of the images, a good detection rate also means a high false-alarm rate. 

BCM takes on a variety of different forms depending on the control param- 

eters 17, 7, r (r is the temporal width of the sampling window for the sliding 

threshold yE(c2) in the BCM rule). Other factors such as dwell-time on each 

image may also play a role. In experiments with larger values of r, feature 

vectors may be banded or speckled (right half of Figure 4) in appearance com- 

pared with those in the left half of Figure 4.   In the prediction experiments 
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Flglire 4: (Left) BCM feature vectors trained with AVIRIS Images (three networks 

with different patch sizes); vectors are sensitive to edges. (Right) BCM feature vectors 

sensitive to texture; vectors have been smoothed to emphasize peaks and valleys. 

described in the Results section, the final prediction of the network ensembles 

and single networks was the identity of the pixels in the 4x4 sub-patch in the 

upper left corner of the input patch. Prediction masks were generated for the 

training and testing sets by scanning the entire image with the 16x16 pixel 

input box. The box was moved in 4 pixel increments to obtain a complete 

prediction mask. This procedure meant that predictions were obtained for 

all pixels with the exception of a small strip on the bottom and right edges of 
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the AVIRIS images. These strips comprised only ~ 2% of the whole image. 

The results in Table 2 were generated by comparing network prediction masks 

against masks generated through human interpretation. 

Results 

BP Performance: Magnitude Sensitivity 

The results of the phase 1 experiments are given in Table 2. BP (BPSDl) 

has a high degree success on the test images because it is fairly similar to those 

training images for which fairly simple magnitude filtering might obtain fairly 

good results. However, BP does have some notable failures on the training 

set for those images for which simple magnitude filtering would not be highly 

successful, that is, for training images 5, 6 and 7. For these images, BP obtains 

either unacceptably low rates of classification or high rates of false alarms. 

Image 5 contains a lot of high magnitude land return which is confused with 

cloud cover by BP; image 6 has thin cirrus over a land-sea interface, for which 

backprop fails to detect much of the cloud cover because it has a low return. 

In both of these cases, the required features vectors need to encode textural 

information. Similarly, image 7 has bright land as seen through a diffuse layer 

of smoke from a forest fire.  Mistakenly, this image is completely identified as 

cloud by BPSDl. 
BCM-BP Ensemble Performance: Improvements 

The ensemble approach allows us to extract features from different pre- 

processing steps without the problems inherent in constructing a large, single 

network. Multiple views of data structure from each form of data preprocess- 

ing allow improvement in classification perfomance. What is notable about 

the performance of ensembles incorporating BCM at the lowest levels with BP 

at the top level is that some of them appear to find solutions which achieve 

considerably greater classification accuracy than BP alone for images 5, 6 

and 7. Indeed all but one of them (ENSSD 4) also achieve a good level of 

performance on the two testing images. 
Ensembles of Ensembles: Most Consistent Performance 

Smoothing of the classification estimates can be achieved by learning to 

pool the estimates of the simple ensembles in the previous section. The 

ensemble of ensembles run (SUPSD1) which received input from ensembles 

ENSSD1, ENSSD4 and ENSSD5, achieved the most consistent performance 

across all of the images comprising the training and testing sets. The clas- 

sification of cloud location by SUPSD1 for image 6 is compared against the 

original image and the human interpretation in Figure 5. 
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Table 2 
Pixel-Level Classification of AVIRIS Images 

BPSD1 ENSSD1 ENSSD4 |   ENSSÜ5   | ENSSD6 SUPSD1 
Training 
Images 

% Cloud 
Pixels 

% Cloud Pixels Correct 
% Non-Cloud Pixels Correct 

910628B.R6.S2 12% 89.8 % 
97.8 % 

94.3 % 
95.5 % 

91.2 % 
94.7 % 

89.6 % 
97.0 % 

94.8 % 
94.3 % 

96.0 % 
93.8 % 

910620A.R2.S2 39 % 75.7 % 
98.7 % 

81.4 % 
97.3 % 

82.8 % 
94.8 % 

78.6 % 
97.2 % 

85.1 % 
96.4 % 

85.1 % 
96.0 % 

900810A.R6.S4 33.8 % 98.0 % 
95.0 % 

97.6 % 
94.9 % 

91.4 % 
84.1 % 

95.8 % 
96.2 % 

99.4 % 
84.9 % 

98.9 % 
92.3 % 

900809A.R3.S5 21.4 % 95.2 % 
94.9 % 

93.0 % 
97.7 % 

89.3 91 
94.4 % 

91.7 % 
98.1 % 

96.6 % 
94.0 % 

96.0 % 
96.1 % 

900723A.R9.S4 4.9 % 100.0 % 
2.3 % 

91.4 % 
92.6 % 

82.9 % 
92.7 % 

90.9 % 
88.7 % 

92.1 % 
80.1 % 

91.8 % 
90.3 % 

900814A.R9.S1 51.0 % 31.6 % 
97.8 % 

86.1 % 
78.5 % 

62.5 % 
92.5 % 

35.9 % 
98.2 % 

63.7 % 
93.4 % 

88.3 % 
74.6 % 

900813A.R9.S3 0.0 % 
0.0 % 68.0 % 98.5 % 70.6 % 56.3 % 83.6 % 

900813A.R5.S2 53.6 % 78.3 % 
99.3 % 

88.9 % 
96.9 % 

77.9 % 
97.3 % 

79.5 % 
98.6 % 

87.1 % 
97.9 % 

91.6 % 
96.0 % 

Testing 
Images 

910628B.R5.S4 23.2 % 92.7 % 
98.0 % 

72.4 % 
96.7 % 

94.2 % 
90.1 % 

94.5 % 
95.6 % 

97.8 % 
91.7 % 

93.3 % 
94.9 % 

900814B.R12.S2 100.0 % 100.0 % 98.7 % 18.2 % 81.7 % 79.9 % 84.1 % 

£ IgUrC ut (Upper left) AVIRIS image of cirrus clouds over a land-sea interface (band 

52); (upper right) human interpretation of location of clouds ; (bottom) identification of 

clouds by an ensemble of ensembles (SUPSD1). 
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Conclusions and Future Directions 

BCM Projection Pursuit in an ensemble configuration is capable of discov- 
ering textural features which may be useful in separating bright land from 
cloud, as well as detecting cirrus over a land-sea interface. The ensemble of 
ensembles run SUPSDl achieved the most consistent performance across all 
of the images. BP solutions tended to be very sensitive to overall intensity 
of return and had notable failures on the training set for these difficult cases. 
Further experimentation with ensemble configurations of BCM-BP and other 
hybrid networks such as BCM with radial basis functions [21] [20] to opti- 
mize classification performance will be explored in a future publication; we 
will also study the performance of ensembles receiving inputs from statistical 
measures derived from GLDV, SADH and GLRL distributions as well as the 
raw data. 
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Abstract 

We demonstrate how the formulation of a nonlinear scale-space fil- 
ter can be used for edge detection and junction analysis. By casting 
edge-preserving filtering in terms of maximizing information content 
subject to an average cost function, the computed cost at each pixel lo- 
cation becomes a local measure of edgeness. This computation depends 
on a single scale parameter and the given image data. Unlike previous 
approaches which require careful tuning of the filter kernels for various 
types of edges, our scheme is general enough to be able to handle differ- 
ent edges, such as lines, step edges, corners and junctions. Anisotropy 
in the data is handled automatically by the nonlinear dynamics. 

1     Introduction 
Edge detection is a basic operation for many image analysis and machine 
vision systems. It is not surprising that numerous schemes have been invented 
for various purposes. The earlier schemes such as Roberts and Sobel operators 
are gradient-based [1]. Over the years, ideas from many different fields have 
been applied to this problem. For example, one approach is based on surface 
fitting [2, 3, 4]. Fitting functions resembling edge profiles to the data, one can 
extract the edges based on the residuals or gradient strengths. Mathematical 
morphology has also been applied to detect edges [5]. The most popular 
approaches, however, are based on convolving the images with Gaussian-like 
kernels. Typically, peaks or ridges in the filtered output are identified as the 
edges, with some proper thresholding. For example, zero crossings of the 
Laplacian of Gaussians were considered to be edges in [6]. In his seminal 
work [7], Canny derived Gaussian-like filters that maximize the SNR and 
minimize the localization error. Recently, energy filters have been proposed [8] 

'Work was performed at the Institute for Scientific Computing Research and was sup- 
ported by Lawrence Livermore National Laboratory through DOE contract No. W-7405- 
ENG-48.' 
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in which the squared responses of a pair of quadrature filters are computed 
and the local maxima were defined to be the edges [8]. To maximally tune the 
responses of the filters to the edges, it is advantageous to use a set of oriented 
filters. This idea was implemented in the Binford-Horn linefinder [9]. 

Corners and junctions are very important for object description and recog- 
nition. Since their descriptions are even more complicated than edges, their 
extraction are harder. There are two types of approaches for corner and 
junction detection: 1) extracting the edges and then look for points with 
maxima curvature [10, 11]; and 2) working directly on the grey-scale im- 
ages [12, 13, 14, 15, 16]. 

Since edges can be present in multiple orientations and scales, one major 
drawback of these linear-filter-based techniques is that careful choice of the 
shapes, orientations and scales of the kernels [17, 18] is required to extract 
meaningful edges. This becomes much more complicated if accurate detection 
of corners and junctions is needed. 

Recently, a clustering filter [19, 20] that can remove noise, preserve edges 
and smooth data was derived, all conditioned upon a scale parameter. In 
this work, we discuss another aspect of the filter. It is shown that the filter 
contains a mechanism suitable for edge detection and junction analysis. 

For completeness, let us review the essential ideas of the filter. 

2    Clustering Filter 

Let x be the coordinate of a pixel in an image1 and y its gray level, or 
really any real-valued attribute. It is well-known that the pixels are highly 
redundant due to spatial correlation. Thus, given a scale, we can estimate 
the new pixel value y at position x by its neighboring pixels. Common sense 
tells us that the data points near (x, y)2 should give more information while 
those far away should give less. This can be implemented by having each 
data point contributing to the estimate y pay a cost. The cost function 
should be small for nearby data points but larger for those further away. 
To make this estimate robust, the information should be spread among the 
neighboring data. If we treat the contributions to the determination of y 
from the neighboring data as a probability distribution, then this probability 
distribution should be chosen such that its entropy is maximized subject to 
linear cost constraints [21]. 

The above reasoning implies that we can estimate each pixel indepen- 
dently. Say we are given a neighborhood of data points S — {(x,, t/i) : i = 
1,..., N}. Let Pi denote the contribution of (x2-, j/,-) to (x, y), or equivalently, 
the probability that (x,y) is influenced by (xi,yi). To specify the cost func- 
tion, we note that the input and output domains should be treated differently 
because the former is fixed and known but the latter is really environment- 

1X = (i,j) for an image with rectangular grids. We choose this notation for simplicity. 
2 We use (x, y) to denote the joint image plane and intensity space. 
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dependent. Thus, let the cost function have two components ex(xi) and 
ey(yi). Our criterion seeks to maximize the entropy S = - £,• P, log P,, sub- 
ject to the linear constraints 

^PMxi) = C(x), ]Tfley(j/.-) = E(x) (1) 
i i 

which are obtained by averaging the costs in the neighborhood. 
Using Lagrangian multipliers, the contribution of ith pixel to the deter- 

mination of the filter output y at pixel location x was found to be 

p. — e-aex(X,)-ßey(y,) ig /gN 

where Z = £\ e-ae*(x.)-/?ey(</.). Using an analogy with statistical physics, 
we can define a free energy F = =£- log Z. 

If one uses squared distance for the cost functions ex and ey, one further 
obtained that, by minimizing F, the output y at x is given by 

_ y^   yiWie-P^'-y)2 

y~ ^y.wie-ßiyj-y)7' ^ 

the weighted mean of the data and W{ = e~a^x'~x^. 
Let us now explain what a means. Clearly, a large a implies that only 

the pixels very close to x have significantly non-zero tüj's. Thus, only a few 
data points can influence the output. Conversely, a small a implies that more 
neighbors of x can contribute. Hence, a is a measure of scale in the input 
space. 

Once the scale a in the input space is selected, it is clear that the particular 
estimate one obtains depends on ß and initial y. A simple procedure was 
used in [20]. Let us compute the mean y = £\ VW I Ei w> and variance 
ay = HiiVi ~ yfwi/Y.iwi- One then sets ß = (2tf)-\ To compute the 
filter output, one simply'iterates (3), with initial y = y, until it converges. 

It has been observed that this filter can accomplish three tasks [19, 20]: 

• removing impulsive noise; 

• improved smoothing of nonimpulsive noise and 
• preserving edges. 

3    Approach for Edge and Junction Analysis 

The clustering filter uses a new mechanism, namely, saddle-node dynamics, 
for edge-preserving filtering. Can we use this new mechanism for edge detec- 
tion? A key observation here is that the energy (cost) function 

E(x) = J2(y-yi)2Pi (4) 
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is a measure of edgyness at x in the image data. The energy is small for 
smooth areas and large for areas containing "edges." The reasoning is as 
follows: Over a smooth area, the pixels in a neighboring area are highly 
correlated. Thus, the cost of having a smooth estimate is low. At an edge, 
the usual notion of spatial redundancy breaks down and strong nonlinear 
action is needed to preserve an edge. Thus, the cost is high. 

Furthermore, the energy is invariant to the orientation of an edge. Imagine 
that one rotates an edge profile within a circular region. The contributions 
Pi's are rotated too. Thus, both E(x) and y will remain unchanged. Our for- 
mulation gives a response which is orientation invariant. It is also unnecessary 
to tune the shape of the neighborhood used in the nonlinear filtering. 

We now illustrate this observation with some synthetic and real images. 
For visualization purposes, the square root of the energy image E is shown, 
unless other specified. When the outputs are generated for different as, no 
scaling is performed. This allows one to compare the magnitudes of the 
outputs. White means small and dark means large in the figures. 

3.1 Energy at Lines 
Figure la is an image with a horizontal line and a pair of crossed lines. 
Figures lb and lc are the energy images for a = 1/2,1/8 respectively. One 
can make three observations: 

• The energies are highly localized along the lines and their terminals. 
• At the corners and junctions, the energies become local maxima. This 

can serve as a scheme to corner and junction detection. 

• The ridges in the energy image are the edges. 

3.2 Energy at Step Edges and Corners 

Figure 2a shows an image with step edges and corners. Figures 2b and 2c 
show the energy images for a - 1/2,1/8 respectively. Again, one can see that 
the energies are concentrated at the boundaries which can clearly be identified 
by the ridges. At the corners, the energies are distinctly local maxima. At 
a larger scale, two local maxima are generated at the corners. They can be 
merged by noting that there cannot be two adjacent corners at a large scale. 

3.3 Energy at Junctions 
Junctions pose great difficulty for Canny-like edge detectors. The behavior of 
the edges obtained by linear filters is very complicated at junctions because 
an ideal junction can be characterized by four parameters. To demonstrate 
that the energy image can be useful for detecting such junctions, Figure 3a 
shows a corner and Figure 3b is the filtered image. Figures 3c and 3d show 
the energies at a = 1/2 and 1/8 respectively. Indeed, the ridges are the edges 
and they meet at the junction, the energy of which is a local maxima. 
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Figure la. Lino image. Figure lb. Energy image. a= 1/2. 

Figure le. Energy image. a=l/S.      Figure 2a. Step edges and Corners. 

<; 

Figure 2b. Energy image. a=l/2.      Figure 2c. Energy image. a=l/8. 



3.4    Results using real data 
Edges in real data differ from the synthetic ones considerably due to sampling. 
A step edge has nonzero components at all frequencies. For two-dimensional 
images, depending on the sampling periods in the x and y directions and 
the edge's orientation, sampled edges can appear jagged. Thus, care must 
be taken in using our formulation because the filter is nonlinear. Edges are 
detected as follows: For each pixel, it is determined if the energy is a local 
maximum in any of the four directions. If the energy is a local maximum 
in one or more directions, the maximum gradient among these directions is 
computed. Otherwise the gradient is set to zero. One then thresholds this 
gradient image to get the edges. Figure 4a shows a girl image. Figure 4b 
shows the edges extracted by our method. Figure 5a shows a MR image of a 
human hand. Figure 5b shows the edges extracted. 

4    Summary 

We have shown how the formulation of a nonlinear scale-space filter can be 
utilized for edge and junction analysis. Using the nonlinear filter, an energy 
value can be calculated at each pixel. Energy is large at an edge and small 
over smooth areas. Moreover, it is invariant to the orientation of an edge. It 
was observed that the ridges correspond to edges and the local maxima cor- 
respond to the corners and junctions. Our main contribution is that the use 
of saddle-node dynamics allows us to perform tasks quite effortlessly which 
would require careful tuning of the shapes and orientation of the filter kernels 
in conventional methods. Future work would include more detailed experi- 
ments and integration of edges over scales to generate a complete and robust 
edge detection scheme. 
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Figure 5a. MR Hand imace. Figure 5b. Edees from Fin. 5a. 
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1 Introduction 

Singular Value Decomposition (SVD) has been a well-known technique for sig- 
nal/image processing. Recently, an SVD approach to the so-called structure- 
from-motion problem was proposed by Tomasi and Kanade [3], which has at- 
tracted a lot of renewed attention. For the single object case, Kanade and 
colleagues have devised a sequential algorithm so that it would be able to re- 
cover the scene in real time as the video images are taken. So this is called a 
motion-shape estimation (MSE) problem. The main thrust of this paper is to 
further evolve the single object MSE to multi-object MSE problem. Given a 
sequence of 2-D video images of multiple moving objects, the problem is to track 
the 3-D motion of the objects and reconstruct their 3-D shapes. After selection 
of initial feature points (FPs), the SVD may be applied to a measurement matrix 
formed by the FPs sequentially tracked by a video system. The distribution of 
singular values would first reveal the information about the number of objects 
at hand. Then, using an algebraic-based subspace clustering method, the FPs 
may be mapped onto their corresponding objects. Thereafter, the motion and 
shape may be estimated from a matrix factorization. 

Our method hinges upon the numerical effectiveness and stability of the 
SVD factorization. In addition, for potential real-time application, we shall 
stress the importance of recursively extraction of the principal components by 
e.g. adaptive neural architectures. A parallel processing APEX neural model, 
for example, may provide a very attractive implementation!!] . 

2 SVD Analysis for Moving Objects 

With reference to Figure 1, where the coordinate of a video imaging system is 
sketched. Here we assume an orthographic projection of a 3-D object point onto 
an FP on the image plane. * For convenience of notation, we also assume that 
the rotation center coincides with the (local) coordinate system pertaining to an 
object A. Let a(p), p = 1,..., P, denote the 3-D position vector of any feature 
point on the object. 

^Note that the rank theorem, as originally proposed by Tomasi and Kanade relies on the 
assumption of orthographic projection^, however, the result was later extended and verified 
to be valid also for the para-perspective projection model[2]. 
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Given any time (or frame) /, where / = 1,..., F, this 3-D location may be 
projected onto the 2-D image plane of the camera. The x-coordinate's value of 
this feature point (FP) is 

u)
,'(/,p)=ißa(/)a(p)+it„(/) (1) 

where the vectors i = [1 0 0] and Ra(f), ta(f) respectively denote rotational 
matrix and the translational vector. Likewise, for the y-coordinate in the image 
plane, 

'(/,p)=JÄ«(/)a(p)+jta(/) (2) 

where the vector j = [0 1 0].      Now we construct an expanded matrix (with 
Ea = [1 1 1 1 1 ■ • ■ 1 1 ]) 

Wl    =    {W«'(/,p)} = R,
aSa + T'aEa (3) 

and the motion matrices 

R'a = [iÄ„(l)T|iÄa(2)T|---|i/2a(nT   and  Ta = [ita(l)
T\ita(2)T\-■-\ita(F)T] 

T^ 

and the shape matrix Sa = [a(l)|a(2)| • • -\a(P)] is formed from all the feature 
vectors of object A. 

For the y-axis, a similar matrix is formed: 

Stacking the x- and y- image measurement matrices, we obtain 

W* 

where 

W„ 

Ra  — 

Wi 
RaSa + TaEa 

(4) 

(5) 

R* 
RJ

a j 
and 

rpt 
■*- n 

Ti 

The dimensions of the matrices Wa and Ra are 2F x P and 2F x 3, respectively. 

Let us further define M = [Ta|R„] and S = 

matrix (for a single object) can be expressed as 

W = Wa    =    MS 

Ea then the measurement 

(6) 

The dimensions of the matrices W, M and S are 2Fx P, 2Fx4, and 4xP respec- 
tively.   Eq. 6 suggests an important rank property stated below[3]: 

Theorem 1 (Rank Theorem for Single-Object Case) (a) The matrix W 
given in Eq. 6 has a generic rank of 4- (b) Subtracting the average (over all the 
FPs) of the measurement matrix W, then the resulting matrix W (given in Eq. 
7) will have a generic rank of 3. 
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As to Part (a), the total rank is obviously 4 with Sa contributing rank 3 
and Ea rank 1. Part (b) is closely related to an earlier obervation by Ullman[4], 
which suggested that three pictures of four points of a rigid body determine its 
structure and motion. The rank is reduced because translational component may 
be effectively removed by subtracting the average of the measurement matrix: 

W = RaSa + TaEa - RaSa - TaEa = Ra [S„ - S„] (7) 

where Sa = 0. The elements of Ea are identically 1, therefore, so are E„. 

SVD for Multi-Object MSE Problem For the multi-object MSE problem, 
a new challenge arises in having to distinguish the FPs of adjacent objects so 
that they may be correctly classified into their corresponding objects. Let us for 
simplicity concentrate on an example with three objects, A, B, C, whose shapes 
are denoted by S0, S», and Sc. Just like the single-object case, the measurement 
matrices for A, B, and C, are respectively: 

Wa = RaSa + TaEa 

Wi = R6S!, + TJE6 

Wc = RCSC + TCEC 

The row vectors Ea, Ej, Ec have dimensions P, Q, and R, respectively. Con- 
catenating these matrices, we have 

W = [Wa|W6|Wc]    =    [Ta|Ra|T6|R6|Tc|Rc] 

r Ea 0 0   1 
Sa 0 0 
0 E6 0 
0 s6 0 
0 0 Ec 

0 0 Sc  J 

= MS(8) 

Main Theorem for Reclustering of Feature Points Two points are note- 
worthy: (1) The dimensions of the matrices W, M, and S are 2F x ( P + Q + 
R) , 2F x 4k, and 4k x ( P + Q + R) respectively. Here k denotes the number 
of the objects. In this case, k = 3, so that rank of a noise-free measurement ma- 
trix W should be exactly 4k = 12. (2) The above representation is deceptively 
simplified, because it assumed that the columns from each of the objects are 
pre-aligned in correct clusters (as shown in Eq. 8). In reality, this is seldomly 
the case. Assuming now that the FPs are not in a correct order, so a very first 
task is to recluster the FPs such that FPs corresponding to the same object may 
be regrouped. (The more complete collection of the FPs would mean a more 
complete 3-D display of the object.) The main theme of this paper is to demon- 
strate that, under noisy environment, SVD again offers an effective reclustering 
technique. Mathematically, the task is to identify the correct mapping from the 
FPs onto the matching objects. Assume that the measurement matrix W turns 
into full rank due to noise corruption and its SVD is 
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W = [/EV- UY.V + U'E'V 

we first remove the "noise" singular values E'. Approximately 

W « (/EK = L/E'^E^V (9) 

Let us assume that the SNR is sufficiently large (ideally noise-free) and that 
each (rigid-body) object comprises at least 4 or more linear independent FPs 
and has a total freedom of 3-D (rotational and translational) motion. Then the 
following theorem is valid: 

Theorem 2 (Subspace Rank Property) Compute the SVD o/W and ob- 
tain U, E, V as given in Eq. 8. 

(1) Total Rank: The total number of (numerically) nonzero singular values 
in E (i.e. those attributed to the objects) will be 4k, where k is the number of 
objects. Here an object is by definition a rigid body. 

(2) Inclusive Rank Property: If the column vectors of the matrix V (or, 
equivalents, Y,ll2V) is correctly grouped into k clusters, each corresponding to 
one object, and the correctly permuted matrix is rewritten as 

V = [Va\Vb\Vc] (10) 

then each submatrix Va, Vb, and Vc has (generically) rank J,. 

(3) Exclusive Rank Property: Due to a mutual orthogonality property, any 
mixture of column vectors from different objects would generically cause the 
submatrix (comprising of columns from more than one objects) to exceed rank 
4- In other words, no column ofVa may fall in the span of the submatrix ofVh, 
and vice versa. Generically, any mixture of (5 or more) columns from Va and 

Vb woxdd cause the rank to exceed 4- Careful observation of this property could 
prevent, over-subscribing alien or unwanted columns into an object. 

(4) Uniqueness Property: The inclusive and exclusive rank properties to- 
gether guarantee the uniqueness of the solution. 

m 

Proof: The proof is largely by inspecting Eq. 8. In particular, we note that 

E1/2^ = QS for some nonsingular matrix Q. Therefore, Va = Q [Ej|Sj|0|0|0|0]T. 
Since Q is nonsingular, thus Va must have rank 4. Eq. 8 also indicates the mu- 
tual rank independency between Va and Vb, thus verify part (3). Part (4) follows 
naturally Parts (2) and (3). 

Extraction of Motion-Shape Factorization Once an object (say Va) is 
properly aggregated, then the next step is reconstruct its 3-D motion/shape. 
This is done by applying the QR transfformation (X) on the matrix Va[I - 
pETEa]- According to Theorem, 1, there will be three nonzero rows (the first 
three) which define the matrix S'a as shown below: 

XVa 

1    T 
pEjEfl 
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Apply an inverse transformation X  a to C/S1/2, resulting in 

UY>'2X-1 = \R'a\Y] 

By duality, the matrix R'a should also be formed from the first three columns. 
Thus a rotation-shape factorizaton can be obtained as R^S^, which may be 
further transformed to an exact factorization: RaSa[3]. 

3     Subspace Clustering Problem 

The rank theorem prescribes the common bound shared by FPs from the same 
(rigid) object. This motivates a general algebraic framework formulated in a so- 
called a subspace clustering problem. This formulation has potential applications 
including, but not limited to, the MSE problem. 

Definition 1 (Subspace Clustering Problem) Given a set of feature vec- 
tors V — { Vi }, the problem is to find all the (rank-r) objects in V by identifying 
their corresponding subsets of feature vectors. Here, a rank-r object is defined 
as a subset of V which forms a rank-r subspace. 

For example, r = 4 in the multi-object MSE application. If there are three 
moving objects, then the number of objects is k — 3. 

Algorithm 1 (Subspace Clustering Method) For the noise-free case, the 
following steps may be adopted: 

1. Determine a pool of basis vectors S as a maximally linearly independent 
subset ofV. Generically, S should contain exactly k x r basis vectors. 

2. A subset of r basis vectors in S will be incorporated into a partnership 
if there exists at least one vector in V, but not in S, which falls on the 
span of the subset. The justification of forming such a partnership is that, 
due to the exclusive rank property, ifr+1 vectors fall in a span of rank-r 
subspace, then they could not possibly be from a mixture of two objects, i.e 
they belong to the same object. (For notational convenience, the r basis 
vectors shall be called major members in the partnership.) 

3. Attract other minor members to join the partnership. By the inclusive 
rank property, a vector is elected to membership if and only if it falls on 
the span of the r basis vectors (i.e. major members). 

4. Continue the process until all the membership for the k objects (i.e. part- 
nerships) are identified. 

Example 1 (Noise-Free Case) Here for simplicity the object rank is set to 
be r = 2. Given a set of vectors Ai, Bi, B2, Ci,^, ^3, C2, #3,^4, #4, C3, • • • 
= {vi,i — 1,2, ■■■}, from objects A, B, C, then the clustering process can be 
illustrated by the following: 
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Vector Dependence    Basis Pool       Partnership 

1 No 1, 
2 No 1,2, 
3 No 1,2,3, 
4 No 1,2,3,4, 
5 No 1,2,3,4,5 
6 Yes (The 6-th vector is excluded from the pool.) 
7 No 1,5   ,2,3,4,7 

This completes basis pool and the membership drive begins here: 
6 YesCon 1,5) (1,5),2,3,4,7 (1,5   |   6):  partnership induced by 6 
8 YesCon 2,3) (1,5),(2,3),4,7 (2,3   |   8):  partnership induced by 8 
9 Yes(on 1,5) (1,5),(2,3),4,7 (1,5   I   6,9) 
10 Yes(on 2,3) (1,5),(2,3),4,7 (2,3   |   8,10) 
11 Yes(on 4,7) (1,5),(2,3),(4,7)     (4,7   111) : partnership induced by  11 

The final clustering result is that the vectors (1,5, 6,9,...)  form one object (say, 
A), (2,3, 8,10, ...) form another object (B), and (4,7, 11, ...) yet the third (C). 

Numerical Consideration to Account Noise Effect 

1. To improve numerical behavior, the basis vectors should be numerically as 
nonsingular as possible. Here the "numerical nonsingularity" is measured 
by the smallest singular value associated with the basis vectors. This 
would result in a more stable linear dependency check. 

2. It is not necessary to identify all the objects in on shot, it may be done 
sequentially. This is important, since the smallest singular value associated 
with the basis vectors usually decrease (rapidly) with increasing number 
of basis vectors. So when the number of objects is too large, it may be 
difficult to form a complete set of basis vectors with a decent smallest 
singular value. It is then advisable to use only a partial basis set which 
offers a better and more comfortable "numerical nonsingularity". As long 
as the partial basis set contains the r basis vectors needed for at least 
one object, then all the (minor) members ofthat object may be identified 
afterward. The members of the first object may be removed from the set 
V, before the search process for the second object is started. 

3. A confidence measure on linear dependency may be estimated and used. 
This concept is elaborated further in this subsection. Under noisy situa- 
tion, a total least square solution, based on SVD, can be used to determine 
a confidence level of numerical linear dependency. The membership check 
should take into account the confidence. 
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A Confidence Measure Under the practical and noisy situation, it is more 
meaningful to ask "is there an approximate linear dependency, and if so, how 
close?" The answer to this question is no longer straightforward. The complexity 
hinges upon the criterion adopted. One popular approach is to have A perturbed 
by a perturbation matrix A, such that linear dependency comes to existence. 

Suppose that the SVD of A = UVVT = £™V W? ■ Then' ^ setting A = 

-um+1am+iv%+l it would make 

m 

[A + A] = ]Tu;<r^f (H) 
;=i 

to have rank deficiency. It further implies that [A + A] is the closest approxi- 
mation of A with rank at most m. By Eq. 11, we note that [A + A]wm+i - 0, 
so the "best" normalized null-space solution is simply x = vm+1. In summary, 

1. The last singular vector of A,vm+U provides a critical information on the 
most likely dependency existing in A. 

2 The last singular value <rm+i gives a quantitative measure on the confi- 
dence of such a linear dependency. (The smaller am+1 is the higher the 
confidence, since it is closer to linear dependency.) 

4    Simulation Results 
Example 2 (Four Moving Objects) The objects considered in the simula- 
tion consist of two cylinders, one block and one pyramid. There are 20 feature 
points on the cylinders and the block and 10 points on the pyramid. The order 
of the feature points is randomly permuted. In the duration of 50 frames, all 
objects are rotating independently. One frame of the orthographic projection of 
the four objects is shown in Figure 2, which in the appearance is not easily sepa- 
rable at least not by conventional clustering algorithms, is depicted tn Figure 3 
(b) which indicates a substantial drop on the 17th singular value. Therefore, the 
rank is 16 and the number of objects is 4, just as predicted. After applying sub- 
space clustering method, we can obtain four different groups of column vectors 
[VaVbVeVa] for the feature points. Then the translation-rotation decomposition 
iS

aused to obtain the shape information. The result is shown m Figure 4. 

Example 3 (Two Moving Objects with Noisy Measurements) Experiments 
on two moving objects with noisy measurement have been conducted. Prelimi- 
nary study shows that the subspace clustering depends very much on the numer- 
ical behaviour. Under noisy situation, a total least square solution is found 
to be effective in determining a good threshold for checking (numerical) linear 
dependency This however incurs the use of the computationally more demand- 
ing SVD technique for the dependency check. Nevertheless, preliminary study 
shows that the total-least-square based subspace clustering method can cope with 
1-5% noise tolerance on the FP measurements. 
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5     Multi-Camera Multi-Object Analysis 

In many application domain, images via multiple cameras can offer vital infor- 
mation. A prominent example is that of shape reconstruction of an occluded 
object. Suppose that during the period of video recording, an object is only 
partially seen by the first camera, but its incomplete viewing angle can be 
compensated by a second camera. Under this scenario, it is essential that the 
information from the two cameras be "fused" for the reconstruction of a com- 
plete 3-D shape. On the other hand, one must also prevent FPs from different 
objects being mixed. 

To this end, the subspace clustering method offers a simple solution 
Without loss of generality, let us assume that the first camera is (like before) 

located at the origin [0,0,0] with the direction of the imaging plane defined 
by its normal vector [0,0,1]. A second camera, located at a new location at 
m _ [rm,m^mk], has its own image plane defined by a new normal vector 
[ku k2,k3]. Since m is known before hand and remains constant, so its shift effect 
can be removed by first pre-shifting the FPs recorded on the second camera 
Therefore, without loss of generality, we shall simply pre-align the FPs of the 
second camera so that in the following derivation it may be considered in effect 
m = 0. 

There exists a common viewing angles from the two cameras, since two image 
planes (assuming non-parallel) must intersect on one line, denoted by 1, which 
is orthogonal to both the normal vectors. 

1T[0, 0, 1] = 0     and     \T[kuk2,k3] = 0 

This yields a solution 

Just like Eqns. 1 and 2, along the line 1, the FP is recorded as 

«''(/.P) = lÄ«(/)a(p) + ka(/) (12) 

Based on this we construct the measurement matrix for the first camera 

Wi    =    {w'(f,p)} = R'aSa + T'aEa (13) 

Similarly for the second camera, we have another matrix 

W'a = Rj,S0 + TlEa (14) 

Assuming two objects (A and B), then the toal measurement matrix becomes 

[Wi|wl|Wi|wI]    =     [T'jRMlRi] 
Ea|Ea 0     I 
s is 0 

0 E6|E6 

L   o s6[s6 J 

(15) 

By inspection, it should be clear that all the multiple-object rank properties in 
Theorem 2 and the same Subspace Clustering Method remain   applicable. 
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Conclusion Even though the derivation in this paper is based on the ortho- 
graphic projection, it can be shown that the SVD analysis for multiple moving 
objects is also applicable for the case of para-perspective projection[2]. As a 
matter of fact, for a single object A, Eq. 1 becomes 

flS(/,P)*'a(/,P)> 
^=wf)[{iRa{f'p) -   w.T*+w'p)]   (16) 

for the para-perspective projection. Here / is the focal length of the camera. 
From Eq.   16 all major rank theorems described above are valid except that 

iRa(f,p) is replaced by iRa{f,p) - *"(fg]$J,p)' M°st imPortantly> E(l- 8 

remains the same for multiple objects, which means the main theorem for fea- 
ture points clustering is valid. In the experiments conducted by Poelman and 
Kanade[2] for a single moving object, the para-perspective method in general 
performs significantly better than the orthographic factorization method. Based 
on the simulational study at hand, we are convinced that the SVD factorization 
method will lead to a robust solution to multi-object motion-shape analysis. We 
plan to test the proposed multi-object factorization method with sequences of 
laboratory-calibrated and real outdoor digital video images. The experimental 

results will be reported in a future publication. 
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Figure 1:   Coordinate system of moving objects w.r.t. 

Shown here is one of P feature points of Object A. 
421 

camera image plane. 



\ x 

DC » 

«MM 

Figure 2: This figure shows the feature points on four targets used in the sim- 
ulation. Points on different targets are denoted as different symbols. 

Figure 3: The log-scale of the singular values in the simulati on. 

Figure 4: This figure shows the shapes of the four targets in the simulation. 
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Abstract In this paper, we propose a simple and powerful feature 
extractor using neural networks. This feature extractor is trained to 
detect features such as lines, corners, junctions in images. Different 
feature models are generated based on discontinuity in intensity val- 
ues and the orientation of the boundary in the pixel neighborhood. 
Locating feature points in the image is carried out in two steps by 
considering annxn window as a processing unit. At the first step, 
a covariance technique is used to calculate rotation-invariant descrip- 
tors, which represent discontinuities for edge types. At the second 
step, a multilayer feedforward neural network, trained with the in- 
variant feature descriptors, is used to classify the centre pixel into 
one of the possible features. Experimental results using the proposed 
method are compared with Marr-Hildreth edge operator results to 
show the effectiveness of the proposed method. 

INTRODUCTION 

Feature extraction is a process to obtain relevant features from 
an image depending on a given task. Generally feature extraction 
[1, 5, 8, 9] can be divided into three categories in image processing 
applications namely, region based, where areas of images with ho- 
mogeneous properties are found in terms of boundaries; edge based, 
where the local discontinuities are detected first and then connected 
to form longer lines; and pixel based, which classifies pixels based on 
gray levels. 
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Recently, artificial neural networks (ANN), have found successful 
applications in such diverse areas as medicine, biology, control sys- 
tems, manufacturing, etc. ANNs also have been applied to image 
segmentation. ANNs have the advantage over parametric statistical 
classification techniques, in that they do not require priori knowledge 
about the data distribution. Moreover, they are generally character- 
ized by intrinsic parallelism and fault tolerant characteristics. In [3] 
a neural network system for edge detection is proposed. In this pa- 
per, simulated annealing, and mean field annealing are implemented 
and tested on synthetic images. Recently, a method for image seg- 
mentation has been developed using neural networks [10]. The image 
segmentation is cast as a constraint satisfaction problem. 

We previously proposed that [7], instead of training a neural net- 
work with patterns in all possible orientations, it is more attractive 
and efficient to extract rotation-invariant features from a given set of 
feature models. This allows us to train a neural network with a small 
set of patterns. 

In this paper, a method for extracting such features as edges, cor- 
ners, lines, roofs, and ramps, using neural networks is developed. The 
pixel classification is performed in two stages: In the first stage, mod- 
els are generated using the covariance techniques for different features. 
These feature models represent discontinuities in the neighborhood of 
the pixel. In the second stage, a feedforward neural network is trained 
by the set of feature models obtained from the previous stage. The 
neural network subsequently assigns a feature index to each pixel. 

We have carried out extensive experiments on both synthetic and 
natural images and obtained dramatically better feature representa- 
tions as compared to more traditional methods. The simulation re- 
sults on natural scenes are also compared with the results of Marr- 
Hildreth edge operator. These show considerable visually correct and 
accurate edges as opposed to those obtained by the popular Marr- 
Hildreth edge detector. In the following we describe our method and 
present some experiment results. 

PREPROCESSING 

Prior to feature extraction, the image undergoes an initial non- 
linear smoothing which preserves abrupt changes in the pixel neigh- 
borhood. This prevents erroneous and spurious features from being 
extracted by the neural network for the given model. We apply an 
averaging technique developed previously [8, 6] to the image, which, 
in effect, is a low pass filtering process. However, in this process, The 
center pixel p0 of an n x n window is replaced by the average of that 
window. If the difference between the values of p0 and its immediate 
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Figure 1: Feature models representing lines (a), diagonal lines (b), 
roofs (c), flat (d), junctions (e), and corners (/) in the windows. 
Each feature model represent four possible models in different orien- 
tations. 

neighbor is greater than a certain value T, then that neighbor is not 
included in the computation of the average. 

FEATURE MODELS 

Feature extraction methods are typically based on local properties 
such as edges, lines, curves, etc. However, it is difficult to explicitly 
define what constitute different features in an image. The percep- 
tion of features by the human visual system is an extremely complex 
process, that is strongly influenced by prior knowledge [4]. For our 
purposes, we will define feature models in a general sense to include 
a wide variety of edge types. 

In our experiment each feature model represents a 3 x 3 window, 
i.e, n = 3 where the centre pixel is of interest. Different models are 
generated as shown in Figure 1. These models represent features, 
horizontal lines (a), vertical lines, diagonal lines (b), roofs (c), flat 
(d), junctions (e), and corners  (/) in the windows. 

FEATURE EXTRACTION 

To extract invariant feature descriptors, we have used the eigenspace 
[7] of the covariance matrix. 
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Covariance Technique Let W = [wf ,v%, ...,wj,] be a 3 x N 
matrix, and N = n2 where n x n is the size of pixel neighborhood. 
xSi - [xi,yitZi], whose xt, yt are the locations of the ith pixel in 
horizontal, vertical directions and z{ is the intensity value of ith pixel. 

The covariance matrix is given by 

C - — Yl(™' ~ ™m)(™>' ~ ^"^T 

: = 1 

and 
1   N 

i = l 

The Covariance matrix is symmetric, C G 5ft3*3, and has a set of 
three orthonormal vectors whose corresponding eigenvalues charac- 
terize the variances of the data set in the directions specified by their 
eigenvectors. 

It is observed that the eigenvector corresponding to the dominant 
eigenvalue is set in the direction of maximum variance in the data: 
typically in the direction of the variance of intensity and the eigenvec- 
tor corresponding to the smallest eigenvalue lies in the direction of the 
orientation of the window. It should also be noted that second-order 
covariances and associated eigenvalues can also be determined from 
these first-order eigenvalues or eigenvectors over neighborhoods of a 
given pixel (see Berkmann and Caelli [2]). However, in this applica- 
tion we have restricted our attention to only the first-order covari- 
ances. The third eigenvalue simply indexes the sampling density and 
we have excluded it from further analysis - though, in some cases, it 
would set as a silent feature. Figure 2 shows the discriminating ability 
of the eigenvalues for different features lines, diagonal lines, corners, 
roofs in the image in one of our experiments. 

CLASSIFICATION 

The previous stage finds an approximate solution to the classifi- 
cation problem by constraining the shape of the classification regions. 
From the nature of the eigenvalues found in the previous stage, the 
clustering properties are more clear between logarthmic values of dom- 
inant eigenvalue and absolute values of the remaining eigenvalues. 

The feedforward neural network is one of the most popular ANN 
because of its structural simplicity and the ease in which it can be 
utilized in various applications. A multilayer feedforward neural net- 
work was trained by backpropagation algorithm to assign one of the 
possible feature classes (lines, ramps, corners, etc.) to each pixel. 
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Figure 2: Features in eigenvalue space 

EXPERIMENTAL RESULTS 

We have conducted extensive experiments to verify the perfor- 
mance of the proposed method. All the images used in the experi- 
ments were 256 x 256 in size and the pixel intensity range was from 0 
to 255. 

In our experiments we used a 3 x 3 window as a model. We 
generated feature models representing lines, corners, points, roofs as 
defined in section 3. Ten models for each feature class were selected. 
A training set of 80 models was used. 

To generate the training set for the neural network, rotation in- 
variant eigenvalue descriptors were calculated using the covariance 
technique. The architecture of the neural network adopted is 3-3-3-1 
net, with 3 neurons in the input layer, 3 neurons each in two hidden 
layers, and one neuron in the output layer. The neural network is 
trained using the delta rule. The training parameters a and r) were 
0.1 and 0.9 respectively. The convergence was achieved after 2000 
iterations. 

In Figures 3 and 4 we show some of our experimental results. Fig- 
ure 3(a) shows an original synthetic image. Figure 3(b) is the image 
after feature extraction using the proposed algorithm. Figure 4(a) is 
a natural scene image. Figure 4(b) is the feature image, and show 
that the feature detector was able to pickup different types of edges, 
corners, junctions in the image while preserving the characteristics 
like thinness, and continuity. 
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We have implemented Marr-Hildreth edge operator based on the 
zero crossings of Laplacian. In effect, this is a non-directional second 
derivative zero crossing operator. The mask is generated using the 
formula [5] 

where r2 = x2 + y2 and x and y are the position of the row and column 
of the mask. We have selected 2a = w = 5 where w is the size of the 
mask. Figures 3(c) and 4(c) are the edge detected images by applying 
the above mentioned operator on the images shown in Figures 3(a) 
and  4(a) respectively. 

CONCLUSION 

In this paper, we proposed a method to perform feature extrac- 
tion using a 3 layer neural network. The sensitivity of the feature 
extraction is adjustable and the training set of the neural network 
can be changed to increase the reliability of the results. By using 
the covariance technique, a small set of training patterns can cover a 
large number of models because of their rotation-invariant property. 
Furthermore, the neural network can be trained very fast. Finally, 
the covariance technique constrains the shape of the classification re- 
gions, which improves the classification accuracy. We have also com- 
pared the results using this method with the results obtained by zero- 
crossings of the Laplacian of Gaussian filter. The proposed approach 
is also being used in other pattern recognition problems. 
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(a) (b) (c) 

Figure 3: (a) Synthetic image, (b) Feature detected image using 
neural network, (c) Edge detected image using Marr-Hildreth edge 
operator. 

(a) (b) (c) 

Figure 4: (a) Original image, (b) Feature detected image using neural 
network, (c) Edge detected image using Marr-Hildreth edge operator. 
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Abstract - The objective of this paper is to provide an overview of the recent developments 
in the use of artificial neural networks in medical imaging. The areas of medical imaging 
that are covered include: ultrasound, magnetic resonance, nuclear medicine and radiological 
(including computerized tomography). 

INTRODUCTION 

In everyday medical practice, the physician has to evaluate a number of complementary 
diagnostic imaging modalities such as ultrasound, magnetic resonance, nuclear medicine, and 
radiological. These images are usually evaluated qualitatively by visual examination. 
However, the need for quantitative analysis is becoming of increasing importance in the 
clinical environment. This allows measurements to be standardised, to be more accurate and 
save diagnostic time. The advantages of quantitative analysis in medical imaging can be 
summarised as follows: i) Standardisation. Diagnoses obtained from different laboratories 
using similar criteria can be verified, ii) Sensitivity. Findings on a particular subject may 
be compared with a database of normal values and/or a decision can be made by an 
automated imaging diagnostic system deciding whether or not an abnormality exists, iii) 
Specificity. Findings may be compared with databases for various diseases and/or a 
decision can be made by an automated imaging diagnostic system with respect to the type 
of abnormality, iv) Equivalence. Results from a series of examinations of the same patient 
may be compared in order to decide whether there is evidence of disease progression or of 
response to treatment. In addition, the findings of different automated imaging diagnostic 
methods can be compared to determine which are more sensitive and specific, v) Efßcacy. 
The results of different treatments can be more properly evaluated. 

Different approaches have been used to address the problem of quantitative analysis in 
medical imaging. Classical methods range from simple thresholding to more advanced 
multidimensional data classification techniques. The use of artificial neural networks (ANN) 
in image analysis has recently been proposed. The advantages of artificial neural networks 
that make them so attractive to investigate as an alternative are the following: i) exhibit 
adaptation or learning, ii) pursue multiple hypothesis in parallel, iii) may be fault tolerant, 
iv) may process degraded or incomplete data, v) make no assumptions about underlying data 
probability density functions and iv) seek answers by carrying out transformations. 

This work was carried out through a European Community International Scientific 
Cooperation Initiative, Marie Curie Fellowship No. 930180, awarded to Dr. C.S. Pattichis. 
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This paper provides a survey of the different applications of neural network technology in 
medical imaging and in particular in the fields of ultrasound, magnetic resonance, nuclear 
medicine, and radiology. The scope of the paper is quite wide and although our literature 
review is thorough it is by no means totally complete. Publications reviewing the use of 
ANN in medical diagnostic systems [ANM1]-[ANM4], as well as in medical signal and image 
processing [ANM5], [ANM6] may provide additional information. 

For each imaging field discussed, a table summarizes the profile of the different ANN 
studies. The following table entries are given: name of first investigator, [reference], 
problem under consideration, organ or part of the body investigated, imaging modality, 
imaging operation, and neural network learning method. For each imaging modality selected 
papers are discussed more extensively. 

LIST OF ACRONYMS 

ALOPEX optimization procedure to 
train ANN 

HOP Hopfield network 

ANN artificial neural network LOGN logical neurons 

ART adaptive resonance theory MLC maximum likelihood 
classsifier 

AUASS autoassociativc learning 
paradigm 

MRI magnetic resonance 
imaging 

BP back propagation PET positron emission 
tomography 

CLASS classification PCA principal component 
analysis 

COMP compression PNN probabilistic neural 
network 

CT computerized tomography RECO reconstraction 

ENHA enhancement ROI region of interest 

FEAE feature extraction SEGM segmentation 

FFCC fast forward cascade 
correlation algorithm 

SPECT single photon emission 
computer tomography 

FMMANN fuzzy Min-Max ANN TEXCL texture classification 

ULTRASOUND 

Neural network models for ultrasound imaging have been developed for cardiology [ULT1]- 
[ULT5], liver tissue identification [ULT6]-[ULT8], and ophthalmology [ULT9]. Table 1 lists 
several representative examples of ultrasound imaging with NN, and we briefly present one 
of these below. 

Detection of Myocardial Infarction [ULT1] 
Echocardiographic images from 11 normal, 7 hypertrophic cardiomyopathy, and 11 
myocardial infarction subjects were digitised into a 256x256 pixel matrix with 256 gray levels 
[ULT1]. The regions of interest (ROI) were predetermined by a cardiologist, avoiding the 
endocardium echo, epicardium, and valves and consisted of a 10x10 pixel matrix. These gray 
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levels were subsequently normalised between 0 and 1. The back propagation (BP) NN 
algorithm [ANN9] was used with two types of images at the input i) 10x10 pixel matrix and 
ii) 5x5 pixel matrix with an overlap factor of 4x4. Results of this study demonstrated that 
the former network was more sensitive in classifying the data than the latter one. The paper 
concludes that the BP ANN is capable of recognizing the slight differences between normal 
and abnormal diseases of myocardial tissue. However, no quantitative measure was given 
to support this. 

TABLE 1  SUMMARY OF ULTRASOUND IMAGING ANN STUDIES 

Investigator rRef.l Problem Organ Operation ANN Method 

Cios [ULT1] Myocardial 
infarction 

heart TEXCL BP 

Tzanakou [ULT2] Myocardial 
infarction 

heart TEXCL BP-ALOPEX 

Yi [ULT3] Myocardial 
infarction 

heart TEXCL BP-ALOPEX 

Brotherton [ULT4] Structure and 
tissue 

heart TEXCL FMMANN 

Karkhanis [ULT5] Ejection 
fraction 

heart FEAE BP 

Kim [ULT6] Liver 
diagnosis 

liver TEXCL BP 

Daponte [ULT7] Liver 
diagnosis 

liver TEXCL BP 

Botros [ULT8] Liver 
diagnosis 

liver 
phantom 

CLASS BP 

Silverman [ULT9] Tumour 
detection 

eye CLASS BP 

Nikoonahad [ULT10] Wave velocity 
correction 

ENHA BP 

MAGNETIC RESONANCE 

Examples of the application of neural network technology in magnetic resonance imaging 
(MRI) are given in Table 2. Most of these applications have been developed for 
segmentation of MRI images [MRI1]-[MRI9]. Some of these studies were demonstrated to 
perform as well as or better than classical statistical analysis using for example the maximum 
likelihood classifier (MLC). The usefulness of ANN models in blood vessel identification, 
and invariant aorta segmentation was also investigated by [MRI15] and [MRI16] that gave 
promising results. 

Segmentation of brain images [MRI1] 
Segmentation of medical images obtained from magnetic resonance imaging is a very 
important operation in the visualization of soft tissues in the human body. MRI is inherently 
multidimensional as it provides information about three tissue dependent parameters: spin- 
lattice relaxation time, Tl, the spin-spin relaxation time, T2, and the proton density, PD. 
Neural network models supplied with Tl, T2, and PD, weighted intensity values, and in 
addition the X-ray CT intensity value of images of the human brain were trained with the 
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back propagation algorithm to classify the following six tissue types: background, 
cerebrospinal fluid, white matter, gray matter, skull and fat, and bone and bone marrow 
[MRU]. Results reported in this work support the use of neural networks as a promising 
method for the classification of multi-modality medical images. One of the major advantage 
of ANN over classical statistical pattern recognition techniques, like the MLC is their relative 
insensitivity to the selection of the training sets. In the case of single slice MRI 
classification, it has been demonstrated that neural networks are able to segment the images, 
although training points did not appropriately sample the image spatially, a task the 
maximum likelihood classifier was not able to perform well. Also, in the case of multiple 
slice classification, the characteristics of the class boundaries obtained by the neural network 
models have permitted the successful development of an adaptive 3-D classification scheme 
[MRU]. 

TARIF. 2 SUMMARY OF MAGNETIC RESONANCE IMAGING ANN STUDIES 

Investigator rRef.l Problem Organ Operation ANN Method 

Ozkan [MRU] brain SEGM BP 

Amartur [MRI2] brain SEGM HOPF 

Hall [MRI3] brain SEGM FFCC 

Cagnoni [MRI4] brain SEGM BP 

Piraino [MRI5] brain SEGM BP 

Dawant [MRI6] brain SEGM BP 

Schcllenberg [MRI7] brain SEGM BP 

Toulson [MRI8] brain SEGM BP 

Morrison [MRI9] brain SEGM PNN 

Raff [MRI10] Lesion detection 
in Multiple 
Sclerosis 

brain FEAE AUASS 

Lehar [MRI11] Boundary 
contour 
identification 

brain FEAE/ 
ENHA 

ART 

Manduca [MRI12] Diagnosis of 
Avascular 
Necrosis 

brain CLASS BP 

Yan [MRI13] Artifact rejection brain RECO BP 

Ohhashi [MRI14] Gray level 
adjustment 

brain ENHA BP 

Gronovist [MRI15] Vessel 
identification 

brood 
vessel 

FEAE BP 

Katz [MRI16] Translation 
invariant 
segmentation 

aorta SEGM BP 

NUCLEAR MEDICINE 

Nuclear medicine imaging analysis using neural networks includes positron emission 
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tomography (PET), and single photon emission computer tomography (SPECT). These 
studies are summarized in Table 3. 

Diagnosis of Alzheimer's Disease through ANN analysis of PET images [NM1] [NM2] 
The back propagation neural network algorithm was applied for the analysis of cerebral 
function as demonstrated in positron emission tomography (PET). Data was obtained from 
PET scans of 22 patients with Alzheimer's Disease (AD), and 30 aged-matched normal 
subjects. Data describing each subject consisted of eight values, representing cerebral 
glucose metabolism in the eight lobes of the brain (left and right): frontal, parietal, temporal, 
and occipital. The network was trained with data from 26 subjects (15 normal, 11 AD), 
representing one half of the above subject group. Subsequently, the network's performance 
was tested on the remaining half. The trained network's classification agreed with the 
clinical diagnosis in 24 of the 26 cases, giving a 92% correct classifications score. Neural 
networks performed better than standard statistical methods like discriminant analysis. 

TABLE 3 SUMMARY OF NUCLEAR MEDICINE IMAGING ANN STUDIES 

Investi- 
gator 

[Ref.] Problem Organ Moda- 
lity 

Opera- 
tion 

ANN 
Method 

Kippenhan [NM1] Alzheimer's 
disease 

brain PET CLASS BP 

Kippenhan [NM2] Alzheimer's 
disease 

brain PET CLASS BP 

Miller [NM3] Parameter 
identification 

brain PET FEAE BP 

Tourassi [NM4] Lesion 
detection 

brain SPECT CLASS BP 

Mason [NM5] brain SPECT CLASS BP/LOGN 

Floyd [NM6] SPECT RECO BP 

Anthony [NM7] Thallium 201 
scintigrams 

lung SPECT CLASS BP 

Anthony [NM8] Thallium 201 
scintigrams 

lung SPECT CLASS BP 

RADIOLOGY 

Neural networks in radiology have been applied in cineangiography, digital subtraction 
angiography, mammography and X-ray CT as shown in Table 4. 

Coronary artery angiography [XR1] 
The classification of digital angiograms using NN was investigated by NeKorei and Sun 
[XR1]. The network consists of an 11x11 pixel input mask, 17 hidden nodes, and two output 
nodes. The mask is applied to the whole 256x256x8 bit angiograms, with the network output 
classifying the center pixel of the input mask as either vessel or background. Results of this 
study suggested that a suitable network can achieve an acceptable vessel detection rate. Two 
types of coronary angiograms were investigated i) cineangiogram, and ii) digital subtraction 
angiogram. For the cineangiography vessel detection rate was 96, and 93% for the training 
and test sets respectively, and for the digital subtraction angiography vessel detection rate 
was 96, and 82% for the training and test sets respectively. The performance of the NN 
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approach was compared with traditional pattern recognition techniques, the maximum 
likelihood classifier. MLC vessel detection rate for cineanography was 38% and for the 
digital subtraction angiography 78%. 

TABLE 4 SUMMARY OF X-RAY IMAGING ANN STUDIES 

Investi- 
gator 

[Ref.] Problem Organ Modality Opera- 
tion 

ANN 
Method 

Nekevci [XR1] Identification coronary 
artery 

Angio- 
graphy 

SEGM BP 

Nekevci [XR2] Identification coronary 
artery 

Cineangio- 
graphy 

SEGM BP 

Dhawan [XR3] Microcalsi- 
fication 
classification 

breast Mammo- 
graphy 

CLASS BP 

Chitre [XR4] Microcalsi- 
fication 
classification 

breast Mammo- 
graphy 

CLASS BP 

Stathaki [XR5] Microcalsi- 
fication 
classification 

breast Mammo- 
graphy 

SEGM BP 

Pinho [XR6] Edge 
detection 

brain X-ray CT FEAE BP 

Gan [XR71 X-ray CT ENHA HOPF 

CONCLUDING REMARKS 

A review of the various applications of neural network's technology in medical imaging was 
given. The concluding remarks that were drawn based on these studies are summarised as 
follows: 

Almost all of the studies used the supervised learning training BP algorithm to train 
multi-layer perception feed-forward nets. In a very few studies the supervised learning 
Hopfield net was also used. 

Studies that compared neural network results with classical statistical analysis like the 
maximum likelihood classifier, and discriminant analysis reported similar or better 
performance [ULT7] [ULT9] [MRU] [NM1] [NM2] [XR1] [XR4]. 

In some of the papers reviewed, the amount of data available for training and testing the 
neural network models were limited, thus affecting the results obtained. It should be 
emphasized that training data must form a representative sample set of all possible 
inputs if the network is to perform correctly. 

Data preprocessing significantly affects the NN performance not only regarding 
classification score, but also the size of architecture, and training time (coupled with the 
number of epochs to achieve learning). 

The BP neural network learning algorithm has a number of limitations; heavy 
computational and memory requirements, as well as the non existence of design 
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methodologies for determining the values of the learning coefficient,  X, and the 
momentum coefficient, |i, number of hidden layers, and architecture size. 

• New learning algorithms are currently investigated to address the above problem. It has 
recently been demonstrated by Charalambous [ANN3] that the conjugate gradient back 
propagation algorithm (CGBP) eliminates the selection of A. and \l. This algorithm 
is the same as the BP algorithm, but with adjustable values of Xk and pk at each 
iteration. In addition the CGBP algorithm does not exhibit any oscillatory behaviour 
during learning, like the BP algorithm. 

■ Further to the search of new learning algorithms, it is anticipated that the development 
of neural network hardware will allow a cost-performance-effective implementation of 
neural networks in image processing. 

We hope that neural network technology will help the physician in reaching a more accurate 
diagnosis. 
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Abstract: A high resolution image can be reconstructed from a 
sequence of lower resolution frames of the same scene where each 
frame taken by the camera is offset by a subpixel displacement. In 
this paper, it is shown that such a reconstruction task can be cast 
as an optimisation problem, and that a reconstruction can be found 
using the mean field annealing algorithm. The proposed technique 
has the added advantage over existing techniques of not requiring 
the registration of the displacement of each low resolution frame. 
In addition, the proposed technique greatly reduces the required 
computation as compared to a simulated annealing approach. 

INTRODUCTION 

Many image processing applications, such as satellite remote sensing, indus- 
trial quality control and scientific or medical imaging, require a high res- 
olution image in which the use of commercial video camera seems rather 
limiting. Increasing the resolution requires an increase in the sampling rate, 
and thus its implementation by sensor modification is usually undesirable. 
Therefore, attention has turned to obtaining higher resolution images using 
signal processing techniques instead. One promising approach is to recon- 
struct a high resolution still-frame image from a sequence of lower resolution 
frames of the same scene where each frame taken by the camera is offset by 
a subpixel displacement. This reconstruction problem has been addressed 
by several researchers, and various reconstruction techniques have also been 
proposed [1-7]. 

In spite of their apparent variety, the existing techniques have a common 
structure and contemporary reconstruction procedures usually consist of two 
main parts; the registration phase and the reconstruction phase. In practice, 
the best possible reconstruction quality is, however, unlikely to be obtained 
due to the limitation of currently available registration and reconstruction 
methods. Indeed, undersampled images include aliased frequency components 
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which cause errors in the registration phase. On the other hand, the accuracy 
of this estimation influences the reconstruction quality, since most existing 
reconstruction methods are based on the assumption that the displacements 
are correctly estimated [2,5,6]. 

In an effort to resolve these difficulties, the authors demonstrated [8] that 
the high resolution image reconstruction task can be recast as an optimi- 
sation problem in which the registration and reconstruction phases can be 
performed simultaneously, and that a solution can be found using the sim- 
ulated annealing algorithm. Nevertheless, this algorithm is still not suitable 
for real-world images due to its large computational effort. 

In this paper, the authors have applied the mean field annealing algorith- 
m [9,10] to the high resolution image reconstruction problem. By using this 
new approach, the reconstruction can still be achieved without requiring a 
separate registration phase, but with much less computational effort com- 
pared with the simulated annealing algorithm. 

AN OPTIMISATION APPROACH FOR HIGH RESOLUTION 
IMAGE RECONSTRUCTION 

The concepts involved in reconstructing a high resolution image from mul- 
tiple low resolution images may be elucidated by considering the process of 
obtaining a low resolution image, g(m,n), from a higher resolution image, 
f(k,l), as illustrated in Fig. 1, in which the relationship between the image 
pixels g(m,n) and f(k,l) can be expressed as [4]: 

K-1L-1 

»(m,n)=^;2/(fc,/)Ä(m)n;tI/)) (1) 
k-0  1=0 

., .   n      A{Sh{k,l)nS,(m,n)} 
h(m,n;k,l)=  -777- rr , (2) 

denotes the point spread function (PSF), A denotes the area of its argument, 
and 5/i(.,.) and 5j(.,.) denote the support of the high resolution and low 
resolution sensors centred around the pixel (.,.), respectively. 

Supposing that the PSF of the imaging system is known, one can obtain a 
number of low resolution images, gi(m, n), from an estimated high resolution 
image, /(&,/), using such an imaging process. If f(k,l) is identical to the 
correct high resolution image, then the estimated image g(m, n) should be 
identical to the given image g(m,n). This hypothesis can also be applied 
to the case of multiple low resolution images of the same scene where each 
frame taken by the camera is shifted by a subpixel displacement. In the latter 
case, each low resolution frame has different PSF, A,-(m, n; k, /), which can be 
determined from its corresponding displacement. In addition, if these dis- 
placements are unknown, then the estimated image g(m, n) will be identical 
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Figure 1: A schematic diagram simulating a process of obtaining a low resolution image. 

to the given image g(m, n) only if both the high resolution image and the 
displacements are correctly estimated. 

Therefore, the high resolution image reconstruction task can be cast so 
as to find the maximum a posterior (MAP) estimate of the high resolution 
image and the displacements when a sequence of low resolution images is 
given. That is 

Estimate / and d such that 
P(f,d\G) 

is maximized 

where / denotes a high resolution image, G denotes a sequence of low res- 
olution images, and d denotes a sequence of displacements corresponding to 
each low resolution image, that is 

d= {6xi,6yi; i = 1,.. .,P}, 

where P denotes the number of available images, and 6X{ and Syi are the 
displacements of the ith low resolution image along the x and y direction 
respectively. 

In general, an image can be modeled as a Markov random field (MRF), 
and the posterior probability can be described by the Gibbs distribution as 
follows [11]: 

P(/) = -^exp U{f) 
(3) 
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where Z is the normalization constant (also called partition function), and 
U(f) is the energy function of the form 

i/(/) = £W)> (4) 

c being the set of cliques associated with the neighbourhood. Thus it can be 
shown that [12] the MAP can be given as: 

P(/,d|G) = iexp 

Moreover, the energy function is given as: 

P 

U(f,d\G) 
T (5) 

U(f,d\G) 
EEE 9i(™, n)-^2 J2f(k> l)hi(m' n' k' 0 

k       I 
+ 

AEE E E|/W)-/(M 
k       1      KueNkveNi 

(6) 

where /i,(m, n; k, I) is the estimated PSF of the ith low resolution image, c is 
a constant and A is the regularising parameter, and the partition function is 
given as 

z = Y2 exp 
U{f,d\G) 

(7) 

where J2{f,d] means the sum over all the possible configurations {f,d}. 
In summary, the reconstruction of a high resolution image is the solution 

that maximises P(f, d | G) which coincides with minimising the cost function 
given in (6). The authors have demonstrated that the solution of this recon- 
struction problem can be successfully obtained using the simulated annealing 
algorithm [8]. Using this reconstruction approach, it has the advantage of 
not requiring a separate registration phase. It is therefore possible to ob- 
tain higher resolution images even if the displacements of the low resolution 
images are unknown. 

MEAN FIELD ANNEALING 

It is well known that the major disadvantage of simulated annealing is its 
large computational effort. To avoid this computational burden, this section 
proposes the mean field annealing algorithm [13] to solve the high resolu- 
tion image reconstruction problem. Mean field annealing is an optimisation 
technique which can be derived from two different perspectives: statistical 
mechanics [9] and information theory [13], and it has been shown to provide 
good results much faster than simulated annealing [10,14].   In the field of 
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image processing, mean field annealing has been employed in several appli- 
cations, notably image restoration [10,14,15], motion estimation [16], image 
segmentation [17], and etc. [18,19]. 

Mean field annealing uses a deterministic approach to find the mean of 
the Gibbs distribution which is an approximation of the thermal equilibrium 
distribution of the temperature T. In terms of the high resolution image 
reconstruction problem, the mean of image pixel f(k, I) can be given as: 

</(M)> ^2f(k,l)P(f,d\G) 

lexp 
{/,d} 

(8) 

It can be seen that the calculation of the above equation is not possible, 
or at least infeasible, since it involves interaction between all the possible 
configurations. The mean field theory suggests an approximation of (8) by 
the assumption that the mean of the field f(k, I) can be updated by the mean 
values of its neighbours, and the mean value can also be approximated by its 
local energy, that is 

1 
(/(M» = r     £     /(*,/) exp 

Zki f(k,l)£RD 

U(fk,,(d)\G) 
T (9) 

The terms U(fki, {d) | G) and Zki are called the mean field local energy and 
local partition function at pixel (k, I), respectively. These can be written as 

w«. w I G) 

EEE 
i=l m£Yk n€Vi 

gi(m, n)-J2 J2(f(u> ü))(Mm> nl u>v)) + 

x\ E £|./W)-Mo 
Ku£Nk veNi 

(10) 

and 

Zki -     Yl     exP 
J(k,l)eRD 

U{fku{d)\G) 
(11) 

Note that, m £ Yk and n £ Yj mean a low resolution pixel (m, n) which is 
influenced by a high resolution pixel (k, I). 

The mean of the displacement 6X{ can be approximated by: 

(8xi) 
Z~d 

X^    S*i exP 
sxieRD 

U((f),6xi\G) 
(12) 
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where the mean field local energy and local partition function are defined as 

U({f),Sxi\G) 

= c ■ EE gi(m, n)-^2 ^2(f(u, v))(hi(m, n; u, v)} 

and 

Zd =    ^2   *>" exP 
W),«ri|G)' 

.    (13) 

(14) 

respectively.   The mean of the displacement 6y{ can be approximated in a 
similar manner. 

In addition, the image intensities and the displacements are continuous 
values which implies that the summations J2f(k i)eR   '^2s  PR   

an<^J2s   PR 
may be replaced by integral equivalents. 

By using the above approximations, the equilibrium state at each temper- 
ature T can be obtains c! through the mean field. As the temperature T —► 0, 
this approximation will coincide with the exact distribution, and the image 
/ will be equal to (/). In summary, the mean field annealing algorithm for 
high resolution image reconstruction can be stated as: 

T <= initial temperature 
while (T>Tmin) 

do until (a steady state is reached) 
for all image pixels 

Calculate U(fk,,(d) \ G) 
Calculate the mean (f(k,l)). 

end 
for all image displacements 

Calculate U((f),6xi | G) and U({f),6yi | G) 
Calculate the mean (6xi), and alternately {6y,). 

end 
end 
Decrease T 

end 

EXPERIMENTAL RESULTS 

In order to evaluate the performance of the mean field annealing algorithm, a 
picture of characters with different sizes was imaged by a charge-coupled device 
(CCD) camera. The pixel size in each digital image was measured to be 3.06 
and 2.19 mm along the x and y directions, respectively. The picture was 
placed on a mechanical device which can be shifted on both directions with 
an accuracy of 0.1 mm. By shifting this mechanical device, 16 low resolution 
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images of size 64 x 64 pixels were taken with different displacements, and 
Fig. 2a illustrates one of the low resolution images. 

Mean field annealing was applied to the low resolution images in order to 
improve the resolution. The algorithm was implemented with T0 = 150, c = 
0.001, A = 0.0001, and the temperature was decreased using an exponential 
rule Tn = 0.95 xT„_i. The initial estimated image was defined as the constant 
pattern. In addition, the algorithm was terminated when the temperature was 
lower than 0.01. 

Two higher resolution images were reconstructed, and are shown in Fig. 2c 
and 2e with resolution increase of two-fold and four-fold, respectively. From 
the results, it can be seen that invisible detail in the low resolution images 
becomes clearly apparent in both reconstructions. In terms of the frequency 
domain, Fig. 2b illustrates the spatial frequency spectrum of the low resolu- 
tion image shown in Fig. 2a. Whereas Fig. 2d and 2f illustrate the spatial 
spectrum of the corresponding high resolution images. From these illustra- 
tions, it is obvious that some of the distorted high frequency spectrum can 
be recovered when applied this reconstruction algorithm. 

CONCLUSIONS 

This paper has considered the problem of increasing image resolution from 
multiple low resolution images. To avoid the limitations of existing methods, 
this paper has demonstrated that the high resolution image reconstruction 
task can be formulated as an optimisation problem, and that a solution can 
be found using the mean field annealing algorithm. This new technique has 
the advantage over existing techniques in that it does not require a separate 
registration phase. It is therefore possible to obtain higher resolution images 
even if the displacements of the low resolution images are unknown. In ad- 
dition, the experimental results have demonstrated the success of this new 
algorithm for real-world images. 

In summary, the contributions of this paper are: (i) to present an optimi- 
sation approach for reconstructing a high resolution image, and (ii) to show 
that the proposed technique can be successfully applied to real-world images. 
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Abstract: A neural network (NN) filter/target-tracking system has been devel- 
oped as reported in [6]. The design accepts and inputs signal data to a noise/ 
target classifier which uses spectral estimation techniques to distinguish noise 
from real targets. In that design, the NN is used to calculate the coefficients of 
an auto regressive linear predictive filter. The current evolution of that design 
invokes the use of Lagrange Multiplier methods to incorporate known charac- 
teristics of the noise vs. signal. A (linear) Hopfield NN is used to perform the 
constrained optimization to solve for the filter coefficients. This algorithm has 
been demonstrated on real stochastic data. The filter resulting from this pro- 
cess succeeds in reducing the noise, whose structure was learned by the NN. 
Not only did this approach reduce structured noise without target attenuation 
or the addition of a 'ghost' signal, but it also lowered the base level of the 
resultant signal significantly. The overall concept has been tested and vali- 
dated using real data on a workstation and the nardware NN implementation 
has been validated. This concept has been tested on the AAC Multiple Instruc- 
tion Multiple Data (MIMD) Neural NetworkProcessor (NNP) hardware. Each 
processor runs at 140 million connections/sec with 8K neurons. An expanded 
version of the system performs a total of a billion plus connections/sec. Unlike 
classical SIMI) NN architectures, which are really general purpose array pro- 
cessors, this MIMD system architecture was custom designed for NN applica- 
tions. 

INTRODUCTION 

A neural network filter and target-tracking system has been developed for the 

Navy by AAC [6] which uses spectral estimation techniques to distinguish targets 
from background and noise (the combination is here called structured noise) . The 
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evolution of that design is described here. The improvements are based on using 
Lagrange Multiplier methods to incorporate characteristics of the structured-noise 
vs. signal that are known in the tracking context. A specially designed linear 
Hopfield network is used to solve for the coefficients of the auto-regressive linear 
predictive filter 

The basic layout is shown in Figure (1). A sequence X^ containing both signal 

and structured noise (str-noise) is input to the filter component whose task it is to 
filter out the signal and pass through only an estimate of the str-noise, which is then 
combined with the input sequence to yield just an estimate of the target-related sig- 
nal. [Note: because the words signal and str-noise both start with s, a different sub- 
script for one of the terms was chosen. The letter 'c' is used for the str-noise — 
motivated by the word 'contamination.'] Then, the estimate/prediction of the str- 

noise (contamination) at time k, Xck> is subtracted from the input sequence X^to 

yield an estimate of the signal, X k at time k: 

lsk~ ■Kk. 

A selected neural network structure [3, Chapt. 14]is used to determine the coeffi- 
cients of the equation in the "box" that predicts the contamination at time k in terms 
of the incoming sequence (via the well known autoregressive formula): 

^ck 
/= 1 

k > 77 + 1 (1) 

Neural Network 
Determined 
Coefficients 

X,. 

Structured-Noise 
(contamination) 
Predictor 

X ck 

n~ \sk 

Figure 1: Layout of Structured-Noise Filter. 
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M 9 M n 

J(a) =   2 
k = n + 

Pit ~ ^cJfe 
fc = n+ 1 

**- 
1 = 1 

where ^ = ^ + '0^  is a complex sequence containing both in-phase and 

quadrature components and the a.are arbitrary complex coefficients. 

In the earlier work [6], the fl;coefficients were selected based only on informa- 

tion about the structured noise, without taking into account any a-priori informa- 
tion that might be known about the signals representing the targets being tracked. 
The improved approach described here injects constraints into the process of 

selecting the fl(- 's so as to incorporate such a priori information. 

CONSTRAINED OPTIMIZATION 

Based on the assumption that the str-noise (structured noise) of interest could be 

modeled by a relatively low order filter [2], a least squares approach to determining 
the autoregressive filter coefficients was initially adopted. The Linear Hopfield net- 
work was used to minimize 

(2) 

over all possible complex coefficient vectors a was used. This approach yielded an 

excellent predictor for the str-noise, but it often also contained a good prediction of 

the signal as well. So after the subtraction indicated in Figure 1 took place, there 
was not significant improvement in the signal-to-noise ratio. 

In effect, by choosing the a vector in the minimization process without informa- 

tion about the expected signal, a filter is obtained which optimally predicts the con- 
tamination (str-noise) but is oblivious to the signal. Indeed, without use of a priori 
information about the signal, the manner in which the resulting predictor deals with 
the signal is not at all under control; it may ignore it or predict it perfectly. 

To address this problem, a constraint is added to the process which, in effect, 
says "predict the structured noise as well as possible, being mindful of what is 
known about the expected signal(s)." To this end, it is here assumed that the signal 
from a target has constant magnitude, and a phase that changes linearly over the 
extent of the target. This (assumed) a priori information is captured in the model 

^ a + ibk 
Kk = ce 

Although not precisely true, the constant ("dc") value of the magnitude (c in the 
above equation) and the linear (affine) component of the phase typicaly dominate 
the return from a target. Moreover, as a first approximation, even though it changes 
linearly over the extent of the target, it is reasonable to assume that the phase is con- 
stant over the relatively short n-sample interval seen by the filter (i.e., b is "small 
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enough," in which case the signal representing the target may be approximated by 

X,.= c-- vsk ce 
Accordingly, a pure signal from a target would yield: 

1=1 1=1 

n 

and hence if the selected a vector were to have the additional property that 

(3) 2>. = o 
/= 1 

the str-noise predictor would not pass through the signal part of the incoming 
sequence. To accomplish this, the coefficients of the str-noise predicition are to be 

determined as follows: minimize equation (2) subject to the constraint that 
equation (3) holds. 

With the aid of the Lagrange multiplier theorem, this constrained optimization 
problem can be converted into an equivalent unconstrained optimization that mini- 

mizes   J (a(.) + X Z«, 
V i = 1    , 

over all a  and A.. 

A side effect of the constraint imposed above is for the resulting filter to suppress 
the dc component of the str-noise as well as that of the signal. To accomodate this 
potential difficulty, the dc component of the str-noise is subtracted off before com- 
puting the autoregressive coefficients for the filter and is then added back into the 
prediciton model. The data used for developing the str-noise (contamination) pre- 
dictor is generated via: 

X*   =  Xk-Xcdc>   wllCre    Xcdc  =  {M)H
X

I 

M 

ck 

and Xcjl is a sequence containing str-noise (contamination) data only. 

In effect, the dc component of the str-noise is included in the predictor via ana- 

lytical means, thereby eliminating the conflict between minimizing J (a.) and 

satisfying the "no dc" constraint. 
Finally, it would be possible to incorporate the additional (assumed) a priori 

information that the signal phase is constant over the n-sample interval used by the 
filter by adding a second linear constraint to the optimization problem. To explore 

this, a process using \n(Xk) rather thanA^ itself was investigated. By doing so, the 
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Signal representing the target takes on the form of a constant term plus a linear term 

In (X^) = ln(c) + a + bk. With this formulation, the str-noise predictor would 
possibly be superior in ignoring the signal if both of the linear constraints 

n n 

Z ai = °  and    Z ail = ° 
; = i i=i 

were satisfied. In practice, however, the benefit gained by incorporating the "con- 
stant phase" assumption was not sufficient to justify the added implementation 
complexity, and therefore, the single constraint formulation is being pursued. 

SOLUTION VIA LINEAR HOPF1ELI) NETWORKS 

Given a complex time-series such as Xk defined earlier, a modified Hopfield net- 

work was given in [6] that computes the complex autoregressive coefficients 

a-t, i= 1, .. .n which best fit Equation (1) in the sense of minimizing the perfor- 

mance function J (fl.) defined in Equation (2). The network uses continuous-val- 

ued data as opposed to binary, and operates in discrete time steps. The neural- 
element transfer function (from the summed inputs of a neural element to its out- 

put) is linear. The output of the i-th neural element is the solution for a-. Noulin- 

earity is introduced only in the calculation of the network's inputs and weights (see 

equations for/andüTbelow). In [6] it is shown that the time series performance 

function 7 (fl-) satisfies the definition of a computational "energy function" with 

respect to the complex Hopfield states tf(., /=  1, .. .n . It is shown therein that the 

update formula for the modified, complex Hopfield network is essentially identical 
to the real case. The complex case differs in that only the real part of the input exci- 

tation, Re [/] , is used to update Re [a^ , and only the imaginary part (with a sign 

change) to update Im [a-] . 

The "input excitation" for each element of the Hopfield network is constructed 
from the input data string as follows: 

Jj=     Z   (V*-;)       J = 1,2, ...,n. 
k = n+ 1 

(Xis the complex conjugate of X) and the weight matrix for the Hopfield network 
is constructed as follows: 
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known in the numerical analysis field that there are computationally superior meth- 
ods for solving such equations, such as the various Gauss elimination methods. So 
why the iterative Linear-IIopfield Neural-Network approach? The proposed 
answer lies in the hardware implementation of the computing engine. Accurate 
Automation has developed a hardware neural network processor that is optimized 
for neural-network type computations, and runs in real time on an multiple-instruc- 
tion, multiple-data (MIMD) processor, which promises to win the competition, 
even using less efficient computational algorithms. This processor is implemented 
on a card that can be run in a standard PC type computer. 

The underlying philosophy in the design of the Accurate Automation Corp. 
MIMD Neural Network Processor module (AAC NNP) has been to have it run in 
real time and to achieve maximum computational efficiency in both a single proces- 
sor and multiprocessor environment by optimizing the design to compute neuron 

values - and nothing but neuron values [7]. Indeed, this is ideally suited to a neural 
network application and stands in stark contrast to previously proposed processors 
which are typically based on classical SIMD (single instruction multiple data) 
matrix/vector multiplication architectures. Rather, the design fully exploits the 
intrinsic characteristics (sparse, local, random) of the neural network topology. 
Moreover, by using an MIMD parallel processing architecture one can update mul- 
tiple neurons in parallel with efficiency approaching 100% as the size of the neural 
network increases. 

To achieve the desired efficiency, Accurate Automation's design: 
Uses an instruction set which is optimized for neural network processing allow- 

ing one to compute a neuron activation without arranging the weight matrix into 
linear arrays and/or inserting "artificial zero weighted connections", 

Uses an MIMD (multiple instruction multiple data) parallel processing architec- 
ture to permit neurons with totally different input topologies to be updated simulta- 
neously without loss of efficiency, and 

Uses dual neuron memories to virtually eliminate memory contention and main- 
tain absolute memory coherence. 

This architecture allows AAC to implement a relatively simple single processor 
NNP module and then string together multiple NNP modules along a dedicated 
Interprocessor Bus with computational power (and cost) increasing "almost" lin- 

early with the number of modules [7]. 

The AAC MIMD Neural Network Processor: 
Is designed to implement multiple interconnected neural networks of differing 

architecture simultaneously using 16-bit twos-complement binary fixed-point arith- 
metic, with up to M total neurons and 12k connection weishts per module, 

Is capable of running at 140,000,000 connections (byte wide multiply/additions) 
per second per module for a total of one billion plus connections per second in an 
8 processor array, 

Supports two I/O buses, an Interprocessor Bus which can also be used for on- 



line I/O in parallel with the computational process, and a Memory I/O Bus through 
which the various processor memories may be mapped into the memory space of a 
supporting microprocessor or DSP for downloading programs, connection weights, 
etc, and 

Each processor in an NNP array is controlled by a separate program written in a 
"RISC-like" instruction set supported by an NNP Module Simulator, an Assembler, a 
Neural Network Compiler, and the Accurate Automation Neural Network Toolbox 

[1]. 
Unlike the classical SIMD neural network architectures which are really general 

purpose array processors which invert matrices and do Fourier transforms as readily 
as they do neural networks, the NNP architecture is custom designed for neural net- 
work applications, such as the one discussed in this paper. 

See [7] for a functional description of the AAC Sparse MIMD Neural Network 
Processor. 

CONCLUSION 

Neural networks can be used in a process that adaptively adjusts itself for the task 
of removing structured-noise out of signal+structured-noise, in real time. The adap- 
tive process can learn a broad range of structured-noise, on line, and perform the fil- 
tering task without compromising the valid information. The hardware Neural 
Network Processor described allows for a real-world implementation using a PC 
type computer with an ISA bus. Various types of signals have been processed - 
both real data as well as simulated. The concept developed for the processing 
needed to accomplish the signal filtering task allowed us to come up with a generic 
hardware implementation for neual network processes that is faster than done with 
previous generations of neural network hardware. The resulting technology has a 
broad range of real-world applications. 
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Abstract - The following paper considers image analysis with Kohonen Fea- 
ture Maps. These types of neural networks have proven their usefulness for 
pattern recognition in the field of signal processing in various applications. The 
paper reviews a classification approach, used in medical applications, in order 
to segment anatomical objects such as brain tumors from magnetic resonance 
imaging (MRI) data. The same approach can be used for environmental pur- 
poses, to derive land-use classifications from satellite image data. These ap- 
plications require tremendous processing time when pixel-oriented ap- 
proaches are chosen. Therefore the paper describes implementation aspects 
which result in a stunning speed-up for classification purposes. Most of them 
are based on geometric relations in the feature-space. 

The proposed modifications were tested on the mentioned applications. 
Impressive speed-up times could be reached independent of specific hardware. 

1    INTRODUCTION 

Image classification is a crucial step in the image processing pipeline. Typical ap- 
plications for image classification are the interpretation of medical data or remote 
sensing data. In medical applications modern image acquisition techniques like ma- 
gnetic resonance imaging (MRI) supply 3D data sets of high resolution and quality. 
3D data need to be classified in order to separate different tissue types such as brain 
tumors in the image data. Further processing will use the classified data as input for 
3D reconstruction algorithms of the volume. Advanced volume Tenderers, as in 
[5],[9] or [11] require opacity-maps, as well as 3D surface reconstruction methods 
like marching cubes [ 10] or Delaunay triangulation [ 12] require a description of the 
surface, which can be easily derived from the classified data. 

Environmental applications use remote sensing data in order to achieve semantic 
ground information. Remote sensing data stemming from satellite-based sensors 
like SPOT, Landsat-TM or ERS1 can serve as multispectral data input for environ- 
mental control systems. Robust image analysis of the data delivers a land-use-clas- 
sification. 

The following paper reviews in Section 2 a pixel-oriented discrimination method 
for image data based on topological mappings of Kohonen [7], [8]. Application stud- 
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ies as in [4] and [1 ] have shown that this method can either perform feature extrac- 
tion, clustering and classification in a unique approach or - in a more traditional 
manner -separate the single steps and calculate the independent components of the 
classification pipeline [13],[2]. 

Corresponding to the immense amount of data that is analyzed in the above men- 
tioned applications, the use of the Kohonen Feature Map can be extremely expen- 
sive, especially when long feature-vectors are considered. Thus Section 3 proposes 
several modifications of Kohonen's algorithm. They were inspired by the insight, 
that most of the computational time is wasted in calculations of Euclidean distances 
in the feature-space in order to determine the neuron which bears the closest 
weight-vector to a presented input-vector. This task corresponds to the nearest 
neighbor search in a multidimensional space. It can be shown that most of the 
weight-vectors could be excluded from consideration. 

In addition basic constraints can be used, like the similarity of consecutive input- 
vectors as they appear in the classification of consecutive pixels stemming from a 
homogenous region in an image. Those modifications can be used for clustering or 
classification tasks. For classification purposes further optimization is possible, 
since only a neuron's class assignment has to be determined and not the closest neu- 
ron itself. 

The modifications were implemented and tested on the described applications. Sec- 
tion 4 reports some results in terms of speed-up times. The times are not based on 
any specific hardware, but nevertheless computing the image classification on pow- 
erful hardware like vector- or parallel-processors can realize further speed-up. 

2    CLUSTERING AND CLASSIFICATION 

2.1 General Remarks 
In general, a robust classification pipeline for the automatic recognition, classifica- 
tion and visualization of the data can be divided into the following three tasks: 

I) feature extraction 
II) cluster analysis 
III) supervised classification 

Those steps can be solved separately, or in a single approach. Kohonen Feature 
Maps are capable of solving that task in a unique paradigm, since they allow sub- 
space mapping, visualization of a multidimensional texture feature-space and su- 
pervised classification. This is explained in detail in [1] and [3]. 

2.2 Kohonen Mapping 
The Kohonen Map as introduced in [7] or [8], is a self-organizing network which 
is basically trained without supervision. It organizes a set of input patterns in a topo- 
logical structure represented by neurons, where the relations between different pat- 
terns are preserved. 
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To use the Kohonen map for cluster analysis, the Kohonen Map can be configured 
with a 3D output-layer as shown in Figure 1. The neurons in the input-layer pick 
up the data from the feature-extractor or directly from the image. The weights 
associated with each connection of an output-layer's neuron are adjusted during 
training where only one single neuron can be active at a time. A time-dependent 
neighborhood implies an update in the neuron's environment as well. After the self- 
organizing training-procedure, each neuron in 3D represents a cluster in the multi- 
dimensional feature-space. Therefore the network can be used for cluster analysis 
and dimensionality reduction as described in [3]. 

neuron 

B=z 

coordinate system of 
the competitive layer 

RGB color space 

3D output-layer 
(i.e. 6x6x6 neurons) 

interconnection 
and 
adjustable weights 

input-layer 

receptive field 

Image 

Fig. 1:      Topology of the 3D-Kohonen map. 

Essential for training as well as for the work procedure of the network is the spatial 
distance in the feature-space, since it decides which neuron in the output-layer is 
activated. For a presented data-vector x the distance is calculated to all weight-vec- 
tors mj representing the connections between the input-layer and the competitive 
layer. If N is the dimension of the data, the Euclidean distance di between x and mi 
is defined as 

N 

^ =\\x -m,.|| = 2>;" m/ 
The neuron c with the minimum distance is activated, where 

dc = minjj,} 
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The activated neuron is of fundamental importance. On one hand in its environment 
the weight-vectors will be updated according to the training rules [7]. On the other 
hand its coordinate will be taken as RGB-information for clustering tasks or its class 
assignment will be taken asclass information for a classification task. Fast andeffec- 
tive calculation of a winning neuron will be the subject of the next Section. 

In order to use a self-organized Kohonen Feature Map for supervised classification 
a class assignment for each neuron is required. User defined training areas can set 
up a training set, where a class-assignment exists for each sample, i.e. a feature-vec- 
tor. Sequentially presentation of labeled input-vectors and subsequent majority vot- 
ing can lead to class-assignment of each output neuron. For optimal description of 
the Bayes decision boundary, additional postprocessing with learning vector quanti- 
zation (LVQ) is recommended [7]. 

3    SPEED-UP METHODS 

3.1      Remarks 
The most time consuming part of the classification is the determination of the neuron 
in the output-layer which is activated by a given input. It is the neuron whose 
weight-vector is the closest to the input-vector in the feature-space. 

According to equation (1) and (2) the activated neuron is determined by calculating 
the exact Euclidian distances of each weight-vector to the input-vector and select- 
ing the one with the least distance. Slight changes of this process can bring the first 
improvements. 

Avoiding the square-root-function. In order to calculate the Euclidean distance 
of two vectors, the square-root-function is used. For the given purpose only the rela- 
tion between the Euclidean distances is of importance. Thus we simply change equa- 
tion (1) and (2) and calculate the squared distances 

7=1 l      J 

and determine the activated neuron c with 

A 2 

dc   = min 
i "A (4) 

So in the following text the distance in general refers to the square of an Euclidian 
distance. 

Furthermore the term best vector will be used for the temporary closest vector found. 
A good vector in general will be any weight vector close to the input-vector. 

Threshold Summation. During the calculation of the distances, the best distance 
can be used as a threshold [6]. If, while performing the summation in formula (3) 
we reach a sum greater than the threshold, even if j < N, then we can stop and disre- 
gard this vector. 

Usage of Correlated Input. The threshold summation and other optimization given 
in this text are most effective whenever a good vector is found early during the cal- 
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culation, so that the determination of the exact distance of many other vectors can 
be avoided. In a lot of applications the input presented in one step correlates to the 
input presented in the previous step. If such a correlation is obvious, as in the pixel- 
based image-segmentation, the activated neuron of the previous step should be con- 
sidered first in the activation-algorithm. 

3.2      Immediate Activation 
Once a map has been trained, its weight-vectors remain static. The distances bet- 
ween the weight-vectors themselves can be calculated in advance in order to be used 
to optimize the calculations. A first approach is illustrated in the figure below which 
refers to a 2-dimensional feature-space. The circle around each weight-vector has 
a radius r; of half the minimum distance to all other vectors. 

i feature2 weight-vectors 

input-vector feature 1 

Fig. 2:      Areas of immediate activation around the 
weight-vectors in the feature-space 

Once an input-vector turns out to be situated inside of an activation area, 

d2   < r 2 u
i    — ' i d;  <  r; di  = min (5) 

the closest weight-vector is the one in the center of that area. Thus the activated neu- 
ron is found. 

When using labeled neurons, like for classification purposes, only the label of the 
activated neuron is relevant. Areas of neurons with the same label may overlap. In 
Figure 3 the labels of the neurons are represented by different shadings of the areas. 
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Fig. 3:      Areas of immediate classification (identical 
shading refers to identical classes) 

The immediate activation does not give an idea of how to find the weight-vector in 
whose circle the input might be situated. In the worst case it is the last vector that 
is being considered and the immediate activation does not save time at all. For this 
reason Section 3.3 and 3.4 present two relations which can be used in addition to the 
immediate activation to avoid the determination of several distances. 

3.3      Triangle Relation 
From a mathematical point of view we consider the feature-space as a metric space. 
In a metric space the triangle-relation (6) is valid, where d is the distance between 
two points. 

d(A,C)<d(A,B) + d(B,C) (6) 

Looking at any two weight-vectors itij and ni2 and an input-vector x, where the vec- 
tors express the coordinates of points in the feature-space, the relation can be trans- 
posed to (7). 

d{ x , m2 )  > d{ 7W, , m2 ) - d( x , mx  ) ( 7 ) 

Assuming that the distance between mi and m2 is at least twice as high as the dis- 
tance between mi and x, it can be concluded that in no case ni2 can be closer to x 
than mi. 

d{ m, , m2)  > 2 d{ x ,/«,)=> d{ x , m2 )  > d( x , m, ) ( 8 ) 

The activation-algorithm can make use of this circumstance by not considering 
those vectors whose distance to the actual best vector is at least twice that high as 
the distance of the best vector to the input-vector. For the case that the squared dis- 
tances are determined, equation (8) can be transposed to: 

d2( mx , m2)  > 4 d\x , m,  ) =s> d( x , m2)  > d( x , m, )        ( 9 ) 

where d(x,nij) corresponds to dj in equation (3). 
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3.4     Minimum Distances Derived from the Vector-Sums 
In Section 3.3 we used the triangle relation to derive a minimum value for a specific 
distance. Once this minimum value turns out to be greater than the best value to that 
point of the calculation, the exact distance does not need to be determined anymore. 

Another possibility which allows the determination of such a minimum value with 
only a few calculations is based on the absolute sum-values of the vectors. Using 

the relation 

d\ /ra, , m2)  S 
(Im<-ZmJ 

N 
(10) 

,., miN) where   ^ m,- : = ^ m,-,-   and   m, := (mn,ma>. 
;=i 

one gets another lower boundary for the distance of two vectors, which can be 
derived from the sum-values of the vectors. The correctness of relation (10) is fairly 

easy to prove. 

3.5 Maximum Likelihood-Search 
The immediate activation presented in Section 3.2 offers a fast way to determine the 
closest vector. The time needed to find out that an input is inside an area of immedi- 
ate activation mainly depends on the order in which the vectors are looked at. In the 
best case the closest vector is considered first and the immediate activation prevents 
the determination of all other distances. In the worst case the closest vector is being 
looked at after all other vectors, so that the immediate activation does not help at all. 

The main aspect of the Maximum Likelihood-Search is the usage of the minimum 
values presented in Sections 3.3 and 3.4 to control the order in which the vectors are 
considered. The idea is that the vector with the least minimum value has the highest 
probability to be the vector that is being searched for. 

3.6 Approximate Determination of a Good Vector 
As mentioned in Section 3.1 the success of most of the presented methods largely 
depend on how fast a good vector is found. If there is no correlation between the con- 
secutive input-vectors, or if the correlation is weak, another method can be applied. 
The activation is split up into a two-pass algorithm. During the first pass an approxi- 
mation is applied to determine a good vector as an approximate solution. The second 
pass should be handled like a normal (optimized) activation-algorithm, starting 
with the good vector found in the first pass. 

A method to determine a good vector shall now be suggested. It allows the fast deter- 
mination of a vector which is at most n times farther away from the input-vector than 
the accurate closest vector. The parameter n can be set to any real value greater than 

or equal to one. 

The basic idea of the approximation is the application of the triangle-relation (3.3) 
and the vector-sums (3.4) to mark those vectors that certainly cannot be more than 
n times closer to the input than the best vector found so far. The marked vectors do 
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not need to be considered during the further approximate pass of the algorithm. Once 
all vectors are marked or have been considered, the best vector found to that point 
is at most n times farther away from the input than the accurate closest vector. 

3.7      N-Tree Based Search 
Another example of a fast nearest neighbor search is the organization of the given 
weight-vectors in an n-dimensional Quadtree. Following this approach the weight- 
vectors are ordered according to their positions in hierarchically refined hypercubes, 
where each cube contains up to 2" cubes of half of its edge lengths. This subdivision 
is done until a fixed number of vectors is inside the cube. In this way the depth of 
the subdivision is controlled by the density of the vectors in the feature-space. 

The regular box oriented structure allows a reduced calculation of distances by a 
privileged search for neighbors in related cubes. Additionally the methods described 
in Sections 3.1 and 3.4 can be used for a further reduction of time consuming calcula- 
tions. 

As shown in Section 4 the usability of N-Trees for next neighbor search depends 
on the number of output neurons and the dimension of the input data. High dimen- 
sional input data accompanied by only a small number of output neurons causes a 
complex and sparse internal structure which results in low performance. The reverse 
case of lower data dimension and a large number of vectors shows the advantage of 
N-Trees based search in comparison to methods described in previous Sections. 

4    APPLICATION AND RESULTS 

4.1 General Remarks 
The methods outlined in Section 3 were tested on two different applications where 
both deal with multidimensional image data. Both applications face an 8-class prob- 
lem. 

The medical application aims at segmentation of brain tumors in MRI-Data which 
is required in order to gain knowledge about localization and extension of the tumor 
in the skull. That knowledge can be used as input for 3D-renderers of 3D-surface 
reconstruction algorithms. Section 4.2 refers to a volume data set of 5 slices, where 
each slice is recorded as a two-channel image of size 256x256 pixels. The environ- 
mental application uses satellite image data, which was recorded from Landsat-TM. 
For environmental control the six-channel image data was analyzed with 1000x100 
pixels in each channel. The classified image data outlines the actual land-use and 
illustrates the impact of pollution sources in the environment. 

4.2 Measured Times of Calculation 
The success of the different methods given in Section 3 widely depends on the data 
that the Kohonen-Map is used for. Furthermore it depends on the size of the feature- 
vector. In order to give an idea of the amount of possible optimization, the following 
table shows the measured times of calculation for different kinds of image-seg- 
mentations on a HP-Workstation 720 and a DEC-Workstation 5000/240. 
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Determination of all distances 
while avoiding the square-root- 
function (see 3.1)  

57.10 
minutes 

57.10 
minutes 

20.97 
minutes 

26.22 
minutes 

All aspects from 3.1, 
Immediate Activation (see 3.2), 
Triangle Relation (see 3.3) 

4.32 
minutes 

3.33 
minutes 

11.15 
minutes 

15.15 
minutes 

As above and additionally 
use of Relation (10) (see 3.4) 

4.11 
minutes 

3.03 
minutes 

5.72 
minutes 

10.11 
minutes 

Maximum 
(see 3.5) 

Likelihood-Search 4.39 
minutes 

4.24 
minutes 

2-pass   determination   with   an 
approximating first pass (see 3.6) 

6.53 
minutes 

4.00 
minutes 

N-Tree-Search (see 3.7) 31.88 
minutes 

4.81 
minutes 

Fig. 4:      Measured times according to different 
modifications and methods 

5 CONCLUSION 
We conclude that image segmentation based on Kohonen Feature Maps is an excel- 
lent tool to realize pixel-oriented analysis of images. Unfortunately the imple- 
mentation of the straightforward algorithm leads to enormous computation times. 
In order to make the image analysis acceptable for applications optimizations of the 
algorithm are required. The proposed modifications fulfill this requirement since 
our results demonstrate that a reduction to approx. 5% of the standard implementa- 
tion could be reached. 

The time consuming part of the Kohonen Feature Map reduced by our modifications 
is the determination of the weight vector next neighbored to the input-vector. So the 
proposed optimizations realize a fast and effective next neighbor search which can 
be directly transposed to other applications in the field of classification and com- 
putational geometry. 

The presented results demonstrate that image analysis can be computed in a accept- 
able time even without parallelization on special and expensive hardware. Never- 
theless a subset of the aspects in this paper can be applied on a vector architecture. 
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mammogram is often very low (ii) features in mammograms indicative of 
breast disease arc often very small [2]. 

The aim of this paper is to describe methods based on third order spectral 
estimation techniques with artificial neural networks, for modelling and 
segmentation of mammograms. 

MATHEMATICAL REPRESENTATION OF THE 
MAMMOGRAM 

We represent the mammogram with a 2-D random field x[m,n], where 
x[m,n] denotes the value of the random field at the point [m,n] which is 
defined theoretically over the integers -oo<»;,«<oo in the 2-D plane. A 
typical finite extent for a realistic sequence is the measured data array, 
which usually has a region of support 0<m.n < A', where A' may be for 
example 256 or 512. For the purposes of spectral estimation and modelling 
we represent X|/M,H] as the output of a two dimensional linear shift invariant 
(LSI) system driven by white noise [3]: 

x[m,n] = -Z2>y*I»i-i,n-j] + w\m.n], I/../]*[0,0] 
; 

where al} with a^ = 1 are the parameters of the autoregressive model. 

It is assumed that the noise w[mji] is non-Gaussian, zero mean, at least 
sixth order weakly stationary and white [6] that is to say. 

rm.\m.n]= crHA»i.n\ 

where rKV\m.n]     and  a;   arc the input autocorrelation and variance 
respectively and 

C3M,([W/1.«1].[;H2.«2]) = yK^nix.n^\5[m2.n2\ 

where Ciw(\nr^nxl\m2,n2\) and yK. = E{w*[m.n]} * 0 denote the third 
order input cumulant and skewness respectively: and %m,n] stands for the 
two dimensional Kroncckcr delta. In general the random field is represented 
as: 

x\m?n] = ^Y.hlm - i ,n - j]w[i J] 
•   j 

where h[m,n\ is the impulse response of the linear shift requirement. As 
indicated  already   the   range  of  summation   has   been   purposely   left 
unspecified. The system function for the stable 2-D AR model of impulse 
response h\m.ri\ is given by: 

#(*I.*2) = T^;—T-Jwhcre  I   I|A|'».»]|<«>- 

>   i 

Stability in two dimensions is far more difficult to test than stability in one 
dimension, because 2-D polynomials in general cannot be factored, due to a 
lack of a fundamental theorem of algebra in 2-D. For the purpose of 
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causality the region of support used here is confined to the quarter plane 
(QP). Then the two dimensional autoregressive model is given by the 
difference equation: 

Pi Pi 

Z 'LotjAm-i-n-ß = Hm,"] 
i=0;=0 

where %, = 1. The values of px and p2 define the order of the model. If the 
region of support for the AR parameters is the quarter plane, the output may 
be recursively computed as a function of the "past" outputs and the "past" 
and "present" inputs [3],[4]. 
Because we know nothing about the location and the size of the tumour in 
the mammogram, our method consists of representing each pixel in the 
image by an autoregressive model whose parameters are estimated by using 
an appropriate neighbourhood for the pixel. This is in effect a small 
compared to the whole image quadrangular window around the appropriate 
pixel. Then the parameters of the model are used as features for 
classification and segmentation. We make the assumption, that all pixels in 
the small window belong to the same class, because image pixels which are 
spatially close are likely to be of the same texture. After estimating the AR 
parameters for the pixel [/»,«] we replace the value x[m,n] of that pixel 
with the vector a[m,n], which contains its corresponding parameters. This 
repeated for the entire image, and thus we create a set of P new images, 
where P = [(/>, + l)(p2 +1) -1] is the number of the AR parameters for the 

particular model. The results of the segmentation will be influenced 
significantly by the size of the window over which AR parameters are 
extracted. 

AR PARAMETER ESTIMATION USING 
AUTOCORRELATIONS 

Let the region of support for the AR parameters for the purposes of this 
paper, be the truncated quarter plane (TQP). The order of the model is 
px x p2, and hence the two dimensional field is: 

Pi   PI 

Z £ "«y['w -i,"-j] = Hi"-»],   «oo =' 
l=0;=0 

The extended Yule-Walker equations are given by[5]: 

U + °t   k=l = 0 
TT"ify>V-kJ-l]=\^-°ij      *6[0,p1]n/e[0,ft]-{[*,/] = [0,0]} 
>=°j=0 10 elsewhere 

The variance of the Gaussian noise a\, is usually unknown and hence the 
above equations cannot be solved directly. However, for high signal to noise 
ratios, o^ (which is the power of noise) is small compared to the power of 
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the signal x[m,n] and hence it can be ignored, to produce the noiseless 
Yule-Walker equations. These equations give a good AR parameter 
estimation in high SNR's. However, the error increases significantly for 
large a?,. The situation is even worse when the Gaussian noise v[m,n] is 
coloured as the correlation properties of v[m,n] are now needed. 

AR      PARAMETER      ESTIMATION      USING 
HIGHER ORDER STATISTICS 

Higher order spectra defined in terms of higher order moments of the 
process contain information regarding the deviation of the process from a 
Gaussian form. It is known that only for zero mean Gaussian processes only 
all polyspcctra of order greater than two are identically zero [6]. Thus a non 
zero higher order spectrum indicates deviation from normality. For a given 
zero mean stationary real random process (A'm„), non zero skewness 

E{-Vmn}*0 indicates the existence of its bispectrum. Hence, in an 
environment where the derived signal is a non-Gaussian stationary process 
and the additive noise process is stationary Gaussian there are certain 
advantages in estimating signal parameters through third order spectrum 
techniques. To date in the open literature almost all random field models 
and their associated processing procedures have been based on the 
assumption that the signal is corrupted by Gaussian noise (white or 
coloured). Second order techniques usually require knowledge about spatial 
correlations of the Gaussian noise which arc unknown, while third order 
techniques have the advantage that they arc blind to such noise. 

We suppose that the signal x\m.n] is corrupted by white Gaussian noise 
v[m.n] and hence in practice we observe the noisy signal: 

y\m.n] = x\in.n] + v\in.n] 
The equations that relate the AR parameters with the cumulant function 
samples of the signal y[m,n], have the following form [6],[7]: 
P\ PI {yw        A-, = /, = k2 = l2 = 0 

'=0>=0 [0 elsewhere 
where yw = E{w\m,n]}, aw = 1 and A,,/, > 0, / = 1,2. Thus if we use the 
above equations, it is not necessary to know the statistical properties of the 
Gaussian noise, as they disappear from the equation. In the above equation 
we need a total of (p, + l)-(/?2 + 1). equations in order to determine the 
unknown parameters atj and the skewness of the driving noise yw. However 

if we arc not interested in estimating yw. we rewrite the above systems as 
follows: 

476 



I,I.aijC3y(li-kuj-li],V-k2,j-l2]) = 0, kl+lx+k2+l2^0 
i=Oj=0 

In this form we need [(/>, + l)-(/?2 + l)-l] equations to determine the atj 

parameters. 

Comments on the Choice of Slices 

An implicit and additional degree of freedom is connected with the specific 
direction chosen for the cumulants to be used in the AR model. Such a 
direction is referred to as a slice in the cumulant plane we have found that it 
has profound implication on the effectiveness of the AR modelling. 
Let  us  consider the  particular  case:   (k2,l2)-(kl +c,,/, +c2)   where 
c, ,c2 are constants, then 

Ciy(li-klJ-l,Ui-k2J-l2)) = C3y([i-k1,j-!]l['-kl-cl,j-lx-c2]). 

From    the    symmetry    properties    of   cumulants    we    know    that: 
C3y([A:1,/1L[A:2,/2]) = C3va-Ar2.-/2I,[[A1./1]-[/:2,/2]])so 
C3y{[i-kx,j-lxl[i-k2,j-l2]) = Ciy([C] + *, -i,c2 +/, -y],[c,,c2]). 

We write c, +kx = k and c2 +/, = / and hence the equations above take the 
form: 

Z ToijCiyak-iJ-JUct^]) =0, k, +/, +*2 + /2 *0. 
i=0j=0 

In this form they are shown to be explicitly dependent on the choice of 
c, and c2. 

Remarks 

The choice of slices affects significantly the estimation of AR parameters. In 
this paper we choose c, = c2 = 0, so 

Zl.^Ciyak-i,l-j],lO,0])=0, k e[0,Pi]^le[0,p2]-(k,l) = (0,0) 
i=0j=0 

In other work [10] we have concentrated in the choise of slices to provide 
additional information. 

NEURAL NETWORKS 

For the purpose of classification we employ the (atj) parameters as inputs 

to a multilayer perceptron. The examples contained in this paper are based 
on a three layer perceptron neural network which is employed with the AR 
parameters as the inputs and the different classes as the outputs. The 
network in the example below is a A"(8,10,2) Kuratowski graph trained by 
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the Charalambous approach [8]. This approach relics on conjugate gradient 
techniques for the training of the multilayer pcrceptrons. The conjugate 
gradient methods belong to a class of unconstrained optimisation algorithms 
that automatically adjust their parameters to meet local optimisation 
objectives. With a fairly accurate "line search" algorithm that form part of 
the procedure such methods are guaranteed to converge to a minimum with 
a fast convergence rate [8]. 

RESULTS 

In this work we use an autoregressive model of order 2x2, that is to say 
p] = p2 = 2. As we mentioned before, the segmentation results will be 
influenced greatly by the size of the window over which image features (in 
this case AR parameters) will be extracted. In general, a large window leads 
to a good segmentation in the inner regions of each class. Whereas in the 
regions around boundaries of classes the window covers two or more 
different classes and the features extracted arc the mixed features of these 
classes, so the parts of the image which arc around boundaries cannot be 
correctly segmented. Therefore, the window in inner regions should be large 
enough to separate different classes and it should become smaller as it nears 
to the boundaries. We use first a window of size 32x32 to segment the 
mammogram. Then we take another window around each pixel which must 
be relatively smaller than the first one and we choose that to be of size 
16x 16. We define a pixel misclassified if the pixels in the new window 
around it do not belong to the same class according to the first classification. 
For all misclassified pixels we estimate again the AR parameters but using 
now the 16x16 window and we do the same process for image classification 
and segmentation. Results shown in figures 1-10 below. 
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FIGURES 

Fig. 1. mammogram 
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Fig. 2: a0 Fig. 3: a02 

Fig. 4: al( Fig. 5:o„ 

Fig. 6: a12 Fig. 7: a 20 
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As wc mentioned above a three layer perceptron neural network is employed 
with the eight AR parameters as the inputs and the two texture classes (tumour 
and healthy breast tissue) as the outputs. The segmented mammogram is shown 
in the following figure. 

Fig. 10: segmented image 
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Medical Diagnosis and Artificial Neural Networks: A 
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Diseases 
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D. Lymberopoulos , M. Spiliopoulou  , E. Haralambopulu  , and C. E. Goutis* 

Department of Electrical Engineering 
Pulmonary Department, Regional University Hospital of Patras 

University of Patras, GR 261 10, Patras Greece 

Abstract-An original Medical Expert System (MES) in the field of Pulmonary 
Diseases (PDs), is the topic of this article. This MES covers the full spectrum of PDs, 
being the first that attempts to treat a whole category of distressed body organs. It is 
based on a first presented composition of powerful Artificial Neural Networks 
(ANNs) that have been taught by means of real patients' clinical data,. The proposed 
MES exhibits an overall performance of at least 85% in its generalization results. 

Keywords-Medical Expert Systems, Artificial Neural Network, Pulmonary Diseases. 

INTRODUCTION 

A great deal of Research and Development activities have recently 
highlighted into building and evaluating systems that could decide based on human 
thinking concepts and expertise: Expert Systems (ES - [6], [8]). Medical ES aim to 
supply for tools to assist doctors of medicine (MD), guide trainee students and 
encourage medical experts in their diagnoses ([2]). In addition, MDs who serve 
distantly from Medical Centres, can utilize MESs in order to judge more accurately 
upon a particular, not familiar disease. An MES is a powerful tool of induction best 
tuned when used in conjunction to a human, rather than as a stand-alone authority. 

This article proposes the new and creative MES that was developed by a 
team of medical and technical experts in the University of Patras. Although it has 
focused on PDs, PDs dealt with as a whole category, it is structured in such a way to 
easily being adapted to generalize in other domains of experience, too. Real-world 
clinical data were used to instruct its layers and preliminary and more detailed 
experiments showed its great capabilities of making correct classification of 
symptoms and PDs (approximately 85% out of 150 possible new PDs cases). 
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A mighty composition of ANNs, a prominent section of Artificial 
Intelligence (AI), is the core of the presented MES. AI techniques were most recently 
used either to accomplish the inference engine or as the means to implement both a 
knowledge base and the induction rule of ES ([3], [5], [14]). The expansive 
utilization of MESs in hospitals world-wide, has begun to show their competence, 
whereas new methodologies are altogether posed to give the necessary evaluation 
criteria to compare AI-based MES to more algorithmic-based methods ([3], [4]). 
However, Artificial Neural Network (ANN) architectures, seem to he a head off. 

The implementation of ANNs towards the formation of MESs, currently 
experiences a vigorous growth ([1], [3], [5], [10], [11], [12]). Valuable assets AI and 
medical experts seek in MESs, can be found in ANNs as a part of their very structure. 
Parallel searching, dynamic data storage, robustness, generalization virtues and the 
amazing working speed factor are inherent abilities of ANNs. ANNs may be 
implemented purely in software, on general-purpose platforms or on microprocessors, 
or be made of more or less custom hardware and VLSI chips. 

Besides, ANNs vast application domain and general tasks' accomplishment, 
furnish a sound ground of exploit. To enhance this end, a large number of ANNs 
were structured and simulated on an 386SX@33 PC and were taught by means of a 
variety of learning algorithms to favour the best-suit ones. The most known and the 
most severe Pulmonary Diseases' (PDs) symptoms were integrated into their structure 
so that the proposed environment is able to deal with the big majority of them. 

ORGANIZATION OF MEDICAL DATA 

The building of knowledge-based environments for assisting MDs on 
diseases' diagnosing, is a complex task due to the particular importance of all the 
medical data and the interpretation that different doctors give to them. Thus, the 
construction of an MES based on ANNs, have been forwarded to provide for the 
categorization and generalization of the medical data into new patients' cases. 
Furthermore, this MES follows step by step the Clinical Differential Diagnosis 
(CDD) methodology, due to the nature ANNs treat expertise. A mapping of patient's 
symptoms exhibition to the classes of possible PDs, is therefore achieved. 

Clinical experts in PDs, established the boundaries of the project. A definite 
number of inputs were set, the same questions that MDs ask when examining patients. 
They contain related findings of each one of the PDs' symptoms, i.e. Cough, Sputum, 
Haemoptysis, Fever, Dyspnea, Wheezing and Chest Pain and historical as well as 
data obtained from physical examinations. Consequently, those data, were fed to a 
large number of ANNs ([7], [9], [13], [15]) and evenly distributed to both a sum of 
thirty-five (35) PDs and they related twelve (12) major PDs' classes (Table I). 

Data were fed by introducing their existence or non-existence in possible 
PDs' exhibition. Major influences, such as the gravity of certain symptoms or findings 
to determine certain PDs, multiple PDs' interference in a diagnosis and resulted PDs' 
ordering on a higher-fitness basis, were left to the ANNs to learn. Still, lethal PDs a 
patient could suffer, were made certain to the highest degree to be excluded or 
confirmed by the proposed MES, through using suitable input patterns. 
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Table I depicts the cumulative patterns with which the ANN dealing with 
the Cough's symptom was taught. Column 1, denotes PDs' Classes (including a 
Non-PDs one); Column 2, the particular Value that this symptom has to a specific PD 
class; next Columns, whether the Cough's findings could be Recent, Chronical, 
Productive, Non-Productive, or/and Paroxismic, after Exercision, all Day long, only 
in the Morning or/and in the Evening, Seasonary , followed by Anorexia, excessive 
Sweating, Weight Loss or Increase, Vomiting or/and Sleepiness. 

PROPOSED COMPOSITION OF ANNS 

Conducted preliminary experiments proved the feed-forward ANN, to be 
the most bright one and was elected as the basis of this MES suggested composition. 
This MES is arranged in a three layers form, following data's time propagation 
sequence (Figure 1). Two different learning algorithms were forwarded to teach its 
ANNs: back-propagation ([9]) and Kaiman filtering of back-propagation equations 
([13]). The latter, however, utterly swayed; it performed better with less initialization 
steps and better learning speed, accuracy, convergence and data handling. Typical 
learning parameters include ANNs with binary inputs, float arithmetic processing, 30- 
44 nodes, 250-300 input patterns, 3 slabs each and a requested learning accuracy of 
5%. Learning times spread between 20'-30', i.e. 2000-3000 learning cycles. 

Figure 1. Layers: Composition of the ANNs 
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First Layer 

A four levels ANNs' formation, three-slab structured, was used. Inputs to the 
first level was fed separately for each one of the major symptoms (subjective medical 
data) and in random order. Moreover, two other identical-structured ANNs were 
added, to treat historical and physical exams data (objective medical data). The 
outputs of each of those ANNs, are the general classes of the possible PDs expressed 
as percentages of similarity to their learnt patterns. Figure 2 depicts first Layer. 

PHYSICAL 

EXAMS 

CHEST 
PAIN 

IIAEMOPTYS 

-/rT>TNET*y 

' ■?// | ►( NET «5^ 

TTT>f  NETtfj} 

NET tnyif- 

HISTORICAL 

DATA 

//I  ►(   NET#«V 

-frf^C NET #9} 

INPUT LEVEL #1 

-fr-^( NET # \yH—►( NET * ltf 

LEVEL #2 LEVEL #3 LEVEL #4 

CUNICAL 
EXAMS 

OUTPUT 

Figure 2. Layer #1: Structuring 

These outputs are then weighed by eight three-slab ANNs in the second 
level of the first layer, thus forming pairs of symptoms or historical data, and physical 
examinations handling, as CDD methodology imposes. Again, outputs will be the 
classes of PDs with a percentage of fitness to the stored weights in the ANNs. On the 
third level, all the outputs of the second one are inserted in another three-slab ANN 
which outputs PDs' classes, too, and combines all the available information. 
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Up to this point, all medical data given are pondered independently and only 
finally summed-up, following step by step the CDD methodology. Hence, the end 
results show the general tendency of the possible PDs a patient could suffer of. In the 
fourth level, though, suggested clinical exams outcome by means of a two-slab ANN. 

This induction methodology scheme is so far submitted, due to its 
transparency to the intermediate results. An expert is able at every level of process to 
intervene and select the most crucial diagnosis' facets, according to his own opinion. 
The ANNs, altogether, do not inhibit but, instead, offer percentages of possible PDs 
existence, letting the expert not only to make the final decision but also to combine 
his own selected symptoms' responses. However, this MES can be let to prune out 
not possible PDs, too, following already instructed induction threads. 

Second Layer 

This scheme given, the use of another four-levels, three-slabs ANNs' 
formation was advanced. These ANNs are identical to and operate exactly as in the 
first layer, but they handle PDs in all their outputs, intermediate and final. In addition, 
some new inputs are added: those that relate the final PDs' percentages of fitness the 
third level of the first layer have already computed. This way, a strong positive 
feedback will be exercised in the second layer's ANNs to enhance and promote the 
final diagnosis. Preliminary and more elaborate results have shown a great increase in 
the final (layer #3) outputs' accuracy than ever (15%-25%). 

Third Layer: 

Two four-levels ANNs' formations are also planed. These will handle all 
data the former ones did, plus clinical examinations' results and new data from the 
PDs' eventual progress. Findings of those data as being fed to both ANNs handling 
patients' symptoms before the clinical examinations as well as after those, will 
contribute to the final PD diagnose. A voting process between the two is arranged, to 
be performed by another ANN. The final MES's output, however, is scheduled to be 
the necessary medication potions as well as their dosage and time-schedule. 

Discussion 

As the reader may note, this novel architecture is being built in such a way 
that assures friendliness of utilization, transparency on all its levels and efficacy on its 
results. As for the latter quality, medical data and clinical experts' interaction help to 
make the system achieve a good performance. So far results have shown an overall 
performance of nearly 85% successfully promoting the correct PD as the already 
taught ANNs were left to generalize into their newly fed inputs (150 total PDs' cases). 

The special value of the proposed MES, is that the percentage of exactness 
achieved does not imply that in the 15% of the cases left, the PDs are classified 
incorrectly out of patients' symptoms. In this presented MES, the correct PD should 
be one out of the next five (and only five!) less fitted results (in descendant order). 
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Moreover, since the first priority of MDs, when examining patients, focuses on being 
able to suggest the correct clinical examinations, this MES performs accordingly. It 
prunes these examinations and waits to consider their results for the final diagnoses 
outcome, too. Therefore, a safety margin is thus structured , such that will surely 
enhance the overall precision of the system, at least to MDs' levels. 

Additionally, the proposed architecture for the MES composition, can very 
easily be retargeted to fit in other domains of interest. Already the aforementioned 
team is working towards the expansion of this MES to other fields of Medicine. MDs 
could offer their judgement about patients' cases considering the whole perspective 
of the human body. Of course, the problem of associating the results of all the 
intermediate MESs, will be posed and will remain to be solved. Still, applications can 
be found on every terrain treated by human expertise and not only Medicine. 

CONCLUSIONS 

The structuring of an efficient MES to assist MDs was the target of this 
research. The precursory along to the ultimate results are very stimulating. However, 
the intensifying of this MES through the augmentation of its data, is a necessary next 
step. It passes through the integration of medical theoretic knowledge and the 
interference with other pulmonary teams' knowledge as well as to the learning by new 
algorithms and additional data. The presentation of a general-purpose MES to be the 
basis of other medical diseases induction diagnosis is the limit. 
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Abstract. A system for modeling and early detection of Glaucoma 
induced chances in the human retina is described. The system in- 
cludes a modeling tool for design of semi-realistic retinal pictures, 
that may either be used for educational purposes or (as here) as 
a laboratory for controlled signal processing experiments. The de- 
tection system includes preprocessing algorithms for elimination 
of intensity variations and other artefacts. The final segmentation 
step is based on a cellular neural network. 

INTRODUCTION 

Vision is the most important of the human senses. The human eye can be 
considered a spherical structure with a radius of about 12mm. The inside 
is filled up by a transparent substance corpus vitreum. The retina covers 
the inside surface and holds the optically sensitive nerve ends. Furthermore 
the retina holds nerve fibers collecting the optical signals. These fibers leave 
the eye through the optical disc (the so-called blind spot). If the internal 
pressure of the eye increases or if the blood supply to the optic disc or retina 
is decreased nerve fibers can degenerate and defects in the visual field appear. 
Since the human visual system can partly compensate for the lack of visual 
field, the increased pressure may go undetected beyond the limit where the 
induced changes are reversible. The pathological changes are collectively 
called Primary Open Angled Glaucoma (POAG). Early diagnosis is essential 
for preserving good visual function. If untreated POAG will lead to blindness 
within five to ten years. The diagnosis is quite common, in Denmark involving 
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about 2% of the population, mostly elderly [10]. About 5% of the diagnosed 
eventually end up blind. 

In this project the objective is to develop tools for early diagnosis of POAG 
based on so-called fundus pictures, i.e., images of the retina taken though the 
pupilla with a dedicated camera system. First, a model has been developed 
for modeling of the changes in the retina induced by Glaucoma. This model 
may be used for training of physicians, and as in this study, a laboratory for 
controlled experiments with pattern recognition devices. Secondly, we have 
developed a preprocessing scheme and cellular neural networks for detection 
of the nerve fiber pattern as seen in fundus pictures, for more details see 

[10, 7]. 
An image analysis study of Glaucoma detection was carried out by Ya- 

mazaki et al. [11]. In this investigation diagnosis is based on a analysis 
of a single intensity profile approximately orthogonal to the line connecting 
the optical disc and the fixation point. In our experiment this scheme has 
shown not to be robust to the variations in image quality of standard fundus 
pictures. 

MODELING OF FUNDUS PICTURES AND GLAUCOMA 

In order to create a workbench for comparison of various computer algorithms 
for enhancement and diagnosis, we have created a simple parametric model 
of fundus pictures. The model is based on analysis of original fundus pictures 
c.f. figure 1. The prominent features of the scene are blood vessels here seen 
as dark structures emanating from the periphery of the optical disc. The 
black spot is Macula (the fixation point), where the optical sensor density is 
maximal. Close visual inspection reveals that the nerve fibers form a multi- 
layered quite noisy line-pattern texture. For a discussion of textures see e.g. 
[6]. A close-up is shown in the right panel of figure 1. Glaucoma induced 
nerve fiber loss takes two different forms: a uniform reduction of fiber density 
or a characteristic regional (wedge) disappearance of fibers. An example of 
the latter is seen in figure 2. 

ARTIFICIAL FUNDUS PICTURES 

The image model consist of two modules that add features to a matrix with 
predefined optical disc and fixation point locations: Blood vessel design is a 
mouse based drawing module in which a semi-realistic design can be created 
with varying vessel diameter and vessel edge smooting. The nerve fiber gen- 
erator draws line patterns of parametric second order curves. The parameters 
can be defined separately in 36 sectors surrounding the optical disc. The ori- 
entation of these sectors is defined by the optical disc and the fixation point. 
Noise is added with controlable signal to noise ratio to provide a realistic local 
appearence of the texture. 
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Figure 1: A socalled fundus picture showing the retina. Note the blood vessels ema- 
nating from the blind spot and Macula, the fixation point, where optical sensitivity 
is maximal. In the lower panel we show a close-up with the characteristic texture 
due to nerve fibers. 
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To emulate the multi-layered structure found in real fundus pictures sev- 
eral families of curves can be added. The curve parameters are slightly mod- 
ified from one family to the next. In the images generated for the present 
study we have used four such layers. Two layers were added before addition 
of the blood vessel system and two layers added after, reflecting the layering 
in the real photograph. 

PREPROCESSING 

The first steps in the preprocessing of a fundus picture concern elimination 
of illumination artifacts and of the blood vessel system. These steps involve 
band-pass filtering and simple thresholding to segment the (dark) blood ves- 
sels. The location of the blood vessel system is kept in a separate mask. 

TEXTURE PREPROCESSING 

Texture detection algorithms are legio. Many such algorithms are based on 
a two-level design in which a basic filter detect local features followed by a 
merging algorithm that forms a global segmentation in regions of textures 
see e.g. [6] for a recent example. We follow a similar approach here. Our 
preprocessor consist of simple adaptive, quadratic, local discriminant trained 
by example. The segmentation step is carried out by a cellular neural network 
based on mean field annealing. 

QUADRATIC DISCRIMINANT 

The preprocessor classifies individual pixels based on the statistics of its neigh- 
borhood (a square window of MxM pixels). A simple maximum likelihood 
discriminator was found sufficient. The two populations of MxM windows 
(nerve fiber texture presence/absence) are modeled as two Gaussian distri- 
butions with individual means and covariance structures. The mean and 
covariances are estimated from a sub-image of 350x350 pixels generated by 
the Glaucoma model. Since the line textures show the characteristic direc- 
tions of flow c.f. figure 2 individual populations are trained for eight regions 
determined by the location of the optical disc and the fixation point. To 
illustrate the performance of the quadratic discriminant we show in the left 
panel of figure 2 a synthetic image with a characteristic regional defect (note 
also that the blood vessels have been eliminated leaving areas of uniform grey 
value). In the right panel of figure 2 we show the output (difference in log 
likelihoods) provided by the discriminant (window size M = 13). To segment 
the noisy result of the preprocessor into regions that quantifies the presence 
of nerve fiber a global segmentation algorithm is needed. 
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Figure 2:   Upper panel:   Synthetic fundus picture with a characteristic wedge re- 
gional absence of nerve fibers.   Lower panel:  Output of likelihood based discrimi- 
nant. 
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CELLULAR NETWORK DESIGN 

The cellular network concept was developed by Chua and Yang [2]. A cellular 
neural net is a locally connected network of simple processing units, typically 
operating as feed-back processes converging to a fixed point. The Bayesian or 
Maximum Posterior approach is a very successful device for signal processing 
(see [9] for a review), a particular attraction is that it leads to algorithms 
that map well onto cellular neural networks. The basic idea of the Bayes 
approach is to consider both the source (un-degraded) signal and the degra- 
dation as stochastic processes. Bayes' formula can then be used to construct 
the distribution of the reconstructed signal, conditioned on the observed de- 
graded signal. Segmentation is an important step in many computer vision 
systems. Here we use the Bayes scheme to derive a simple cost-function that 
can be minimized by a cellular neural network. The resulting cost-function 
is identical to the one used by Carnevali et al. [1]. The target signal is a 
"smooth" binarization of a grey-scale image dj, in terms of two-valued pixels 
S- e {-1, +1}. The prior distribution is designed to emphasize smoothness 

P[S\ oc exp ( - £ E M(i>i')(Si - $')2 ) C1) 
V i=ij'=i / 

M(j,j') defines the connectivity, hence the unit cell of the cellular net- 
work. Here we just connect the nearest neighbors with strenght %. 

We furthermore assume the signal degradation to consist in addition of 
white Gaussian noise. This degradation process leads to the following condi- 
tional distribution: 

We use Bayes' formula to obtain the posterior distribution: P[S\d] oc 
P[d\S]*P[S\. Clearly the posterior distribution is of the Gibbs form1, with 
a cost-function given by the negative logarithm of the posterior distribution: 
-log P[S\d]. We also note that the state dependent part of the cost-function 
is linear in the parameters wu and wd = 1/er2. This makes it suitable for 
Boltzmann machine learning [3, 4]. In this communication, however, we apply 
the cellular network with fixed parameters. 

The Mean Field annealing method for estimation of averages over Gibbs 
distributions is well documented in the litterature see e.g. Hertz et al. [5]. 
The cellular neural network minimizes the Mean Field free energy and can be 
implemented either in analog mode or in discrete time mode: 

*A distribution of the form P(x) = Z~x exp(-E(x)/T), where E(x) is a cost-function, 
bounded from below, and T is a parameter 
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(5j+1) = (1 - ~)(S}) + * tanh (/?'(£ M(i>J')(SJ') + w4di (3) 

where the time-scale A/r can be used to control the stability of the iter- 
ation process in digital implementation^]. /?' quantifies the annealing sched- 
ule, in this work we use the simple schedule: /?' = ßx + (t/tmax)(ß

2 - ßl). 
We illustrate the performance on the image produced by our synthetic 

fundus picture system. In particular we use the Mean Field scheme for seg- 
mentation of the output of the quadratic texture discriminant (figure 2). We 
set the parameters to wM - 1-0, wd — 0.01. The resulting segmentation after 
20 iterations of the deterministic equation (3) is presented in figure 3. 

50 10O 150 200 250 300 

Figure 3: Output of the cellular segmentation network. The black areas represent 
the blood vessels that have been identified independently. Grey color signify areas 
of nerve fiber loss. The characteristic regional defect is assigned correctly. Close 
visual inspection of the synthetic input corresponding to the smaller grey spots 
indeed shows that the noise has degraded the texture significantly and it is unclear 
what the "true" classification should be. 

Note that the segmentation network eliminates local noise. The resulting 
segmented image can be used either for rutine inspections to produce early 
warnings or for quantitation of the progress of the desease state and response 

to medication. 
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CONCLUSION 

We have presented a modeling tool for design of synthetic fundus pictures. 
The system may be used either for educational purposes or as here for use 
as a laboratory for experiments with pattern recognition devices aimed at 
diagnosis of Glaucoma. We have designed and presented results of a simple 
and fast system for detection of nerve fibers in fundus pictures. Quantitative 
nerve fiber detection will be a key component in future automatic systems 
for rutine screening against Glaucoma. Current work concerns further test of 
the system and experiments on real fundus pictures. 
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Abstract. This paper reports about a study evaluating the usefulness of 
neural networks for the early detection of heart disease based on ECG 
and other measurements during exercise testing [10]. Data from 350 
persons who underwent stress tests consisted of patient demographic 
data and fifteen time frames of measurements during stress and rest. 
Three different neural networks, two recurrent and one feedforward 
using background knowledge for preprocessing, were trained and com- 
pared to the performance of skilled cardiologists. It could be shown 
that the best neural networks can compete with experts in classifying 
tests as CAD (coronary artery disease) or normal. What concerns an 
index value expressing the likelihood of disease, to be used for moni- 
toring the success of treatments, the neural networks outperformed 
classical statistical techniques published previously. This study has 
thus shown large evidence in favor of using neural nets to improve the 
exercise ECG as a non-invasive technique for detecting heart diseases. 

THE APPLICATION 

The electrocardiogram (ECG) is the recording of voltage changes trans- 
mitted to the body surface by electrical events in the heart muscle, provid- 
ing direct evidence of cardiac rhythm and conduction and indirect evi- 
dence of certain aspects of myocardial anatomy, blood supply and func- 
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don. Electrocardiography has been used for many years as a key non-inva- 
sive method in the diagnosis and early detection of ischemic heart disease 
(coronary artery disease, or CAD), which is the leading cause of mortality 
in Western countries [5,6]. 

To improve the accuracy of the electrocardiogram and obtain more in- 
formation on the dynamic state of the heart, exercise testing was intro- 
duced [5,11]. During stress testing not only the electrogardiogram is con- 
tinously registered but also other physiological parameters are monitored 
(blood pressure, physical symptoms and angina pectoris). According to dif- 
ferent established protocols, the workload is increased step by step and the 
changes of parameters during stress and recovery are recorded and 
analysed. Skilled cardiologists achieve 65-75% specificity (correctly classi- 
fied normals) and 75-85% sensitivity (correctly classified CAD cases) in 
detecting CAD based on the resulting data [5,6]. 

In patients with suspected angina pectoris, exercise testing may confirm 
the diagnosis of ischemic heart disease and indicate the severity and prog- 
nostic importance of coronary artery lesions. In patients with definite is- 
chemic heart disease, the exercise test is used to follow the progression or 
regression of the disease and the effect of therapy including drugs, invasive 
cardiology (e.g. angioplasty, atherectomy,..) or coronary artery surgery. 
Following myocardial infarction, exercise testing is performed to allow risk 
stratification, patients identified as being at low risk for death or re-infarc- 
tion can be reassured and those at high risk can be managed appropriately 
[6]. 

If contra-indications (e.g. in the presence of acute, severe illness) are 
strictly observed, stress testing is a safe, cheap and non-invasive method, 
and is widely used in hospitals, by cardiologists, and general practitioners in 
primary care and health care centers. The success of the test is widely 
determined by the skill of the observer (cardiologist, general practitio- 
ner,..) and the patients themselves. Several efforts have been made to 
minimize these effects [7]. The following list shows a short summary of how 
automatic methods of CAD detection could improve the value of ECG and 
stress testing as indicator for heart diseases: 

- automatic methods could minimize inter- and intraobserver variability 
on the test 

- they could generally improve the detection of diseases like CAD 
- they could contribute to improved monitoring of different therapies 
- they could select continously new information on a given data set 
- they could improve the acurracy of unskilled observers 

Previous approaches to such improvements, such as [2,4,7,9], concen- 
trated on classical statistical techniques and yielded results of up to 79 % 
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sensitivity and 76 % specificity. In this paper we report about studying arti- 
ficial neural networks with respect to their ability for such improvements. In 
particular, if neural networks prove to be able to (objectively) classify cases 
comparably to (partially subjective) expert performance, and if they can 
provide tools for monitoring therapies, they can be viewed as valuable tools 
for future diagnostic systems in this domain. As the results below show, 
neural networks indeed prove to be able to do so. 

THE DATA 

The data used in this study consisted of patient-demographic parameters 
and fifteen frames of measurements from stress testing. The former in- 
cluded the person's sex, age, weight, and size, an indication whether a 
prior infarction is known, the workload that was reached by the person, the 
duration of the phase of the highest workload, and the expected heart rate, 
as well as workload to be achieved, computed according to [12,13]. The 
latter consisted of the above-mentioned measurements — namely heart 
rate, systolic and diastolic blood pressure, physical symptoms, angina pec- 
toris, and features extracted from the ECG such as ST-segment depression 
and rhythmic anomalities. These measurements were taken during 11 stress 
phases (from 0 to 250 W, incremented by 25 W at each phase) and 4 
subsequent rest phases (immediately after stress, and after 1, 3, as well as 5 
minutes). 

Data from 350 persons was available, including 107 normals and 243 
with coronary artery disease, ranging from single to three vessel diseases. 
Among the 107 normals, data from 31 athletes were included. As com- 
pared to the other normals, these constitute "ideal normals," since all other 
persons undergoing stress testing were at least suspected of CAD and thus 
had a non-negligible prior probability for the disease. This is a well-known 
problem in using techniques like neural networks that rely on available data 
material. In many cases, normals are too similar to the pathologicals to 
permit clean separation. Non-evasive stress testing, on the other hand, can 
without risk be applied to persons with a negligible prior probability for the 
disease. The following table depicts the distribution of all cases, including a 
distinction according to the persons' sex: 
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total females males 

athletes 31 2 29 
other normals 76 33 54 
1 vessel CAD 60 16 44 
2 vessel CAD 80 13 67 
3 vessel CAD 103 14 89 

THE NEURAL NETWORKS USED 

The task of this study was to evaluate the ability of neural networks to 
indicate coronary artery disease based on the data described above. Three 
types of neural network were used. The first and the second network were 
recurrent (roughly Elman-type) networks to account for the fact that the 
fifteen frames of stress test measurements form a time series with temporal 
evolution of all parameters. The third was a multilayer perceptron applied 
to preprocessed data (using knowledge about the domain). 

Neural network 1: The first attempt of applying a neural network to the 
data was a somewhat "blind" training using only little background knowl- 
edge about the domain. An input layer of 19 units was used encoding pa- 
tient demographic and stress test data for each time frame. This layer fed a 
recurrent network, somewhat similar to [3], as depicted in figure 1. At 
each update step through the network, the hidden layer activations were 
fed back to a state layer of the same size with weighted but fixed one-on- 
one connections. Each unit in this state layer was connected onto itself with 
a fixed weight. State and input layer together formed the input for the 
hidden layer, which in turn spread activation to an output layer of one unit. 
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Aside from the feedback via the recurrent connections the network was 
considered as a multilayer perceptron and thus trained by backpropagation 
at each of the fifteen time frames. The target for the output unit was cho- 
sen 1 for pathological cases and 0 for normal ones. To account for the 
temporal evolution during the fifteen time frames, the target for pathologi- 
cal cases was continuously raised from 0 to 1 between the start of the se- 
quence and the last stress phase reached by the patient (i.e. the highest 
workload successfully passed). After that, for the remaining time frames, it 
was clamped at 1. A similar method for classifying sequences has been 
suggested elsewhere (e.g. [1]). 

The hidden layer size was varied between 8 and 20. The weights on the 
one-on-one connections between hidden and state layers were kept fixed at 
1, the weights of the state layer units onto themselves were all set at 0.5 
(thus preserving 50 % of the previous history at each time frame in the 
sequence — compare [16]). Roughly half of the 350 cases (173) were cho- 
sen as a training set that was kept fixed for all training runs reported in this 
paper. It was chosen such that the distribution of athletes vs. other normals 
vs. pathologicals was roughly the same for training and test set, and such 
that no significant difference in the distribution of the patient-demographic 
parameters occured between training and test sets. Other than that, the 
selection was random. Each training run consisted of between 60,000 and 
100,000 presentations of single cases (each consisting of the full fifteen 
time frames), picked randomly from the training set, with a learning rate of 
0.01, and of between 60,000 and 100,000 further presentations with a 
learning rate of 0.001. This simple schedule of lowering the learning rate 
had proved sufficient for reaching convergence in several preliminary train- 
ing runs, and was also fixed for all runs reported here. In addition, a mo- 
mentum term (according to [15]) with scaling factor 0.9 was used. 

One problem with this blind application of a recurrent network might be 
the over-representation of patient demographic data, which did not change 
during the temporal sequence. Thus, in several variations of this network 
scheme, the input units corresponding to this part of the data were acti- 
vated only either at the beginning time frame, the final two time frames, or 
at both such ends of the sequence, while being clamped at 0 for the other 
time frames. 

Neural network 2: To solve that possible problem of over-representation 
of patient demographic data in a more elaborate way, a second network 
architecture was devised and tested. It consists of two modules explicitly 
separating the data changing over time from the time-independent data, 
depicted in figure 2. The first module is another recurrent network as de- 
scribed in the previous section, but which was only fed with the time-chang- 
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ing stress test data. The second module is a multilayer perceptron with two 
input layers — a layer encoding the patient demographic data similar to 
above, and the hidden layer of the recurrent network after complete up- 
date cycles through the sequence. Training consisted of two phases — first 
of training the recurrent network as above, and secondly, of training the 
multilayer perceptron by backpropagation. 

In addition, three output units instead of one were used encoding the 
more detailed cases of normal (all units 0), one, two or three vessel disease 
(first, first and second, or all three units active at 1). For evaluation, still 
only the distinction between normal and CAD was considered. The ex- 
pected effect of the two additional units was improved discriminability 
through the extra information in the target (this was reported previously as 
improving network performance, e.g. [14]). Both hidden layer sizes were 
varied between 10 and 20. 

Since many patients could not finish the stress test up to the highest 
workload (which itself is a certain indicator for CAD), many time frames 
consisted of zero measurements. Thus, in a further extension, the sequen- 
tial update of the recurrent network was adjusted such as to skip those null 
frames, making the length of each sequence variable. 

Neural network 3: The third attempt at a neural network solution in- 
volved an additional amount of background knowledge, which was mainly 
used to preprocess the data. The major difference to above was that no 
longer a recurrent network, but instead a multilayer perceptron with three 
input layers was used. The information in the time sequence was explicitly 
encoded by making use of previous methods of arriving at an indicator for 
CAD from the same kind of data [8]. There, each time frame was evalu- 
ated separately, and the contributions (basically a weighting of several fac- 
tors considered as possible single indicators for CAD) of all time frames 
were summed. For the computation of a final index, which can be shown to 
highly correlate with CAD (see also below) only those sums were used. In 
addition, an explicit distinction between stress and rest phases was made. 

According to these expert decisions, the third neural network was fed 
with the sums of the following indicators (taken from [5,6]; as in [8]): 

- a deviation of the change in heart rate from a given tolerance interval 
- a decrease in systolic blood pressure 
- the presence one of several critical phsysical symptoms 
- the presence of angina pectoris 
- ST-segment depression 
- the presence one of several critical rhythmic anomalities 
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In distinction to [8], the first two were included as scaled values, instead 
of binary decisions about their presence. Furthermore, the following infor- 
mations were also included [5,6]: 

- a decrease in diastolic blood pressure 
- pathological systolic blood pressure (larger than 140) 
- pathological diastolic blood pressure (larger than 90) 

again as scaled values. This was done separately for the stress and rest 
phases, leading to the activations of two of the three input layers. The third 
input layer encoded the patient demographic data as above. While many of 
these indicators were also used for network 2, here they were specifically 
tuned according to literature and, above all, explicitly summed up (rather 
than accumulated in the recurrent network). 

Each training step consisted of one presentation of input patterns and 
one learning cycle with backpropagation. The hidden layer size was varied 
between 10 and 20. Again three output units were used. 

THE RESULTS 

In this study the neural networks were evaluated against two criteria: 

(1) their ability to correctly classify cases into CAD and normal. 

(2) their ability to produce an index expressing the likelihood of disease, 
which can be used to monitor the success of treatments (a decreasing 
index after treatment would indicate less likelihood of CAD and thus 
success of treatment). 

Figure 3 shows an overview of the results concerning criterion (1). It 
depicts the best performances of the three networks, drawn as sensitivity 
(correct positives — white bars) and specificity (correct normals — black 
bars) in percentages. Since through varying the decision threshold at the 
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output unit these two values can be changed, for all results two pairs of 
values are depicted — one with relatively high sensitivity (always the result 
at the default threshold 0.5), the other with relatively high specificity (such 
that sensitivity stays above 80 %). For comparison, the range of the best 
performances of skilled cardiologists in interpreting the same data is shown 
(the two pairs of values corresponding to worst and best performance, i.e. 
the 75/65 % and 85/75 % mentioned above). 

Concerning criterion (2), the original output value (which is simply com- 
pared to a threshold for the former criterion) appears to be usable as an 
index expressing the likelihood of disease. To demonstrate this, in figure 4 
the mean (black bars) and standard deviations (white bars) of the output 
value for the five classes athletes (Oa), other normals(O), one, two, and 
three vessel disease are shown. In the case of three output units the activa- 
tion values of all units was averaged. This depiction shows a significant 
correlation between the index produced by the network and the extent of 
the disease. For comparison, the same five ranges (although on a different 
scale) are shown for a previously published statistical method for computing 
such an index [8]. 

DISCUSSION 

The results show that neural networks can reach the upper ranges of 
expert performance, in some cases they can even perform slightly better. 
The second recurrent network using less background knowledge than the 
feedforward network but with the ability to exploit the time series based on 
the training data achieved best performance, although closely followed by 
the feedforward network. Neural networks 1 and 2 could also outperform 
previous non-neural approaches [2,9]. 

With respect to an index for monitoring the success of treatment, neural 
networks appear superior to traditional statistical methods. Standard devia- 
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tions are smaller and the separation between normals and pathologicals 
involves fewer overlap. 

CONCLUSION 

In this paper we have demonstrated the usefulness of neural networks in 
early detection of heart disease based on measurements during exercise 
testing. Recurrent networks which can exploit temporal dependencies ap- 
pear as the best solution at the moment. Future research will investigate the 
combination of the recurrent approach with the type of background knowl- 
edge used in the feedforward case (e.g. through initialization), and the use 
of neural networks in hybrid neural/rule-based diagnostic systems. The re- 
sults so far show great promise for significant contributions to making non- 
invasive ECG measurements during stress testing a prominent method for 
detecting one of today's most fatal diseases. 
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Abstract. The paper presents the methodology and results from a 
neural net based classification of human sperm head morphology. 
The methodology uses a preprocessing scheme in which invariant 
Fourier descriptors are lumped into "energy" bands. The result- 
ing networks are pruned using Optimal Brain Damage. Performance 
comparable to the error rate for human technicians is obtained. 

1    INTRODUCTION 

Semen quality assessment is important to fertility studies and standards have 
been introduced by the World Health Organizationfl]. Recent research has 
demonstrated that semen quality has decreased by 50% during the past 50 
years in the western world, possibly as result of the increasing exposure to 
pollutants and changes in diet [4, 5]. The Atlas of Sperm Morphology[2] 
defines 19 classes of sperm cells based on morphology. The characteristic ab- 
normalities involve shape modifications, including multiple heads and tails. 
Furthermore, sperm cell motility is also important for definition of abnor- 
mality. Since sperm cells show great variety, the morphological classification 
problem represents a complex task. Furthermore, the appearence of the spec- 
imen depends on several factors that are only partially controllable, such as 
reduced imaging quality, caused by co-fixation of precipitates and presence of 
non-sperm cells. Hence flexible and robust classification tools are necessary. 
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In this communication we analyse a neural net approach to automatic cell 
shape classification. Neural net learning makes it possible to compensate for 
the problems of specific imaging devices, and the user is not forced to produce 
an algorithmic description of the discriminant. Rather the same general soft- 
ware can adapt to a given setting based on examples produced by a skilled 
technician. Robustness is achieved by the networks' ability to generalize. The 
prime objective in machine learning is the ability to discriminate appropri- 
ately for test cases, i.e., examples that are different from the examples used 
for training of the neural system. Additional robustness can be obtained by 
careful preprocessing by which we mean model-based information processing, 
such as extraction of known salient features. 

As a first step towards automatic quality assessment we have developed 
preprocessing algorithms for locating sperm cells and for extraction of salient 
features of the "head" and the "tail". In this presentation we will discuss 
the neural classifier for head shape classification. A convenient preprocessing 
strategy for shape discrimination has been proposed by [18, 11] and is based 
on Fourier analysis. A polygon in the image plane is isomorphic to a periodic 
sequence in the complex plane. For reviews and further analysis see also 
[11, 19, 16, 17, 14, 8]. Fourier descriptors are robust to the number of points 
used in sampling the shape and readily provide features which are invariant 
to changes in position, orientation, and starting point [18, 11]. 

Neural networks in conjunction with Fourier descriptors have been ap- 
plied for shape discrimination previously in [13] and more recently in [8]. 
The objective of [13] was to recognize tools from a mechanical toolbox. The 
Fourier coefficients were crudely preprocessed by keeping only a few manu- 
ally selected amplitudes. The results were promising; good performance was 
obtained with very few examples using a fully connected feed forward neural 
net trained by standard Backpropagation. However for sperm cell classifica- 
tion we have found that the inherent variability forces us to invoke optimized 
classifiers and more sophisticated preprocessing schemes. Our neural classi- 
fier approach was first described in [6], and in [8] it was tested on two sets 
of artificial cell shape data. Here we apply the system to real world data. In 
the context of cell discrimination the approach involves a new feature: the 
neural networks used have adaptive architectures. In particular, the networks 
are pruned to obtain the optimal connectivity. The advantage of the pruned 
networks is that they perform better on test data, ie. they do not simply 
memorize the training data but are able to generalize better than fully con- 
nected architectures. They are also able to select out the relevant inputs and 
thereby can mitigate the results of using too many input descriptors. More 
details on the simulator for the design of application specific architectures 
can be found in [7, 6]. Based on statistical theories of generalization, the best 
generalization is expected from the least complex networks. In our simulator 
we search for the best network with a pruning scheme based on the Optimal 
Brain Damage technique of [10]. We first train a large network that can eas- 
ily implement the training set. Subsequently we compute the saliency of the 
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weights of the network and delete a fraction of the weights with the lowest 
saliency. The network is re-trained and the procedure repeated as long as the 
pruned network is able to implement the training set. For noisy problems, 
of course, one would tolerate a certain amount of error on the training set in 
order not to overfit1. Our results indicate that pruning improves performance 
but, however, should be terminated well before reaching the smallest network 
that is able to do the training set. 

2 SHAPE PREPROCESSING 

As stated in the introduction, we used Fourier shape descriptors, i.e. the 
inputs to our neural networks were computed from the Fourier coefficients of 
the sequence of (x, y) coordinate pairs viewed as complex numbers: z = x+iy. 
The complex representation of a sequence of N points becomes periodic with 
the definition: z^+k = Zk- The Fourier representation has the advantage that 
the description is rather robust to sampling the actual cell shape with different 
points and is rather insensitive to the number of points in the sample [3]. It 
also allows for finding descriptors which are invariant to translation, rotation, 
and the choice of a starting point in our description of the curve [18, 11]. The 
invariances are important because they effectively increase the size of the 
training set. Using invariant inputs is roughly equivalent to enlarging the 
training set by adding rotated, renumbered etc. versions of each training 
sample. 

The invariances are achieved by transforming the shape to "standard 
form". For example, the centroid of the shape can be moved to the ori- 
gin by setting the zeroth Fourier coefficients equal to zero. The standard 
form inherent in the popular "elliptic Fourier descriptors" [11] is based on 
the elliptic approximation for the shape which is obtained by truncating the 
Fourier series to terms with frequency one. This so-called primary ellipse 
then serves through its major axis to provide a natural starting point and a 
natural coordinate system which takes care of rotation and scale. The result- 
ing transformed Fourier coefficients are invariants which provide a complete 
description of the shape and are called the elliptic Fourier coefficients. 

To further reduce the complexity of the input representation, hence the 
network, we lumped the component by summing the energy in certain fre- 
quency bands. 

3 NEURAL CLASSIFIER 

Our simulation tool for design of adaptive neural architectures was described 
in [7, 6]. The initial architecture is an ordinary feed-forward network with one 
hidden layer. The standard output coding scheme for multi-class problems 
is used, hence, each class is represented by a specific output neuron.   The 

1For an implementation of this within time series prediction see [7]. 
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Figure 1: Reconstruction of cells from reduced sets of Fourier coefficient. (Solid: 
normal cell shapes; dotted: amorphous cell shapes) 

activation functions of the hidden neurons are hyperbolic tangents, while the 
activation functions of the output neurons are linear. The training error is 
the usual sum of squared errors. The learning algorithm adjusts the weights 
of the network in order to minimize the error function. For the hidden layer, 
a second order modification of the back-propagation algorithm with batch 
learning is used, and, for the output neuron, the matrix inversion algorithm, 
described in [9] is used. 

The algorithm used to adapt the neural network architecture is in brief: 

1. Train the fully connected neural network using the learning algorithm. 

2. Use the Optimal Brain Damage method to calculate the saliencies of all 
the weights in the network. 

3. Find the weight in the network with the lowest saliency and remove 
this weight by setting it (permanently) to zero. If a hidden neuron is 
disconnected from the output neuron the hidden neuron is removed. 

4. Retrain the network using the learning algorithm. 

4    THE IMAGE DATABASE 

The image database used in this work consisted of digitized images of fix- 
ated and Papanicolau stained semen specimens collected at the Department 
of Growth and Reproduction, Rigshospitalet Copenhagen. Each image ob- 
tained contains a variable number of manually classified cells. The classifi- 
cations were far from certain and show that the problem includes significant 
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overlap between the categories. Six independent laboratory technicians classi- 
fied the images and on the average the technicians differed from the consensus 
classification on more than 15% of the samples. To simplify matters, we have 
restricted our attention to binary discrimination using two categories: "nor- 
mal" and "abnormal". The set consisted of 50 cells; 25 from each category. 
The set was divided into a training set of 13 cells from each category, and a 

test set of the remaining 24 cells. 

50   100  150  200  250  300  350  400  450  500 

Figure 2: An original grey scale image used for manual labeling of the sperm cells 

20       40       60       80      100 20       40       60       80      100 

Figure 3:   Examples of the two kinds of sperm cells.   A) Normal cell shape B) 
Amorphous shape 
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5    EXPERIMENTAL RESULTS 

The feed forward net was configured with 20 input units. The first 16 in- 
put units contained normalized Fourier amplitudes corresponding to 8 low- 
frequency pairs. The remaining four inputs represented the accumulated 
energies of 2 intermediate-frequency bands. The phases of all the.Fourier 
components were discarded along with the amplitudes for the high-frequency 
components . The network has been initialized with random weights and a 
simple feed-forward architecture with 6 hidden neurons. It was found that 
the nets could be pruned significantly and that such pruning improved gen- 
eralization. The training and test errors during a pruning run are depicted in 
figure 5. Contrary to previous experience using the pruning strategy [7, 6], 
the network with minimum test error was not the network with the smallest 
architecture which correctly implements the training set. Furthermore, we 
suspect that this is generally to be expected for problems with small training 
sets and significant overlap between categories. We are presently working 
on a crossvalidation methodology for choosing the best architecture along a 
pruning sequence. 

Classification error 

140 120 100 80 60 40 
Number of parameters 

Figure 4:  Training (solid line) and test errors (dot-dashed) as pruning progresses. 
For reference, the test error level of a technician is about 15%. 

Inspecting the test errors it is found that pruning can decrease the error 
by about 25%. 
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Figure 5:   Typical pruned network that can learn the training set (Solid line 
Positive weight, Dotted line - Negative weight). 

20 20 

40 40 

60 60 

80 

100 

IP1     " 80 

100 
20       40       60       80      100 20       40       60       80      100 

Figure 6:   Two cell shapes from the test set that were not learned by the above 
network. A) normal cell B) amorphous cell. 
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6    CONCLUSION 

It has been shown that neural networks are useful for morphological clas- 
sification of cell shapes. Application specific architectures can be designed 
automatically which generalize well to an independent test set. The optimal 
architectures showed that only a few neurons and connections are necessary. 
Also it has been shown that preprocessing the cell shape coordinates us- 
ing the complex Fourier transformation provides a well-suited and compact 
representation of the data. The optimal networks use less input informa- 
tion than the human eye apparently found necessary. Current work concerns 
larger databases, multi-class classification, and crossvalidation methodologies 
for choosing the best network among a pruning sequence. 
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Abstract. A supervised neural network (NN) algorithm was used for 
automated detection of ischemic episodes resulting from ST segment elevation or 
depression. The performance of the method was measured using the European 
ST-T database. In particular the performance was measured in terms of beat-by- 
beat ischemia detection and in terms of ischemic episodes detection. Aggregate 
statistics for the description of the detector performance were used due to the 
small number of events. The algorihtm used to train the NN was an adaptive 
backpropagation (BP) algorithm. This algorithm reduces dramatically training 
time (10-fold decrease in our case) when compared to the classical BP algorithm. 
The resulting NN is capable of detecting ischemia independently of the lead 
used. It was found that the average ischemia episode sensitivity is 88.62% while 
the average ischemia sensitivity is 72.22%. This drop in ischemia sensitivity could 
be attributed to the diverse statistical properties of the ECGs within the same 
patient. The results show that NN can be used in ECG processing in cases where 
fast and reliable detection of ischemic episodes is desired as in the case of 
critical care units (CCUs). 

INTRODUCTION 

Ischemia is considered to be a major complication of the cardiac function, 
and a prime cause for the occurence of cardiac infarction and dangerous cardiac 
arrhythmias. The main characteristic of ischemia in the cellular level is the 
depolarisation of the cellular resting membrane potential. This causes a potential 
difference between the normal and ischemic tissue, which in turn causes the 
flow of an "injury current" [1]. This "injury current" is manifested in the ECG by 
an ST depression or elevation depending on the anatomical position of the heart 
and the dipoles with respect to the recording electrodes. Thus there are cases in 
the 12-lead standard electrode system that the ST depression is not as evident, or 
where we have ST depression while no ischemia is present such as can happen 
with leads III and AVF due to patient position [2]. 
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Major problems with detecting the ST segment in the ECG can be 
identified as follows: 1. Slow baseline drift, 2. Noise, 3. Sloped ST changes and 4. 
Numerous ST-T patterns within the same patient. A number of methods have 
been proposed in the literature until today on this problem based on digital 
filtering, time analysis of the signal's first derivative, or syntactic methods. None 
of these methods though were able to be tested in an annotated database to 
obtain a good measure of their ability to detect ST depression. Recently a new 
annotated database was developed that contains recordings with annotated 
ischemic episodes [3]. The database contains two leads. A couple of new 
algorithms were developed to identify ischemia using information from both 
leads which improved sensitivity [2]. 

Neural networks have appeared over the past few years as pattern and 
statistical classifiers [4] and have been used in many areas of science. They have 
also been used in medicine and in ECG analysis in particular [5]-[7]. Since they 
can be trained to recognise patterns they have a good chance for recognising the 
complex patterns an ST segment can have. 

In this paper we implement an adaptive backpropagation NN for ischemic 
episodes detection. The testing of the efficiency of the NN in detecting ischemic 
episodes is done using the European ST-T database. The training of the NN was 
found to be dramatically decreased by adapting the gain term in the delta rule, 
so that we can avoid local minima in the error phase plane. The test of the NN 
efficiency is made using aggregate statistics, and deriving specific indices for 
both ischemic episode and ischemia duration sensitivity and predictivity [8]. 

METHODS 

The main stages we followed in our algorithm were: 
1. Selection and preprocessing of the training set.: A training set is 
constructed using patterns from the ST-T database. Some patterns used in this set 
are shown in Figure 1. These patterns included normal, depressed, sloped and 
noisy ST segments. In particular 50% of the patterns used were normals, 25% had 
ST depression and 25% ST elevation. All patterns came from channel #1 of the 
European ST-T database (Table 1). 
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Figure 1: 
A selection of representative patterns chosen to train the NN. We can observe 
normal patterns, ST depressed, and sloped ST changes. 

Table 1: Training set statistical analysis. 

Reference V3 V4 V5 MLIII 

Normal 10% 60% 10% 20% 

ST+ 0% 71.4% 14.3% 14.3% 

ST- 28.6% 42.8% 0% 28.6% 

2. Description and training of the NN: The NN used to identify the ST 
segment, consists of three layers. The first layer (input layer) has 20 neurons. 
This number is equal to the number of selected points from preprocessing stage. 
This number has been taken by experimental work and gives the best results. 
The second layer which is the hidden one, has 10 neurons. The number of 10 was 
chosen to avoid repetition problems and to minimize the training time. The 
number of hidden neurons represents the total memory of NN. For the third 
layer two neurons were used. The output of these neurons is a value between 0 
and 1 and is considered to be 1 if it is greater than 0.5 and it is 0 otherwise. The 
patterns taken from output layer represent a type of ST segment. In a 
feedforward network (such as the BP NN), each unit has an activity level that is 
determined by the input received from units in the layer below. The total input 
to neuron j can be written as an inner product of input and weight vectors plus a 
constant T: (bias). The output of neuron j is taken applying a sigmoid activation 
function f(.) to the total input. This adaptation algorithm changes 
backpropagation rates, depending on the derivative of energy function. When the 
energy reaches a local minimum which is detected observing the first derivative, 
the algorithm changes the training rates of NN in such a way that increasing the 
first derivative by a small amount, the energy decreases after a few iterations 

again. 
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Figure 2: 
The  energy  function  as  it  changes  during  the  NN  training  illustrating  the 
monotonicity of the convergence of the error calculation 

This results in a monotonicaly decreasing energy function (Figure 2). The most 
formal way to do this is to increase the delta rule rates for an amount 
equivalent to 10% of the former rate value and then to decrease it to a value 
smaller than the old one. This method cannot guarantee the minimization of 
energy function in all cases. But in our case it works well and could dramatically 
decrease the training time. 

3. Preprocessing of the ECG signal - Recall phase of the NN: The main 
problem in detecting ischemia is to formalize the ST-segment in order to make 
an input suitable for NN without loosing any information. This is done here, 
finding the differences of ischemic ST segment template from this of normal 
one. At first, the detection of R-point is done using an LVQ neural network. The 
percentage of this NN in finding R-peaks is about 97% [7]. The ST segment 
begins at 60 msec after R-peak in normal case. In the case of tachycardia this 
value should decrease a little (here, 40 msec if RR-interval < 600msec). The ST- 
segment also has predefined length which is equal to 160 msec. A baseline 
correction must be made in order to decrease false detections. Here a simple 
method is applied based upon the suggestion that the isoelectric level of the 
signal lies on the area approximately 80 msec left of the R-peak, where the first 
derivative becomes equal to zero for at least 10 msec or in the flattest 20 msec 
segment. Despite of its simplicity the algorithm has very good results in most 
cases. Because the interesting point here is the differences of ST-segment from 
normal ST, it is needed to substract the normal template from ST-segment. The 
normal template is constructed for each signal taking the average beat of the ten 
first beats of recording which are suggested to be normal. The average signal is 
taken to avoid noise problems due to the vibration of ECG signal. Thus, after 
this procedure the final part of signal consisting of N points (40 points in 250 Hz 
sample frequency) has only information that shows the differences between the 

521 



normal and testing waveform. This has been done also, in order to standarize the 
algorithm and to make it insensitive to differences from one lead to an other 
and from a patient to another. This number of N points which are taken from 
each beat, is reduced to 20, taking the mean value for every N/20 concecutive 
points. Finally a constant bias (different than the bias used in the BP algorithm 
of NN) is added to all the input vectors as polarization to avoid confusions in the 
classification and then all input vectors are normalized due to the BP algorithm. 
The BP method for training despite of his non-linearity, has some problems 
concerning the compatibility of input pattern with the NN-system. To avoid such 
problems, normalization of them should be applied. The pattern taken from the 
preprocessing stage, is divided by the euclidean distance of the vector from the 
zero point. One problem here is that using this method probably some useful 
information of ST-segment related with the length of input vector, may be lost. 
After the preprocessing stage, the signal is fed in the NN. 

RESULTS - DISCUSSION 

The algorithm was tested on the European ST-T Database [3]. This database 
contains 63 records with 160 annotated ischemic episodes for lead 1. For all the 
test, lead 1 was used because the signal quality was better compared to that of 
lead 0. For performance measure, four indices were calculated [8]. These 
indices refer to two distinct classes of detection. The two refer to the correct 
detection of the existence of an ischemic episode, while the other two to the 
correct detection of the duration of the episode. In particular these indices are: 

1) Ischemic ST episode sensitivity (ST Se) defined as the ratio of the 
number of matching episodes and the number of annotated episodes. 
2) Ischemic ST episode predictivity (ST+ P)   defined as the ratio between 

the number of matching episodes and the number of detected episodes 
3) Ischemia duration sensitivity (IS Se) defined as the ratio between the 

duration of true mathced ischemia and the total duration of annotated ischemia 
4) Ischemia duration predictivity (IS + P) defined as the ratio between the 
duration of true matched ischemia and the total duration of detected ischemia 

There are two types of statistical measures performed using the above 
mentioned indices. The first one is termed average statistics. This one gives 
equal weight to the ischemic episode at each file. The second one is termed 
Gross Statistics and gives equal weight to each ischemic episode. Thus we have 
calculated the four indices for each file, and for each lead separately. This show 
us the change of performance of algorithm from lead to lead. In table 2 the 
results arc shown. To predict performance in clinical practice, it is important to 
model how well a detector behaves on a randomly chosen recording. For this 
reason, one might expect average statistics, in which each recording is equally 
weihtcd to be better predictor of ischemia episodes occurence than gross 

statistics. 
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Table 2 summarises the results for average and gross statistics. As can be 
seen, the NN performs equally well for leads not belonging to the training set 
(such as ML I), and we can observe that the average sensitivity and predictivity 
of the ischemia episodes is quite high (88.62% and 78.38%). 

Table 2: Performance measures of the adaptive backpropagation NN in 
ischemia detection in the European ST-T database. 

AVERAGE 

LEAD 
Episode 

Sensitivity 
(%) 

Episode 
Predictivity 

(*) 

Ischemia 
Sensitivity 

(%) 

Ischemia 
Predictivity 

(%) 

MLI 97.22 90.28 93.55 77.88 

MLIII 79.90 66.46 55.53 57.19 

VI 87.50 80.00 71.05 83.73 

V2 33.33 33.33 100.00 20.79 

V3 100.00 100.00 58.87 64.86 

V4 90.63 77.08 69.88 70.78 

V5 94.44 86.51 80.09 62.19 

TOTAL 88.62 78.38 72.22 67.49 

GROSS 

MLI 95.24 76.92 94.19 78.69 

MLIII 74.42 56.14 36.22 59.23 

VI 85.71 78.26 79.98 93.09 
V2 33.33 33.33 100.00 20.79 
V3 100.00 100.00 50.18 66.81 

V4 86.67 68.42 78.01 79.92 

V5 93.75 71.42 89.73 59.93 

TOTAL 85.00 68.69 73.00 69.45 

The fact that in certain leads (such as the V2) the figures of merit are low, can 
be attributed to the fact that only one record of the database contains lead V2 as 
lead #1, and thus even aggregate statistics cannot give an accurate measure of the 
NN performance. Also, another point of interest is the use of an average 
template for each patient. It is well known that pathological levels of ST 
depression can vary in the same patient, and in different patients, Thus an initial 
estimate of the physiological ST depression (or elevation) can be taken by 
averaging the ST segments of the first ten beats. This on the other hand, may 
cause reduced noise levels due to averaging, and thus it may cause problems 
when trying to detect ischemia in areas of elevated noise, since only baseline 
correction filtering is performed. Baseline correction, is another possible source 
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of error, but the major problems seem to be the identification of the training set, 
the off-line training procedure, which should be done on-line, and the 
nonlinearities involved in the BP NN rendering theoretical analysis almost 
impossible. From a detailed study of each file in the database, it was concluded 
that another problem was the adjustment of the assumed ST segment starting 
point according to the heart rate. It is finally important to note here that 
ischemia cannot be conclusive only from the ST segment changes on the ECG, 
since there are no golden standards in identifying ischemia merely by looking 
the ECG, although the European ST-T database is a major step towards the 
solution of this problem. The positive points on the other hand, are the good 
general performance of the NN even though the training set is relatively small, 
the extremely fast recall phase, and the fact that in certain areas where the J 
point is impossible to be detected, the NN performs very well. 
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Abstract — This paper describes a feedforward neural net- 
work architecture trained with the extended Kalman filter al- 
gorithm instead of the standard (LMS) method. It presents 
a simplified recursive procedure for calculating the necessary 
derivatives. The resulting algorithm is then used to train 
a network to adapt to the decision boundary of an optimal 
receiver for a binary communication channel, resulting in in- 
creased convergence speed and better approximation proper- 
ties. 

INTRODUCTION 

This paper describes the application of a neural network to the task of equal- 
izing a binary communication channel. This problem has been considered 
before in the literature, and various network architectures have been em- 
ployed, showing that it is indeed possible to get close to the performance of 
an optimal receiver by using a neural network in its place (see the papers 
by Cowan, Mulgrew, and others [1], [2], [3], [4], Al-Mashouq and Reed [5], 
and Ramamurti, Rao, and Gandhi [6]). In these papers, either feedforward 
neural networks using the simple backpropagation (LMS) rule or radial basis 
function networks are described. 

For complex decision boundaries, the standard backpropagation algorithm 
converges very slowly. In order to improve convergence speed, in this paper 
a feedforward neural network is trained using the extended Kalman filter 
algorithm. Kalman-trained neural networks have been described previously 
in the literature, having been applied mostly to the task of adapting to some 
predefined, artificial partitioning of the input space (see for example [7], [8], 
[9], [10], [11]). In the current paper, the Kalman-trained neural network is 
used to reduce the number of training steps required for the network to learn 
a partitioning of the input space implicitly given by the characteristics of 
the transmission channel. The results obtained show that this partitioning 
approximates the decision boundary of an optimal receiver, and that the 
average error produced by the neural network is close to that of the optimum 
receiver. Furthermore, the number of training steps are reduced significantly 
when compared to the standard LMS algorithm. 
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THE EXTENDED KALMAN FILTER APPLIED TO A FEED- 
FORWARD NEURAL NETWORK 

This section presents a derivation of the extended Kaiman filter equations for 
the update of the link weights of a feedforward neural network. It is loosely 
based on the algorithm presented by Iiguni et al. [7], but includes a simplified 
and generalized version of the recursive equations for determining the partial 
derivatives of the link weights with respect to the output values. 

The following definitions are used for the variables in the feedforward 
network: 
x\ ... output of node i in layer / 

s\ ... sum of inputs of node i in layer / 
. weight from node (/ — l,j) to node (/, i) 

number of layers, excluding layer 0 

number of nodes in layer /, excluding node 0 

. sigmoid function 
The following conventions are used: 

JCQ = 1 ... node zero of each layer provides the offset for the following layer, 

a;? = r(n — i) ... nodes in layer zero correspond to input values. 

L ... 

Nt .. 

/(•) 

rl   - [' w 
X* x0 aij VN, 

. outputs of layer /, excluding constant value. 
p 

... outputs of layer /, including constant value. 

s' = [s'j   ... sl
N ]    ... sum of inputs to layer /. 

w' = 

u> 

L  WN,,1 

w \,N,. 

VN,,N,. 

... weights between layers / — 1 and /, 
excluding offset values. 

'1,0 'i.i h,N,. 

w N,,a w 

Wi,0 Wi,l 

JVi.l 

w: 

w W,,Ar,_,  J 

. weights between layers / — 1 
and /, including offset values. 

'i,N,-i 

W = w 1,0 WU w NltN0  
W\,0 

weights leading to node i in layer /, 
including offset values. 

... all weights in the 
N

L,NL-\\ network. w 

d(n) = d(n) = a ■ s(n — k) + b ... (scaled version of) desired response. 

Using this, the forward pass through the neural network is 

x' =/(w'x'-1), !</<! (1) 

In a stationary environment it is assumed that the optimum setting of the 
weights in the network is constant. Hence, the state transition matrix of the 
Kaiman state model is the identity matrix, and the process noise vector is 
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zero (cf. Haykin [12]). For this case, the Kaiman filter equations reduce to 

w(n) = w(n-l) + G(n)[d(n)-xL(n)] (2) 

G(n) = K(n - l)C{n)H [C(n)K(n - l)C(n)ff + Rmi„]_1 (3) 

K(n) = K(n - 1) - G(n)C(n)K(n - 1) (4) 

where w is the concatenation of all weights in the network and C(n) is the 
first term in the Taylor approximation of xL(n) — h(w(n)), i.e. the partial 
derivative of xL(n) with respect to w, evaluated at w = w(n —1). This latter 
approximation to h(-) constitutes the extended Kaiman algorithm (cf. [13]). 

For networks of even moderate sizes, the resulting gain and correlation 
matrices G(n) and K(n) would become unmanageable. Hence, the Kaiman 
filter equations are applied independently to each node in the network for 
estimating the weights leading to that node only, as proposed by Iiguni [7] 
and others (see for example the NEKA algorithm in [8]). In this way, the 
Kaiman filter equations for the weights leading to a single node are 

w1(n-l) + GKn)[d(n)-xL(n)] w4(n) 

G{(n) = K|.(n - l)C\{n)H [C\{n)K\{n - l)C\{n)H + Rj,min] 

Kj-(n) = K[(n - 1) - G<(n)C*.(n)K<(n - 1) 

-l 
(5) 

(6) 

(7) 

A simplified recursion formula for C'-(n) can be derived as follows. C'-(n) 
can be evaluated if equation 1 is alternatively written as 

s'+1 = w'+1 

r'    = ' (8) 

which when derivatives with respect to s   are taken (the constant value is 
dropped) yields 

ös'+x 

8s' = w'+1-diag(/'(S
(

1),/'(s,
2),...,/'(S'ivi)) 

which, using the chain rule, yields the recursion 

dx£ 

ds> 

dxi 

dxi 

dx'r 
ds' N, 

8xi 
ds' a,' 

8xL 

w (+1 

■diag(/'(«'1),/'(4))...,/'(^I)) 

and initial condition 

dxL 

8sL diag(/'(^),/'(4),---./'(4j) 
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This then enables us to compute the partial derivatives needed in the evalu- 
ation of C'(n) 

X   \'rlP=A\xl-i (12) 

or in vector notation for the combined weights leading to node i in layer / 

\~\\H P_^   * i il  —  dx      _   / ÖX      ^ ,_j_i^H p_a. ^l/^l-ljH 

m ds 
(13) 

Note that A' = ^|j- actually is a scalar if we assume there to be only one 

node in the output layer, and C[ correspondingly is a row vector. 

Using this recursion, equation 6 can be rewritten as 

G{(n) = K|(n - ^-»A^n)" • (14) 

[A[-(n)x'-1(n)"K:.(n - l)x'-,(n)Ai.(n)H + R^,^]"1 

Closer inspection of this formula reveals that x'_1(n)wK'(n —ljjc'-^«) is 
a scalar; therefore the matrix inversion lemma can be applied to arrive at an 
update equation for the Kaiman gain which only requires a simple division. 
For the term in brackets this yields 

[AKn^-^K'tn - l)x<->(n)A<(n)H + HU»]-1 = 

(Kmin)-1 - (R-Un)~lA'H  ' (15) 

jx,-1(n)^(n-l)xJ-1(n))-,+A:.(n)H(R:>,)-1A[w]"1. 
A(.(n)"(R'       )-» 

Following [7] and setting R[ min = AI(n), no matrix inversion is necessary, 
and with a\{n) = ^-x{n)HK.\{n - l)^"1^) and ß\{n) = AJ-(n)ÄA|(n), 
equation 15 can finally be rewritten as 

[AJHx'-'WKKn - lji'-'WAi.^ + Ri,mi„]_1 = (16) 

I-Aj(n) «!•(") l/„\H 

\ + a\(n)ß\{n) 
A\(n) 

The remaining derivation follows that presented by [7]; the reader is kindly 
asked to consult their paper. 

530 



Figure 1: Optimum decision boundary 
for a channel with H(z) = 1 — 2z + 2z2, 
noise variance = 0.5. The small cir- 
cles and crosses mark the positions which 
correspond to the set of possible values 
of r(ra), for s(n) = «o and s(n) = «i re- 
spectively, when no noise is present. 

Figure 2: Final mapping for a 2-20-20-1 
Kaiman network, 50000 iterations, noise 
variance = 0.5. 
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COMMUNICATION CHANNEL MODEL 

The communication channel is modeled in discrete time (with time index n) 
and consists of a transmitter producing the binary symbols {s0 — — 1, «i = 1}, 
a channel which distorts the transmitted signal either linearly or nonlinearly, 
a noise source which adds1 statistically independent noise, and a receiver 
which computes estimates s(n) of the transmitted symbols s(n) based on the 
received symbols r(n). 

Since it is assumed that the channel is not intersymbol-interference free, in 
the most general case the whole received sequence r must be used to feed an 
optimal receiver which in turn computes the maximum-a-posteriori (MAP) 
estimate s of the sequence sent. Using the MAP criterion minimizes the 
probability of error (see Lee and Messerschmitt, [14]). For most practical 
purposes, however, the resulting delay between transmission and reception 
of a message is unacceptable. Thus normally only part (a window) of the 
received signal sequence is used to compute an estimate for part of the trans- 
mitted signal sequence. A common approach is then to use the window 
r(n) = [r(n) r(n — 1) ... r(n — d + 1)]T to compute an estimate s(n — k) for 
s(n — k), where d is the window length and k is the delay allowed between 
the transmission of the symbol s(n) and the output of its estimate s(n). 

1 In fact, it would be possible to consider non-additive interaction of the noise with the 
signal as well, however in the simulations carried out this was not done. 
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Figure 3: Averaged error for a 2-20-20-1 Figure 4: Averaged error for a 2-20-20- 
Kalman network, 50000 iterations, noise 1 LMS network, 50000 iterations, noise 
variance = 0,5. Mean over 10 runs. variance — 0.5. Mean over 10 runs. 
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Using an input window of length d to produce estimates for the transmit- 
ted symbol s(n — k) corresponds to a nonlinear mapping from a d-dimensional 
input space to a one-dimensional output space. Therefore a neural network 
can be employed to learn this mapping, which has already been demonstrated 
by several authors as noted in the introduction. However, using the standard 
LMS backpropagation training algorithm results in slow convergence. There- 
fore, Kaiman training of the network is being introduced, as described in 
section . This yields a decrease in the number of training samples required 
by a factor of 4 to 10, plus an additional decrease in the residual error of 
the learned decision boundary, when compared to training with the standard 
LMS backpropagation algorithm. 

SIMULATION RESULTS 

In order to be able to show results graphically, the input vector dimension 
was fixed at d — 2. The simulated channel transfer function was H(z) = 
1 — 1z + 2z2, with the delay paramter k set to zero (i.e. no delay). Gaussian 
noise with adjustable variance was added at the input to the receiver. This 
choice of transfer function and delay parameter yields a highly nonlinear 
decision boundary, as shown in figure 1. 

The resulting decision boundary after a total of 50000 training steps for 
a network trained with the extended Kaiman algorithm is shown in figure 2. 

Figure 3 shows the plot of the mean of ten runs of the averaged error2 

during training for the same network.   It can be seen that after an initial 

The averaged error is computed by averaging the symbol error sequence using an 
exponentially decaying window. 
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Figure 5: Error sequence for a 2-20-20-1 Figure 6: Error sequence for a 2-20-20- 
Kalman network, 50000 iterations, noise 1 LMS network, 50000 iterations, noise 
variance = 0.2.      variance = 0.2.  
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"0        0.5 1 1.5        2        2.5        3        3.5        4        4.5 

period of training rapid convergence to the final solution is obtained. Also, 
the averaged error after convergence is close to the theoretical bound of 0.03. 

Figure 4 shows a plot of the averaged error during training of a standard 
LMS network given the same conditions, again averaged over ten runs. It 
is clearly visible that convergence is slower. The difference in convergence 
speed is still greater at lower noise variances or when adding non-Gaussian 
noise. When e.g. impulse noise of a fixed amplitude occuring with a pre- 
defined probability is added, the decision boundary is essentially quadru- 
pled in the two-dimensional input space, thus becoming even more com- 
plex (see [15]). Using the Kalman-based training algorithm, a (larger) net- 
work converges to an acceptable solution in 50000 training steps, whereas 
the LMS-trained network needs an excessively high number of iterations. 

Finally, figures 5 and 6 show typical plots of the error se- 
quence (the desired output minus the actual output of the network) 
for Kaiman- and LMS-trained networks, respectively. In this case 
the noise variance used is 0.2, so that the final error is close to 
zero. It can be seen that after an initial period the Kalman-trained 
network   quite   rapidly   converges   to   the   optimum  decision   boundary. 

CONCLUSIONS 

Based on existing implementations of the Kaiman algorithm applied to a 
feedforward neural network, this paper has presented a simplified deriva- 
tion of the recursion formulas needed in the operation of the algorithm. 
The resulting algorithm has then been applied to the task of implement- 
ing an optimum receiver for a binary communication channel. It has been 
shown that the convergence speed of the neural network has improved when 
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compared to the standard LMS algorithm. Also, after a comparable num- 
ber of training steps, the Kalman-trained neural network provides a better 
approximation to the ideal decision boundary than the standard network. 
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Abstract. This paper presents analysis and performance evaluation results for several neural- 
net based receiver structures which effectively combat additive channel interference, such as 
co-channel interference (CCI) and adjacent channel interference (ACI). Although the idea 
of employing neural net based receivers for interference channels is not new, the novel 
technical contributions of our paper can be summarized as follows, (i) Propose, analyze and 
evaluate a training algorithm for Nyquist filtered single- and multi-amplitude signals which is 
based upon a novel non-uniform signal sampling technique, (ii) Propose and evaluate neural 
net structures employing a novel non-linear activation function for the detection of multi- 
amplitude signals, (hi) Present novel bit error rate (BER) performance evaluation results for 
coherent and noncoherent single- and multi-amplitude signals, including binary phase shift 
keying (BPSK), quadrature phase shift keying (QPSK) and quadrature amplitude modulation 
(QAM), operated in generalized CCI and ACI channels. Our research has demonstrated that, 
as compared to more conventional detection techniques, the proposed neural net receivers 
provide significant performance improvements in CCI and/or ACI channels. Their tolerance 
for inaccuracies in symbol timing synchronization also makes them good candidates for 
practical modem implementation. 

INTRODUCTION 
In recent years, multilayer perception neural networks have been extensively applied 

to many fields in Electrical Engineering, including signal classification, pattern recognition, 
adaptive control, learning systems, very large scale integration (VLSI) and optimization 
methods (see for example [1-4] and the references therein). As compared to the 
aforementioned areas of research, the application of neural networks (or neural nets, as 
they are often referred to) in communication systems has received relatively little attention. 
Furthermore, as in this paper we are dealing with the physical layer of digital communication 
systems, there have been relatively few publications dealing with neural-net based receivers. 
For example, in [5] a decision feedback equalizer using the multilayer perceptron structure, 
for equalization in digital communication systems has been investigated. In [6], artificial 
neural network receivers have been employed for demodulation of spread-spectrum signals 
in a multiple-access environment. Neural-net based receiver structures for constant envelope 
continuous phase modulation (CPM) signals transmitted over an additive white Gaussian noise 
(AWGN) channel have been investigated in [7]. Related work for quadrature-quadrature phase 
shift keying (Q2PSK) signals can be found in [8], whereas in [9] a programmable analog 
VLSI neural network processor designed for communication receivers has been proposed 
and implemented. There have been also some papers dealing with the application of neural 
networks for the decoding of error correcting codes (e.g., [10]). 

In a recent conference publication [11], it was suggested that combating certain types of 
channel interference can be achieved by employing neural network techniques. In particular, 
the authors of [11] have presented some very limited performance evaluation results (see [11, 
Fig. 3]) of a neural-net based receiver for a Butterworth filtered binary digital communication 
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under grants OGP-44312 and STR-0100720, the Centre for Integrated Computer Systems Research (CICSR), a 
University of British Columbia Graduate Fellowship and a B.C. Advanced Systems Institute (ASI) Fellowship. 
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system operating in the presence of one co-channel interferer. Their results have indicated 
that improvements in the bit error rate (BER) can be obtained by employing a multi layer 
perceptron (MLP) neural network, trained for this purpose under co-channel interference 
(CCI) channel conditions, with the aid of the backpropagation learning algorithm. There are 
several limitations on the work reported in [11]. It is well known that for bandwidth efficient 
digital communication systems, Nyquist type filters must be employed [12]. Furthermore, in 
order to increase system capacity, more bandwidth efficient modulation schemes (as compared 
to binary signalling), using multi-amplitude signal constellations, are required. It should also 
be pointed out that with the recent very rapid developments in the field of wireless personal 
communications, CCI [13], and to a lesser degree adjacent channel interference (ACI) [14], 
have become the main source of performance degradation. A digital communication system 
which can tolerate any amount of CCI and ACI, while providing reliable transmission, is of 
great interest since it automatically translates to higher capacity for the existing network. 

Motivated by the above, in this paper we present analysis and performance evaluation 
results for neural-net based receiver structures, for single-amplitude modulation formats, 
such as binary-phase-shift-keying (BPSK) and quadrature-phase-shift-keying (QPSK), as 
well as multi-amplitude schemes, namely 4-signal pulse-amplitude-modulation (4-PAM) and 
16-signal quadrature-amplitude-modulation (16-QAM), which effectively combat additive 
channel interference, such as CCI and ACI, as well as additive-white-Gaussian-noise (AWGN). 
More specifically we (i) Propose, analyze and evaluate a training algorithm for Nyquist filtered 
single- and multi-amplitude signals utilizing a novel non-uniform signal sampling technique. 
Problems related to training under certain channel conditions are also addressed, both for 
single- and multi-amplitude modulation schemes, and both types of signal filters, Nyquist 
and Butterworth, (ii) Propose and evaluate neural net structures employing a novel non-linear 
activation function for the detection of multi-amplitude signals. Although presented for the 4- 
PAM and 16-QAM schemes, the derivation of this function is readily extendable to modulation 
formats employing more than 4 signal levels, and (iii) Present novel bit error rate (BER) 
performance evaluation results for coherent and noncoherent single- and multi-amplitude 
signals operated in channels including CCI or ACI and AWGN. These include cases of single 
and multiple co-channel interferers, one or two adjacent channel interferers, differentially and 
non-differentially encoded signal constellations, and Nyquist or Butterworth signal filtering. 

COMMUNICATION SYSTEM MODEL 
The transmitter of the communication system under consideration consists of a signal 

mapper (SM), an optional differential encoder (DE), a pre-modulation pulse-shaping filter with 
transfer function Hr(f), and a complex modulator. The input to the signal mapper consists 
of the N-bit information words af = [al, a\, ...,ak ] of independent and equiprobable bits 
a'k, 1 < i < N from the alphabet {0,1}. Each of is converted by the SM to a symbol 
uk = Rk exp (jQk), where Rk represents the amplitude and Qk the phase of uk, respectively. 
Possible differential encoding of the sequence of uk 's yields the sequence of differentially 
encoded symbols ck. For example, QAM signals are encoded differentially as 

Ck = uk^^- = Rk exp [?'($*_i en*)] (1) 

with $fc denoting the phase of ck, Rk its amplitude and © modulo 2-K addition. If differential 
encoding is not employed, we assume that ck = uk. After being passed through the 
pulse-shaping filter Hr\f) and translated to the carrier frequency fc by the modulator, the 
transmitted signal can be expressed as 

c(t) = Re^s(i) 
CO ■ 

D ckhT(t - -IcT) 
k=— co . 

exp(j2*fc) } (2) 

with hr(t) denoting the impulse response of Hr(f) and T the symbol interval. 
A block diagram for the channel and receiver front-end model assumed is illustrated 

in Fig. 1. Although the number of co-channel interferers in this model is not restricted to 
a particular number, in the bit-error-rate (BER) evaluation of the neural-net based receiver 
structures derived (see Section 4), one and three co-channel interferers are assumed. The 
ACI is assumed to be generated by users occupying frequencies on either side of the channel 
under consideration. For the computer simulation results presented in Section 4, either one 
interferer is assumed at frequency /,; + (1/T), or two interferers at fc ± (1/T). 
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White Gaussian noise 

Legitimate user 

CCI 
x'(t), c=J,..JV, 

Complex signal: : 
Real signal: - 

Fig. 1. Block diagram of the channel model and receiver front-end assumed; Hii(f): 
receiver pre-detection filter. 

The signal, after being distorted by CCI or ACI and additive-white-Gaussian noise 
(AWGN), is demodulated at the receiver. Assuming a receiver pre-detection filter transfer 
function #H(/) corresponding to an impulse response of ftft(i), and using h(t) = 
hr(t) ® hnli) with ® denoting convolution, the received demodulated signal for Nc 
independent co-channel interferers and NA independent adjacent-channel interferers can be 
expressed as ^ Nc    «, 

r(*)=   £  <*M*) + E   E  e-36?c?,kh(t-lT-rf) + 
fc=—oo 1=1 k= — oo fn\ 
NA      oo (  ' 

£   JT  e-^«(/c-^)'+»i)c^(( -IT- rt
A) + •»(*) 

1=1 k= — oo 

with the first term in the above equation expressing the legitimate user signal, the second term 
the CCI, the third the ACI and the fourth, the AWGN. In Eq. 3, cf, Of and rf represent the 
co-channel interferer data stream, carrier phase shift and symbol timing delay respectively. 
The same symbols but with a superscript of A are used for the adjacent channel interferer. 
Note, however, that the phase shift for ACI is continuously increasing by 2TT(/C — ff)t 
due to the frequency difference between the user carrier fc and the Z'th adjacent channel 
interferer carrier ff. In general, we consider that Of and Of are independent random 
variables, uniformly distributed over [0,2r). Also, rf and r,A are independent random 
variables uniformly distributed over [0, T). As far as receiver performance is concerned, the 
parameters of interest are the signal-to-noise power ratio (SNR) and the signal-to-interference 
power ratio (SIR) at the output of the receiver filter. Before feeding the demodulated signal 
to the receiver, we sample it at a number of "appropriate" time instances. Depending on the 
sampling rate we can obtain any desired number of samples per symbol interval. 

NEURAL-NET RECEIVER STRUCTURE 
The neural-net receiver used for implementing a detector for a single- or multi-level 

scheme falls in the class of time delay neural networks (TDNN) [15]. According to this 
configuration, an otherwise static network is processing data arranged as a series of samples 
obtained from the incoming signal at specific time intervals. The total length of time 
corresponding to all samples appearing as inputs to the TDNN will henceforth referred to as 
a sample or data "window". In our case, the data window length will be an odd multiple 
of the symbol period, the symbol of interest (or current symbol) located at the middle of 
the window. The number of signal samples in this window is equal to the number of neural 
network inputs. The network is of the MLP type, having L layers and JVj number of neurons 
(or perceptrons) [16] in layer 1,1 <l < L. The number of neurons on the input layer for all 
neural-net receivers presented here is determined by (as it is equal to) the desired number of 
samples in the data window. The MLP's employed are all fully interconnected3 and possess 
three layers, the input, output and one hidden layer. Note however that every neuron on 
the input layer is connected only to its corresponding input. For notational purposes, such a 
MLP will be henceforth referred to by three numbers in parentheses, namely the number of 

A fully interconnected MLP is that having every input of any neuron in a given layer connected to all outputs in the 
previous layer, or to the inputs, if we are considerine the input layer. 
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neurons in each layer, i.e., (Ni,N2,N3). For our study, 3-layer MLP's were chosen although 
a 2-layer MLP has been shown capable of forming an arbitrarily close approximation to any 
non-linear decision boundary [17]. The reason is that, for a given problem, 3 layers typically 
result in much smaller neural net size as compared to the equivalent 2-layer MLP's [18]. 

Neural-net receiver training 
The training method employed is the backpropagation learning algorithm. A small number 

of known inputs and outputs consists the training set. Verification of the generalization 
capabilities of the network is performed using a new, randomly generated, verification set, 
after the initial training phase has reduced the RMS error to a value below an acceptable 
level. If the RMS error for this new set is sufficiently close to that obtained for the training 
set, network learning is done. Else, the training parameters and/or the network configuration 
is changed, and the training process is restarted. All weights are initialized to small random 
values before the net teaching process begins. This provides the algorithm with a relatively 
"safe" starting point [19]. 

The signal after the receiver filter, as given in Eq. 3, is sampled at a specified rate 
with respect to the symbol rate used. This yields a number of samples from which the 
decision device must recover the actual information transmitted. Two cases were considered 
for the transmit and receive filters: i) both Hr(f) and HR(/) being 5-pole Butterworth 
having a 3 dB corner frequency equal to 1/T, and ii) Hx{f) being a x/sin (i) equalized 
i/o" Nyquist filter and HR(J) a ^/a Nyquist filter, both of excess bandwidth a = 1.0. The 
coherent receivers, against which the neural-net based ones are compared, decide upon the 
symbol transmitted by observing the value of a single sample, at the middle of the symbol 
interval; the noncoherent receivers do the same but operating on the output of a 1-symbol 
differential detector. The neural-net receiver, on the other hand, employs an observation 
window spanning over an odd number of symbol intervals, the middle one of which is 
assumed to be the "present" symbol for which the decision will be made. This essentially 
translates to a time-lag in decoding at the receiver equal to the number of "future" samples 
in the observation window. The observation window size employed was 7 symbol-periods 
long, 3 symbols on either side of the symbol detected. For BPSK and QPSK the received 
signal was sampled at twice the symbol rate yielding 14 signal samples for processing by 
the neural net. For 4-PAM and 16-QAM, frequencies of 2 and 4 times the symbol rate were 
used for sampling, yielding 14 and 28 signal samples respectively. 

The neural network used for BPSK and QPSK has 14 neurons, equal to the number 
of samples available (7 symbols, 2 samples per symbol). The hidden layer has 5 and the 
output layer has 1 neuron. The same net is used to process the I- and Q-channel samples 
alternatively. This is possible since the inphase and quadrature channels carry independent 
BPSK signals [12]. It's training involves choosing at random a relatively small number of 
7-symbol sets for the user and each interferer. For BPSK and QPSK, 128 such groups of 
7 symbols were chosen, whereas for PAM and QAM, due to the much higher number of 
possible signal combinations, this number was increased to 1024. Each interferer group is 
scaled according to the given SIR, and then added to the corresponding user signal group 
in order to distort it. A very important issue while training the net is the minimum usable 
SIR value, which depends on the number of signal levels of the modulation format under 
consideration. At SIR slightly below this minimum value, the interfering signal will distort the 
user signal to such an extent as to have the combined signal level cross decision boundaries 
on the signal constellation. This, in turn, confuses the neural net by essentially presenting 
it with randomized "lessons" it is unable to "learn" from. As an example, for BPSK and 
QPSK, this minimum SIR value is 0 dB. Since, in this case, user and interferer have equal 
power, the interferer can cause the combined signal level to be around 0 (e.g., assuming 
signal power normalized to 1, user = 1, interferer = -1) which also happens to be the decision 
threshold. This confuses the neural net and prevents the search towards weight and offset 
values for minimum RMS error from converging. As a last note on the neural net receiver 
training, results were deemed acceptable if the RMS error calculated when estimating the 
network generalization performance was at most 10% over that obtained during training. 

A new non-linear activation function for multi-level schemes 
For the 4-levcl 4-PAM and 16-QAM (two independent 4-PAM channels) schemes, 2 net 

configurations were investigated. Both observe a 7-symbol signal window, one sampling at 
twice and the other at four times the symbol rate. This yields 14 signal samples for the first 
case and 28 signal samples for the second. The number of hidden layer nodes is equal to 
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Fig. 2. The four-level sigmoid function used for 4-PAM and 16-QAM and its derivative. 
7, as compared to 5 used for the single level schemes, in order to provide better network 
generalization4 and shorter convergence time during training. In order to accommodate the 
four signal levels, the output non-linearity had to be modified. For this purpose a new 
function was constructed by using scaled and shifted versions of the well known sigmoid 
non-linearity. This new function /3(a) is given by Eq. 4 

9(x) = ,  , * ,    g'(x) = ßg(x)[l-g(x)] 
1 + e-f>* 

/s(«) = 
2    /        20\1       [1      2   .   ,1       |"l      2    /        20\1 

,/,  ^      2   ,/        20\      2   ,,  ,      2   ,/        20\ 

The /? factor determining the steepness of each individual "step" in the function is set equal 
to 3. f3(x) and fi(x), plotted for -10 < x < 10 are depicted in Fig. 2. Note that the same 
technique can be used for constructing non-linear activation functions for neural-net based 
receivers designed for other multi-level modulation formats. 

For a 4-PAM signal, the minimum SIR at which we can train the neural network is 10 
dB, for the same reason that we can't train the net for BPSK at a SIR of less than 0 dB. In 
order to understand the 10 dB limitation, assuming maximum signal power normalized to 1, 
consider a case where the user level is -1/3 while the interferer is +1. Assuming a SIR of 
10 dB we imply that the interferer power is 1/10 with respect to the user. As far as signal 
amplitude levels are concerned this translates to l/y/TÖ ~ 0.3162 which is very close to 
1/3, effectively bringing the resulting signal level to approximately 0. It is important to note 
here mat due to filtering, the signal levels are not constant; they fluctuate before and after 
each level transition. Hence the amplitude in the aforementioned case will fluctuate around 
0. This creates the same effect as in the case of SIR = 0 dB for BPSK, confusing the neural 
net and preventing the training process from converging. 

TRAINING AND BER PERFORMANCE RESULTS 
This section presents results from training of specific neural net structures, and BER 

performance evaluation results for single- and multi-level modulation schemes employing 
the trained neural nets, obtained via computer simulation. Since Monte-Carlo error counting 
techniques were employed, the BER results presented cover error rates down to 10'4, due 
to memory and time limitations in the simulation. The digital simulation also introduced a 
finite resolution on the signal representations, namely a number of signal samples per symbol 
(SPS). When employing Butterworth filtering, SPS was set to 8, while with Nyquist filters, 16 
samples per symbol were employed. The discrete time simulation was carried out in baseband 
and perfect symbol timing synchronization was assumed for the coherent receivers against 
which the neural-net based structures were tested. Note that, although the results presented 
for the neural-net receivers also assume perfect symbol synchronization, simulations have 

4 By better network generalization we imply that smaller RMS error for a random new signal set can be obtained after 
training is completed. 
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shown that symbol timing errors of up to approximately 10-15% have negligible effects on 
their BER performance. 

Single-amplitude schemes 
As mentioned in the previous section, for BPSK and QPSK a (14,5,1) neural net was 

employed. Training in a single interferer CCI environment, at an SIR of 3 dB, with n - 0.8 
and i = 0.01, resulted in an RMS error of approximately 0.005 in 11800 iterations. The 
interferer symbol timing delay rf was random (uniformly distributed over one symbol 
duration T), while its carrier phase offset 0p was set to 05. The BER performance of 
neural-net (NN) assisted BPSK (NN-BPSK) as a function of the SNR ratio, as compared to a 
coherent BPSK scheme, both operating in the aforementioned CCI environment, is illustrated 
in Fig. 3. Note that the performance shown also holds for NN-QPSK versus coherent QPSK. 
The filters employed in this case are of the Butterworth type. The gain in performance, for 
an operating SIR of 3 dB and a BER level of 10"2 is approximately 5 dB. For an SIR of 
5 dB at BER of 2xl0"4 it is approximately 4 dB and for SIR equal to 7 dB, at the same 
BER level it's around 4.3 dB. 

Fig. 4 illustrates the performance of a (14,5,1) neural net used for a Nyquist filtered 
BPSK scheme. The excess bandwidth a = 1.0, the learning fi = 0.8, the momentum gain 
£ = 0.012 and SIR during training equal to 3 dB. In this figure, the performance is plotted 
as a function of the E3/N0, E, denoting the signal energy per transmitted symbol and N0 
the noise one-sided power spectral density of the AWGN n(t). The gains in performance 
when the signals are Nyquist filtered, are somewhat smaller than the case where Butterworth 
filters are employed, but nevertheless still significant. At a BER level of 10"\ for SIR = 3 
dB the gain is approximately 3.9 dB, for SIR = 5 dB it's 3.6 dB, and for SIR = 7 dB and 9 
dB, approximately 3.3 dB. As it is intuitively expected, the gain provided by the neural-net 
receiver will decrease as the SIR is increased. Note, however, that it remains roughly within 
10% with an increase in SIR of approximately 50%. A (14,7,1) neural net was also trained 
and evaluated under the same conditions but there was no observable gain in performance 
with this increased number of hidden layer nodes. For the results of Fig. 4, the non-uniform 
signal sampling technique was employed. Using SPS = 16 for the digital simulation, only 
two center samples from each symbol period were used as input to the neural net, both in 
the training and evaluation phase. 

15 20 

SNR (dB) 

Fig. 3. Performance of Butterworth filtered NN-BPSK employing a (14,5,1) MLP, versus 
coherent BPSK in combined CCI and AWGN; 1 interferer with random symbol timing delay 
i"i   (uniform over [0,T)) and 0 carrier phase offset Op. 

Note that although this is not a realistic assumption, for one-dimensional schemes (eg., BPSK), carrier offset equal to 
0 for the interfering signals is indeed the worst case. Any other phase offset value will result in reduced interference 

amplitude since it will be scaled down by cos (fif ). However, this is not the case for two-dimensional schemes. 
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Fig. 4. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP, 
versus coherent BPSK in combined CCI and AWGN; 1 interferer with random symbol timing 
delay rf (uniform over [0,T)) and carrier phase offset $i   = 0. 

The same neural-net structure was also trained and evaluated in a 3-interferer CCI 
environment (i.e., Nc = 3), using BPSK. Note that when having 3 interferers instead of 1, 
the minimum SIR level at which the network can be trained is less than the 3 dB used for 
the single interferer case and. As expected, this number depends on the number of interferers 
considered and can be found by taking the worst case of aggregate interference, i.e., all 
interferers having the same signal level, with sign opposite to that of the legitimate user. 
Assuming user power equal to 1, this case would correspond to a user level of +1 and all three 
interfering signal levels equal to -1/3. As we assumed statistically independent interferers6, 
these numbers correspond to a SIR of 5 dB. For the aforementioned neural net structure, 
the SIR employed during the training phase was equal to 7.5 dB. This somewhat higher 
value accounts for the signal envelope fluctuations due to filtering, providing training patterns 
with no level crossings. The BER evaluation results for 3 co-channel interferers, training 
parameters of n = 0.7 and £ = 0.01, are depicted in Fig. 5. It can be seen that the gain in 
performance, for SIR = 7 and 9 dB, is less than the single interferer case (at a BER level 
of 10'3), but still a respectable 2.8 dB, as compared to the coherent BPSK case. The reason 
for this gain reduction is attributed to the fact that the co-channel interference appears more 
and more like noise, as the number of interferers Nc is increased. This, in turn, prevents the 
receiver from taking advantage of the neural-net pattern classification capabilities, with the 
limiting case being AWGN, where no additional gain is available. 

The (14,5,1) neural-net receiver structure was also evaluated in an ACI environment 
consisting of a single interferer having /i4 — fc + 1/T. For Butterworth filtered signals, 
training was carried out with /t = 0.5 and £ = 0.2 at SIR = 1.5 dB, yielding an RMS error of 
about 0.01 after 6600 iterations. For Nyquist filters (o = 1.0), /t = 0.4 and £ = 0.008 at SIR 
= 6 dB, yielded an RMS error of 0.01 after 7100 iterations. The much higher value of SIR 
employed for the Nyquist case is due to the high signal fluctuation on the adjacent channel 
signal after the receiver filter. This is specific to the root-of-raised-cosine Nyquist filter; it's 
not the case with Butterworth filter employed in the previous case. Results for the Nyquist 
filtered case are illustrated in Fig. 6; at BER = 10"3 and SIR = 6 dB, the performance gain 
is approximately 3.2 dB. Note the error floor due to decision-level crossings caused by the 
aforementioned signal amplitude fluctuations after the receive filter, at SIR = 3 dB. 

The same (14,5,1) neural net, trained with single interferer and Nyquist filtering, was also 
evaluated in an ACI environment with 2 adjacent channel interferers, one at /i* = fc + 1/T 
and the other at f* = fc — 1/T, with T*, T£ uniformly distributed over one symbol duration 

' When the interfering signals can be assumed statistically independent, the aggregate signal power is simply equal to 
the sum of individual powers. 
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Fig. 5. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP, 
versus coherent BPSK in combined CCI and AWGN; 3 interferers with independent symbol 
timing delays rf, r2

c, r3
c (uniform over [0, T)) and carrier phase offsets 9f = 8% = 0$ = 0. 

T and 6^,62 uniformly distributed over [0,2TT). The results presented in Fig. 7, show 
approximately 3.5 dB gain for both SIR = 10 and 12 dB. The error floors are more noticeable 
in this case than that of Fig. 6 since there are now two low-frequency, modulated sinusoids 
distorting the baseband legitimate user signal, each one belonging to one of two adjacent 
channel interferers. 

Multi-amplitude schemes 
Neural-net structures were employed for the 4-PAM and 16-QAM schemes, operated in 

a single interferer CCI environment, with rf uniformly distributed over one symbol duration 
T and 0j equal to 0. The two net structures investigated were (14,7,1) and (28,7,1). The 
latter processes a signal window having double the number of samples as compared to the 

<5 JO 

Es/No (dB) 

Fig. 6. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP 
versus coherent BPSK in combined ACI and AWGN; 1 interferer with symbol timing delay 
n   (uniform over [0,T)) and carrier phase offset 6f - 0. 
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Fig. 7. Performance of Nyquist filtered (a = 1.0) NN-BPSK employing a (14,5,1) MLP, 
versus coherent BPSK in combined ACI and AWGN; 2 interfere« with symbol timing delays 
T\ir2   (uniform over [0,T)) and carrier phase offsets 61,62  (uniform over [0,27r)). 

former; namely 28 signal samples versus 14. The neural net receivers were trained at SIR 
= 13 dB and 15 dB, the minimum being equal to 10 dB, as explained in Section 2. The 
learning rate was set to /J = 0.7 and the momentum gain to £ = 0.2. These relatively large 
values help the algorithm advance quickly in the first tens of thousands of iterations but do 
not work well once the RMS error has dropped to a relatively low value. For this purpose, 
both parameters were halved when the error would drop below 0.1 and 0.05. Thus, most 
of the training was performed using n = 0.175, £ = 0.05. The convergence time is quite 
longer than for the (14,5,1) net used with BPSK and QPSK, and the RMS error change is not 
as smooth. It falls below 0.1 at approximately 45150 iterations and bellow the target value 
of 0.005 at approximately 99000 iterations. For the 28-input net the number of iterations 
rises to approximately 568000. 

The BER performance of a Butterworth filtered 16-QAM scheme is illustrated in Fig. 8. 
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Fig. 8. Performance of Butterworth filtered neural-net assisted 16-QAM (NN-16-QAM) 
employing a (14,7,1) MLP, versus coherent 16-QAM, in combined CCI and AWGN; 1 
interferer with symbol timing delay rf uniform over [0,T) 
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Results are presented for a neural-net based receiver employing a (14,7,1) net, the training for 
which was carried out at the SIR values indicated on the figure, namely 13 and 15 dB. The 
same values were used during evaluation. At a BER level of 10'3, for SIR = 13 dB the gain 
with respect to coherently detected 16-QAM is approximately 3.3 dB, while for the SIR = 15 
dB, it falls down to 2.4 dB. Increasing the number of input samples processed by the net does 
indeed have a positive effect on the gain. The (28,7,1) neural-net based receiver, operating at 
a SIR level of 13 dB, yields approximately an additional 1.9 dB of gain, at BER = 10'3. This 
makes the overall gain with respect to the coherent receiver approximately equal to 5.3 dB. 
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Abstract - We propose a hybrid digital computer-neural net- 

work multi-user detector whose small computational complex- 
ity makes it attractive for real-time CDMA detection. Theo- 
retical results on the nature of the local minima of the Opti- 
mal Multi-User Detector (OMD) objective function are sum- 
marized, and a method that leads to a significant reduction on 
the size of the optimization problem to be solved is outlined. 

The preprocessing problem size reduction stage is followed by 
a Hopfield Neural Network employed to solve the irreducible 
(residual) problem. The performance of the proposed detector 
is evaluated via simulations and it is shown to exceed that of 
other suboptimal schemes at a much lower computational cost. 

INTRODUCTION 

Code Division Multiple Access (CDMA) is rapidly emerging as a spec- 

trum efficient method of choice for the simultaneous transmission of 

digital information sent by multiple users over a shared channel. The 

spectral efficiency as well as the anti-jamming and other attractive prop- 

erties make CDMA Spread Spectrum techniques useful in a number of 

communication technologies such as cellular and mobile telephony and 
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satellite communications. The major limitation of the CDMA techniques 

however, is the so called near-far problem: When the power of the sig- 

nals transmitted by the users becomes very dissimilar the conventional 

matched-filter detector exhibits severe performance degradation, so that 

more complicated detectors have to be employed. 

It has been shown by Verdu et al. [1] that Optimal CDMA Multiuser 

Detection (OMD) can be formulated as the solution to a quadratic in- 

teger programming problem that is NP-complete. Therefore research 

efforts have focused on deriving suboptimal schemes that are near-far 

resistant and achieve near-optimal Bit-Error-Rate (BER) performance. 

Among those reported in the literature we mention the multistage de- 

tector (MD) proposed by Aazhang et al. [2], the decorrelating detector 

by Verdu et al. [3], as well as the Viterbi based sequential decoding 

algorithms in [4]. 

Recently in [5], Aazhang et al. showed that a multi-layer perceptron 

can be trained to approximate the OMD discriminant function at a very 

small performance loss relatively to the OMD. In [6], the authors of 

this paper showed how Hopfield Neural Networks (HNNs) [7], can be 

employed to solve the same problem with considerable performance gains 

over the conventional detector. However both neural networks based 

receivers suffer from scalability problems. In the feedforward neural 

network case the number of neurons increases exponentially with the 

number of the users and so does the training time. The problem is 

not that severe in the case of the HNN receiver where the number of 

interconnections increases only with the square of the number of users. 

Since with currently available technology only relatively small size 

neural networks can be manufactured, hybrid schemes that take ad- 

vantage of both digital signal processing and neural network based ap- 

proaches at a much smaller computational and hardware cost seem to 

be the most attractive alternative. In this paper we propose a novel de- 

tector that employs a digital computer (post-processing of the outputs 

of the conventional detector) stage reducing the size of the OMD opti- 

mization problem, with a small size HNN employed to solve a remaining 

(irreducible) problem of the same form as the OMD. 
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BACKGROUND 

In Spread-Spectrum CDMA a number of users share a communication 

channel by transmitting information modulated by different signature 

waveforms (codes) sk(t). At the receiver's end, the signal is the super- 

position of all the individual transmitted signals and additive channel 

noise: 
K 

r(t) =  £ S 6* )ä*(* " iT ~ r*) + "<*)'   * G R (1) 

i=-P k=l 

where sk{t) is the signature waveform of the kth user which is assumed 

to be time-limited to the interval [0, T], rk € [0, T) are the relative 

time delays between the users, b[l) G [-1,4-1] is the ith information bit 

transmitted by the kth user, and 2P + 1 is the packet length. Moreover, 

n(t) is additive zero mean Gaussian channel noise. 

The objective of multi-user CDMA detection is to recover the infor- 

mation bit streams of all the users from the received signal r(t). The 

conventional CDMA receiver, consists of a bank of filters matched to the 

signature waveforms of the users, followed by a threshold decision logic. 

In the asynchronous CDMA case, the matched filter output correspond- 

ing to the ith bit of the kth user becomes: 

f = f    r"     r(t)sk(t - iT - rk)dt,  for k = 1,..., K       (2) 
JiT-Tk 

The decisions on the ith information bit of the kth user are made accord- 

ing to the sign of y^\ i.e. b^ = sign(yk
l)). In the presence of severe 

near-far problems (i.e. when the energies of the users are very dissimilar) 

the performance of the conventional detector degrades severely. The op- 

timal multiuser detector (OMD) on the other hand is near-far resistant, 

and can be formulated for the most general asynchronous case as the 

solution of the following quadratic integer optimization problem [3]: 

bop4 = arg max {2yTb - bTHb} (3) 
be{+i, -i}CP+i)K 

In (3), y = [y-x
p y~2

p ...y~K
p\ yIP+1 ... y~K

P+1 I ••• I ^ ••• 
&--{  \ VP   ■■■  2/£F G R<2P+1)*xl and H G R(2P+I)K^2P+I)K is 

defined as the symmetric cross-correlation matrix of the appropriately 

time delayed signature waveforms. 
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In [6], [8] we have shown how an analog Hopfield neural network 

can be used to solve the OMD problem. An HNN is a collection of 

simple analog amplifiers that can be used to perform an almost instan- 

taneous gradient descent algorithm in hardware. In particular if Tij is 

the "synaptic weight" of the connection from the output of the ith am- 

plifier to the input of the jth one, and /,• is the bias current running 

into the ith amplifier, then as Hopfield showed in his seminal paper [7], 

the output voltages of the OP-AMPs Vt will finally converge to a stable 

state, regardless of their initial values. If the weights matrix T is sym- 

metric and no self- feedback in the OP-AMPs is present (Tu = 0), the 

final stable state reached by a network of N neuron units will be a local 

minimum of the network energy function: 

j    N    N N 
£=-2££T^-X>7'- (4) 

•=ij=i        «=i 

By setting the weights T^ and the biases /,- to reflect the objective func- 

tion to be minimized, a fast gradient descent algorithm can be performed 

in hardware by such an OP-AMP network. As shown in [6], [8] such a 

suitable weights and biases assignment is: T = -2H and I = y + HI, 

where H is obtained by fixing all the diagonal elements of H to a value 
of zero, and 1 is an K(2P + 1) x 1 vector of ones. 

THE HYBRID DETECTOR 

In this section we summarize our theoretical results on the nature of 

the local minima of the objective function (3) and we describe a very 

efficient preprocessing stage that leads to a significant reduction in the 

size of the optimization problem to be solved. The proofs of the propo- 
sitions stated here can be found in [8]. 

PROPOSITION 1: If for some element i of the vector y as defined in (3) 
it holds that: 

(2P+1)K 

E   l^yl<M (5) 

then the OMD's estimate for the corresponding transmitted information 

bit will be: bopt<i = sign(y.) i.e. it will necessarily coincide with the 

conventional detector's estimate, 6,-. 
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In other words, inspection of conditions (5) can help us to derive 

information about the location of the solution of the OMD problem and 

therefore to restrict the search space over which the optimization has 

to be performed. Let us now denote by Sr = {i'i, »2, ■ ••»«,.} the set 

of index values for which the inequalities (5) are satisfied (are "right"), 

and Sw = {ji,J2,---Jnw} the remaining set of ("wrong") indices. We 

can then partition the observation vector y according to the sets Sr and 

Sw as follows:  yT = [yj\yl] = [WiWa •••».,Ityiifo •••«;.,.]•   If the 

matrix H and the unknown vector b are partitioned accordingly as: 

H = 
ti-rr       **-rw and   b = 

br 

then the following proposition becomes true. 

PROPOSITION 2: The OMD problem (3) can be reduced to a smaller 

equivalent problem of the same form, in which yT is replaced by y^ew = 

yj — b;rHru, and H is replaced by Hww. 

Note that the same size-reduction procedure can be applied again to the 

reduced OMD problem as well, leading to the algorithm described in Ta- 
ble 1. The problem size reduction phase ends when either all conditions 

(5) are violated, in which case either a Hopfield Neural Network algo- 

rithm can be employed to solve the residual problem or an exhaustive 

search may be performed, or when all of the conditions (5) are satisfied, 

in which case the OMD solution is found. 

While the computational cost of the multistage detector is equal to: 

(number of stages) x (3(2P + l)-^2) additions, the computational cost 

of the Reduced Detector (RD) depends on how many of the conditions 

(5) are met during each iteration. If nr(m) (nw(m)) is the number of 

symbols at the mth reduction step, for which conditions (5) are (are 

not) satisfied, then it can be shown [8] that an upper bound on the 

computational cost of the Reduced Detector per data packet is: 

R 

Nrd(add) = (2P + \)K + nw(l) ■ nr(l) + J^ (nl(m) + "»("») ■ Mm)) 
m=2 

(6) 
where R is the number of iterations required. During each step of the 

algorithm the size of the optimization problem decreases and so does the 

number of additions per step. 
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Initialization 

y — output of conventional detector; 

brd = sign(y); 

Sw = {1,2,...,(2P+1)K);      nw = (2P+l)K; 

repeat 

call reduceQ 

until (nw = 0 or nr = 0) 

procedure reduce( ) 

Sr = { }; nr - 0; 
for all i , j £ Sw 

if(E,-,jes.,^.l^l<ly.l) 
Sr = SrU{i};      Sw=Sw-{i}; 
nr = nr + 1;     n^ = nw — 1; 

end for 

if (nw = 0 or nr = 0) break 

else 

for all i 6 Sw 

Vi = Vi ~ Ej65r Hij ■ brd,j 
Kd,i = sign(yi) 

end for 

Upon exit 

brd holds the final estimate. 

If nw ^ 0 then Sw holds the indices of the irreducible 
problem. 

Table 1: The Reduced Detector Algorithm. 
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In all cases that we simulated using MATLAB in a conventional work- 

station, the size of the irreducible OMD problem was smaller than 32, 

so that any one of the CLNN32 recently announced analog HNN chips 

[9] could be used to provide good suboptimal solutions to the residual 

problem, thus avoiding the need for computationally expensive objec- 

tive function evaluations. The HNN was initialized to the estimate of 

the conventional detector for the irreducible problem, and then let to 

converge to its final state. Note that if more accurate results are de- 

sired, numerous tries of the HNN with different initial conditions can 

be performed in real time, and additional logic (at the expense of larger 

computational cost) can be used to decide on the best of the resulting 

local minima. 

SIMULATION RESULTS 

In all cases the Direct-Sequence Spread-Spectrum Binary PSK (DSSP- 

BPSK) [10] signaling system was used. The proposed hybrid detector 

(Reduced Detector followed by an HNN) was compared against the con- 

ventional matched filters and the 10-stage multistage detectors. 

Example 1: In this case we simulated a set of K = 3 asynchronous 

users employed spreading codes of length L = 4 and transmitting pack- 

ets of length 2P + 1 = 31. The relative delays of the users were chosen 

such that the the conditions of worst case interference presented in [4] 

are satisfied. The energy of user 1 was 10 times larger than the energy 

of the other users. The RD detector was compared against the 10-stage 

MS and the conventional detectors. The size of the irreducible prob- 

lem never exceeded 12 for the set of symbols that we simulated. It is 

clear from Table 2 that the RD outperforms the 10-stage MS detector, 

whereas the matched filters detector completely fails to demodulate the 

received information. 

Example 2: A set of K = 8 asynchronous users is employing spread- 

ing sequences of length L = 127 (Gold sequences [10]). The energy 

of one of the users is 10 times larger than the energy of each of the 

other users as in the previous examples, and the length of the packet 

is again IP + 1 = 31. In Table 3 we compare the BER performance of 

the hybrid detector to that of the 10-stages multistage and the conven- 

tional detector. As the results suggest, the hybrid detector, at a much 
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SNR (dB) BER multistage BER hybrid (reduced) BER conventional 
5 -1.3348 -1.3529 (-1.342) -0.9096 
6 -1.5091 -1.5409 (-1.5233) -0.9297 
7 -1.6448 -1.7016 (-1.6552) -0.9422 
8 -1.8434 -1.9220 (-1.8982) -0.9515 
9 -2.134 -2.2354 (-2.202) -0.9614 

10 -2.4636 -2.5178 (-2.5747) -0.9723 

Table 2: K = 3 asynchronous users, 2P + 1 = 31, L = 4 (conditions of 

worst case interference). BER performance comparison of the conven- 

tional, multistage (10-stages) and hybrid detectors. For the proposed de- 

tector, the numbers in parenthesis correspond to the BER value achieved 

without the HNN post-processing stage (RD stage only). 

lower computational cost, outperforms slightly the multistage detector. 

When a HNN post-processing stage is added, the improvement over the 

multistage detector, becomes even larger. The maximum number of op- 

erations (additions) required for the demodulation of one 8 x 31-bit long 

data packet (evaluated over 10000 such packets) was 1204 and the av- 

erage number of additions was 706, whereas the number of additions of 

the 10-stage multistage detector is about 84 times larger (5952 additions 
per packet per stage). 

SNR (dB) BER multistage BER hybrid (reduced) BER conventional 
4 -1.3004 -1.3176 (-1.2989) -1.2337 
5 -1.4813 -1.5051 (-1.4797) -1.3780 
6 -1.6432 -1.6825 (-1.6455) -1.5430 
7 -1.8941 -1.9230 (-1.9008) -1.7320 
8 -2.2570 -2.3388 (-2.3010) -1.9360 
9 -2.6582 -2.7591 (-2.6702) -2.1868 

Table 3: BER performance comparison of the Multistage, Hybrid (Re- 

duced) and Conventional CDMA multi-user detectors: K = 8 asyn- 

chronous users, 2P + 1 = 31, L = 127 (Gold sequences), maximum 
near-far-ratio = 10 
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CONCLUSIONS - FURTHER RESEARCH DIRECTIONS 

A novel hybrid digital computer - neural network CDMA multiuser de- 

tector has been introduced. For a similar level of BER performance, 

the computational complexity of the Reduced Detector is smaller than 

that of other proposed schemes by more than one order of magnitude 

in some cases. The Reduced Detector can be used in conjunction with 

any other suboptimal scheme since the irreducible problem has the exact 
same structure of the original OMD problem. 

The small size of the irreducible problem allows for the use of off-the- 

shelf available HNN neural chips to further improve the performance. 

Issues that we are currently investigating include: The experimental 

evaluation of the proposed scheme on available HNN chips; the efficient 

implementation of the preprocessing stage on either standard DSP mi- 

croprocessors or dedicated ASIC/systolic array VLSI architectures; the 

optimal initialization of the HNN as well as iterative schemes that in- 

crease the probability of converging to the global minimum; annealing 

and other proposed HNN like algorithms implementable in hardware to 
further improve the performance. 
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Abstract — One of the problems of adaptive antennas is 
to find the weight factors for an array pattern optimizing 
the signal to noise and interference ratio for the actual 
signal situation. A neural Hopfield network is able to find 
the optimal factors, if the direction to the desired trans- 
mitter and the interfering transmitters are known [1]. To 
actualize altering directions, the proposed random search 
algorithm analyses the signal power of the antenna out- 
put. In combination with the Hopfield network it can 
track the desired signal and suppress interfering sources. 
This is shown in simulations, which were carried out using 
a digital controller of an array antenna (algorithm and 
Hopfield network) and a host computer (signal situation, 
antenna pattern and output power). 

INTRODUCTION 

Compared to omnidirectional antennas, phased antenna arrays 
are more advantageous because of their ability to adapt the an- 
tenna group pattern to a certain signal situation. A major task 
is to find the weights W{ for the antenna element signals. Several 
algorithms are known [2] to perform this with more or less hard- 
ware. A method without need of element signals is to update the 
setting of a phase shifter according to a quality signal from the 
receiver [3, 4]. A random change in the setting of the phase shif- 
ters is maintained or abandoned depending on the change of this 
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quality signal. 

Figure 1 shows a block diagram of an adaptive array. The si- 
gnal to noise and interference ratio of the receiver input signal 
is a function of the signal situation and the weight setting. Two 
possible quality signals (there are certainly more) are the array 
output power and the code error rate of a transmitted signal. 

Fig. 1: Block diagram of the adaptive antenna system, 
to,: Setting of the ith phase shifter; N: Number of an- 
tenna elements 

Maximizing the output power of the array antenna alone is more 
than fast enough to adapt the group pattern for the demands of 
mobile applications [5]. The exclusive use of this quality signal is 
restricted to the case that the desired transmitter is the strongest 
or the only one in the interesting frequency band. 

Suppressing an interfering transmitter needs a quality signal with 
more information. As an example, in [4] the error rate in the syn- 
chronisation frame of the digitally broadcasted audio signal of a 
DBS-Satellite1 was evaluated. This enables the array antenna to 

direct Broadcasting by Satellite, e.g. TV-Sat 
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suppress an interfering source, but slows down the angular speed 
for tracking from 100°/s to 0.5°/s. This is due to the small dyna- 
mic of the quality signal used. 

If both signals directly control the setting of a phase shifter, the 
signal with the larger dynamic and rate of repetition suppresses 
the influence of the other one. 

The combination of both quality signals for a relatively fast adap- 
tation with regard to interfering transmitters is possible, if each 
signal is used for a different task. Estimated directions of signal 
sources, e.g. determined by an initial sweep of an pencil beam, 
are classified by the low dynamic quality signal from the receiver 
as direction of a desired or interfering source. The high dynamic 
quality signal from the output power of the array is used to track 
the desired signal and the interferers. So the algorithm tries to 
optimize the position of a certain transmitter, not the setting of 
a phase shifter directly. 

The last - but not least - step is to compute the weights W{(k) 
for the estimated positions of the transmitters. This task can 
be performed with a Hopfield network [1]. Due to its parallel 
computing, the delay for each iteration needs not too much time 
compared with the other parts of the algorithm. A drawback of 
this network is the necessity to update the complete set of network 
coefficients caused by the changing directions to the respective si- 
gnal sources. 

ALGORITHM 

Estimation of signal direction 

The algorithm based on the output power of the adaptive array af- 
ter classification of possible signal sources is shown in Figure 2. It 
changes the estimated direction to a signal source in an arbitrary 
direction with a stepwidth A8. 
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Two cases must be considered in the algorithm: 
— Altering the estimated direction to the desired source, an in- 
crease of output power can be interpreted as an improvement of 
the estimation, a decrease as a step in the wrong direction. 
— Adjusting the estimation of the position of an interfering 
source, an increase of output power can be interpreted as a step 
in the wrong direction, a decrease indicates a better suppression 
of the interfering transmitter. 

Initialisation 

Sorting and evaluation of 
directions to transmitters 

Selection of a source 

Estimation of new direction: 
ek = etl + A6 

Simulation of the Hopfield net 

Update of antenna weights 

Reception of output power 

Computation of difference AP of 
actual to last output power 

Updated direction   = 
)irection to desired signal^ 

Yes   ^\ ^^ No 

0      =   9   - 2 A6 
k+1       k 

Fig. 2: Block diagram of the search algorithm. 
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Hopfield network 

The structure of the network is shown in Figure 3.   Because it 
is documented in [1], only a short rewiew for is given here. 

9 l 

?2M 

cM12 

b
21 J$22 

bllr[b21 ^A12 

0 IM 

2M 

-D hu 

«Ml 

-D 
?2M 

•   •   • 

fM2 ^P $ fMM 
^ 

Fig. 3: Network to find array weights [1], M = 2N 

The problem to find the weights to,- for the estimated signal situa- 
tion can be written in the form [1, 6]: 
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with regard to 

and 

Minimize 1   T 
v        P(v) = -v  Gv (1) 

Lt 

Bv-e = 0 (2) 

n — ( 2Rr    —2Ri \ ,Q\ 
G - ^ 2Rt      2Rr ) ' (3) 

B=\ , (4) 

(5) 

Rr and R{ are real and imaginary part of the covariance matrix 
R = E(X(t)X*(t)), So the steering vector of the desired signal and 
v = (wir, w2r, • • •, WNT, wn, iü2i, • ■ ■, WNi)T■ G and B are the coef- 
ficients of the Hopfield network, w is the vector of array weights. 
X* denotes the transpose conjugate of X. 

The covariance matrix R is computed from the estimated signal 
situation to save the amount of hardware necessary to access the 
single antenna element signals. 

SIMULATION 

The random search algorithm together with the hopfield network 
is programmed on a TMS320E17 signal processor. Because this 
device has a single accumulator architecture, the parallel architec- 
ture of a hopfield network can only be simulated and its advantage 
in speed is lost. In this study the ability to change the algorithm 
and the network together with existing hardware was the reason 
for this choice. As the weights W{ are quantized with a resolution 
of m = 4 bit in real and imaginary part [7], the Hopfield network 
finds its stable solution within five iterations. Figure 4 shows the 
setup for the simulations. 
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Antenna simulator 

- Signal situation 
- Array pattern 
- Calculation of received signal power 
- Display of simulation data 

Array weights 
Wi(k) 

Received power 
P(k) 

Antenna controller (TMS320E17) 

Evaluation of received power 
Estimation of signal situation 
Computation of net weights 
Simulation of Hopfield net 

Fig. 4: Simulation configuration 

Given the locations of desired signal and interfering transmitters, 
the Hopfield network is able to compute a set of weights W{ even for 
a more complicated signal situation, taken from [3]. The resulting 
array pattern is shown in Figure 5 after selecting the possible 
settings from a table [7] nearest to the output of the network. 

i4    i3 i2 

R/dB 

Fig.    5:   Beam pattern after adapting to signal s and four 
interferences i, — discrete Wi, - - continuous W{, N = 16, 
0S = -20°, 0ü_4 = -33°, -7°, 5°, 7° 
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Together with the random search algorithm based on the output 
power it is possible to track the desired transmitter. Figure 6 
shows a signal situation with an interfering source at a position 
where otherways would be one of the first sidelobes of the simu- 
lated linear array with N = 16 elements spaced A/2 apart (A as 
average wavelength of the interesting frequency band). Figure 7 
displays the signal to noise and interference ratio while tracking 
the situation given in Figure 6. 

Number of Iteration 

Fig.   6:  Signal positions of 
transmitter 

desired signal; - - interfering 

CO 
•o 

I 
lOQ 1 50 

Number of Iteration > 

Fig. 7: Signal to noise plus interference ratio; 
(S/N)max = 12dB 

The time for the antenna simulator to compute the signal situation 
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and the communications between the simulator and the controller 
are not present in a complete antenna system. Subtracting them 
from the time of an iteration, the controller was able to track the 
signals with an angular speed of u = (7°/s)(ir/lS0°). 
The relatively simple random search algorithm to provide the Hop- 
field network with the estimated positions of the transmitters is 
limited in the power quality signal. Shifting the estimated posi- 
tion of an interfering transmitter within a minimum of the antenna 
pattern influences the total received power as much as the slight 
change in the main beam due to this shift. The Algorithm is able 
to cope with the signal situation given in Figure 6 but fails for 
the situation given in Figure 5. Further work has to be done for 
improvements. 

SUMMARY 

In combination with a random search algorithm a hopfield net- 
work can be used to track a signal source for mobile communica- 
tions and cancel out an interfering transmitter without need for 
the single antenna element signals. As quality signals for the ran- 
dom search only the output power of the array and a reference 
signal indicating the right transmitter is needed. 
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Abstract- An algorithm for the separation of mixtures of signals was derived 
recently by Jutten and Herault under the assumption that the signals are inde- 
pendent. This algorithm is based on higher order moments and has also been 
applied to deconvolving signal mixtures. In practical problems where the order 
of the convolving filter may be high, frequency domain approaches are known 
to provide a more computationally efficient method of deconvolution. In this 
paper, we introduce a complex recurrent network structure for performing blind 
deconvolution. The aim is to investigate the performance of this approach for 
separating unknown, convolved signals which may occur in a situation such as 
the well-known 'cocktail-party problem'. 

INTRODUCTION 
Adaptive filtering techniques have been widely applied to noise cancellation and blind 
deconvolution problems, where the aim is to obtain an enhanced signal based on some 
knowledge of the signal or noise [20,23,35]. More recently, the problem of separating 
mixtures of signals has been considered. In this case, the only assumption made is 
that the signals are independent. In addition, there are multi-sensors which record the 
signal. This situation is commonly encountered in practice, e.g. in the "cocktail-party" 
problem, where the aim is to listen to a desired signal (speech) and other signals are 
considered as noise. In such cases, traditional methods for adaptive noise cancellation 
(e.g. [35]) are insufficient to solve the problem. 

A novel method to overcome the problem of blind separation of sources has been 
proposed recently by Jutten and Herault [21 ]. They proposed an algorithm which only 
assumes that the sources are statistically independent. The blind separation of sources 
problem consists of a mixture model, with a number of unknown input signals, and a 
desired method of estimating those signals. The mixture model is described by 

M 

Xj(t)    =    ^ajiwit) (1) 
;=o 

where Uj(t) is the ?'th signal source, a,-,- is the (amplitude) weighting applied to the 
signal from the ?th source and received by the jth sensor, and xj(t) is the sum of 
received signals at the jth sensor. Based on this model, Jutten and Herault proposed a 
method to estimate values for w,(/). The model developed by Jutten and Herault may 
be described as follows 

Y(t)    =    X(t)-WY(t) (2) 

Y(t)   =   \yo(l),m(t),...,yM(t)]T (3) 

X(t)    =    [x0(t),xi(t),...,xM{t)]T (4) 
0 Woi       • • •     WOM 

«'10 0 •••     W\M w 
U>MO     «'A/1 
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Where it is tacitly assumed that the number of sensors is equal to the number of sources, 
and the time constant of the network is small compared to that of the incoming signals, 
and that the network is stable. Thus, the network output can be described as 

Y(l)    =    (I + W)-lX(t) (5) 

where I is the identity matrix. We define the vector of zero mean output signals as 

y(t)   =   [ya(tlyl(t).-,yJt)]T 

(6) 

The weights wj ,■ arc updated by a stochastic gradient descent algorithm, a cost criterion 
(for each output) is defined as 

■hit)    =   E2,(l) (7) 

=   //?(/)-/?[</?(,)] (8) 

which is the power of the zero mean output signal. The algorithm obtained by this 
process is modified to update the weights using nonlinear functions which provide the 
test for higher order moments [21]. Thus, we have 

A«»jt    =    »//(.»/. (')).'/(?/,.(')) (9) 

where 7/ is a learning rate constant, and f(x), n(x) are odd nonlinear functions. For 
the simulations reported in Section 4 we used f(x) = x3,ai\6g(x) = arctan(x). 

Note that in the Juttcn and Hcrault formulation, the network architecture used is a 
recurrent network [21]. A related situation is that involving a convolutive model for 
dispersive media, this was considered by Nguyen, Juttcn [26, 22], Platt and Faggin 
[16], Lacoumc and Ruiz [24], Soon, Tong el. al. [30, 31] and Van Gcrven and Van 
Compcrnollc [28] (Figure 1). In this case, 

M     P 

*;('■)    =    £!>;.•*«,■('-</*) (10) 

In a similar manner to that given by Julien and Hcrault, Platt and Faggin gave a weight 
update equation for their model as 

Awitj    =    »j/(i/,(/)).v(w,.(/-rf,-)) (11) 

where the best reported results were obtained with /(x) = \x\, and g(x) - x. Previ- 
ously, there has been significant work done on this topic, closed form solutions have 
been presented in [3,6,7,33,34], while other models have been considered in [30,31 ]. 

The models developed by Juttcn and Hcrault, Platt and others are based on real signals. 
In some situations however, it is desirable to be able to use complex signals. It is well 
known, for example, that frequency domain adaptive fillers can have advantages over 
time-domain filters [17], (though for some adaptive noise-cancelling applications, 
these advantages are not apparent [9]). For conventional filter structures, frequency 
domain adaptive filters (using complex signals) have advantages in two main areas. 
The use of the Fast Fourier Transform (FFT) for complex weight update leads to a 
reduction1 in computation with increased data |36|.  Secondly, it is known that for 

'The computational advantages are dependent on which scheme is used for processing, that is, whether 
the algorithm implements a circular convolution 111|, or linear convolution |10J, |12j. 
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Convolution Mixture 
Signall Modd Network 

-o 
Estimated Signal 1 

Estimated Signal 2 

Filter 

Figure 1: Convolutive mixture model and the network proposed by Platt and Faggin. 
In this case, each of the synapses is a filler. Note that we show only a two neuron 
network. In practice, the principles discussed here apply to any size network, (provided 
there are at least as many inputs as outputs). 

the usual stochastic gradient algorithms, the convergence rate is proportional to the 
eigenvalue spread of the inputs [37]. This serves as a limiting factor in the time-domain 
filter. In a frequency-domain filler, the use of frequency bins provides an approximate 
orthogonalization of the data [17], and the learning rate in each frequency bin can 
be adjusted according to the power level present. This overcomes the problem of 
eigenvalue spread [19]. In effect, a normalized algorithm can be applied in each 
frequency bin [ 17], allowing the convergence rate to be improved for dependent inputs 
such as speech. For those applications where a frequency domain implementation 
does offer advantages, we present the algorithm contained herein. 

For these reasons, we present a complex algorithm for blind source separation. The 
complex algorithm is derived in Section 2. Computational complexity details are 
given in Section 3, simulation results are given in Section 4 and conclusions are given 
in Section 5. 

A COMPLEX ALGORITHM FOR BLIND SOURCE 
SEPARATION 
The algorithm is developed by considering a complex model analogous to the real 
case. Figure 2 shows the complex model for the case of two mixture inputs and two 
outputs. The same techniques are applicable to larger network structures. From (3), 
we define 

Y(t)    =    \Y(t),Y(t-\),...,Y(t-N + l)) (12) 

Taking the Fourier transform, and noting that the sampling rate in the frequency domain 
is reduced by a factor of N, where N is the number of points in the FFT (assuming no 
zero padding to overcome the problem of circular convolution), we have 

Y(n)    =    FFT [Y'(0] 

yoo(»)      yoi(n)     •■■     yoAr-i(n) 
yio(»)    yn(»)    ■••   yuv-i(n) 

yMo(n)    yjwi(n)    •••    yMN-i(n) 

t = nN       (13) 

where n is the new sampling index in the frequency domain and the bold typeface 
represents variables in the frequency domain (following the convention used in [17]). 
Define the complex model as 

Y;(n)    =    [yjo("),yji(n),---.yjAf(«)]J 
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"1R 

Figure 2: Complex blind source separation model, with two mixture inputs xi, X2, 
and two outputs yi, y2. The network is used in every frequency bin. 

Xj(»)      =       [Xjo(").Xji(»l).---,XjA/(»)]J (15) 

W; 

0 
WjlO 

w_,oi 
0 

■      Wj-OA/ 
'      WjiA/ 

.   WjA/o WjA/i       •• 6 
(/ + W)- %■(») Yj(n)    =    (7 + Wr'X» (16) 

Wc now derive the weight update equations. For clarity, the j subscript indicating the 
frequency component index is dropped from the remainder of the paper. Following 
[36], we minimize both the real and imaginary components of the weights simultane- 
ously. Therefore, the total power y.(»)y* (>i) is minimized, (* represents the complex 
conjugate), and 

Ji   =   y,(»)y*(»)   =   //?„('')+ ?/?,(») 

The weights arc adjusted by minimizing the instantaneous total power, 

dJi 
Wj*(»l+1)       =       Yfjt{n)-7) 

dwjk 
(17) 

where, Wj<•(») = Wjkr}(n) + jwju(n). Following the procedure used by Jutten and 
Hcrault, and updating the complex weights, wc have 

AwjtR(n) 

Awjk.,(n) 

9Y(n) 

OJi 
OlfjH 

7 + W)-^ + W>Y(„) 
du'ji-R v"  '    " '       cht'jtR 

Omitting details, the weight changes (with / = j) are 

Wjk(n + \)     =     wj(.(n) + AWj|.(n) 

(18) 

(19) 
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,  , (  dJj dJj  \ 
\OWjkR OWjklJ 

Wjk(n) + 2r]yl(n)y.(Ti) (20) 

Previously, a higher order independence test was used in the weight update equation, 
which, if applied in the frequency domain case, would result in an equation of the form 

wit(n + l)    =    wjk(n) + 2ifi(£(n))g(y.(n)) (21) 

where f() and g() are complex functions which operate on real and imaginary 
components independently, i.e., 

f(x + JV)    =    ffi(x)+jfi(y) (22) 

A function of this type was proposed also by Benvenuto and Piazza [2]. Note that 
normally ffi(a) = //(«). If the above method was used in this case however, the 
problem of obtaining the correct permutation matrix for the signals would be extremely 
difficult to solve. The permutations would occur in the frequency domain, and be com- 
plicated by an additional multiplication by a diagonal matrix of unit modulus complex 
values. The approach used in this paper, is to perform the test for independence in 
the time domain as before and transform the outputs to the frequency domain before 
multiplying them together. Since the signals are not multiplied in the time domain, 
but the multiplication of f(y)*g(y) is performed in each frequency domain bin, and 
the problem of permutations between different frequency bands is overcome. 

In this way we select a criterion which allows the algorithm to perform a task of 
essentially the same difficulty as before in the time domain case (down to a permutation 
matrix in the real valued output signals). The final weight update equations are 

wit(n+l)    =    vrjt(n)+2riFtin)Gj(n) (23) 

where the Fourier transform of each block of output signals passed through the non- 
linear functions is computed, viz 

Ffc(n)=FFT 

Ft(n)=FFT f(yk(t)) 

f(yk(i)) Gj(n)=FFT\g(y.(t)) 

Gj(w)=FFT <J%(i)) (24) 

where 

m FFT" y>) (25) 

Note that F*, Gj, represent vector processes, with the length determined by the 
number of points in the FFT computation. A method of improving the performance 
of the standard algorithm, is to include power normalization in each frequency band 
[17]. 

It is possible that minimization of the above criteria may lead to problems of unstable 
convergence as in the Jutten and Herault algorithm 113]. It is expected that the algo- 
rithm presented here and the Jutten and Herault algorithm will have similar properties. 
For example, convergence is only expected if the probability density functions of the 
zero mean sources are even, while swapping the /(•) and g() functions may cause 
a stable solution to become unstable [32]. Thus, the presentation of this algorithm 
does not address some of the more fundamental problems associated with the Jutten 
and Herault algorithm, but rather introduces a method for overcoming problems of 
convolved and correlated input signals. 
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Table 1: Computational Complexity Ratios for the Frequency Domain Blind Source 
Separation Model versus the Time Domain Model with M=2 and L=20. 

N 8 16 32 64 128 256 512 
Complexity Ratio 0.5 0.25 0.12 0.0614 0.0306 0.0153 0.0076 

COMPUTATIONAL COMPLEXITY 
Consider the convolutivc mixture model, where there are Ar real weights in each filter, 
M sensors, M model outputs, and the model is applied to A' data points. 

The computational complexity is determined as the sum of multiplications for both the 
model outputs and the weight updates. The fast acting recurrent loop [21] is assumed 
to have /, cycles per presentation of input data. 

The complexity depends on whether the algorithm uses circular convolution or linear 
convolution [11], [12], [17], we will only consider the circular convolution here. 
For the circular convolution case, there arc 2A/ FFTs required for the computation 
of outputs, and 3 A/ FFTs required to compute the higher order independence test 
variables (Fk, Gj) (assuming g(n) ^ n), giving a total of 5M FFTs required for 
every N data points. To compute the outputs, there will be 4L A'(M2 - M) real 
multiplications required (over /, cycles). For the weight updates with real inputs, there 
will be 6 A'(A/2 - A/) real multiplications required, giving a total of 5 M N \og2(N) + 
(6 + 4I,)N(M2 - M) real multiplications for every N data points. The method of 
computing the linear convolution for cither the overlap-add or overlap-save methods 
arc described in [17], and arc not considered further in this paper. Table 1 shows 
the comparison between the computational complexity of the time domain with the 
frequency domain methods. It is expressed as a complexity ratio of the computation 
required by the frequency domain method and that required by the time domain method. 

SIMULATION RESULTS 
In this section, results are presented in using the above complex algorithm for simu- 
lations involving the separation of two speech signals. The voices were digitized at 
8kHz and mixed according to the mixture model shown in Figure 1. The actual input 
voice signals are shown in Figure 3 and the mixture signals arc shown in Figure 4 

To maintain the symmetry of real outputs for real inputs, the imaginary weights were 
set to zero [18]. 

As a means of verifying performance of the complex model, various lengths of data 
were tried, with the model performing well in the ranges tested (16 - 128). In the 
results shown, N = 64 (Figure 5). 

While it is possible to implement a linear convolution model, for the example given 
here, only the circular convolution model was used. The observed results show that 
the complex model is indeed capable of performing separation of signals mixed in a 
convolution model. For signal mi1), the signal-lo-noise ratio (SNR) is 8dB, and for 
P2(t), the SNR is 9.4dB2. It should be noted that, as is usual with gradient descent 
algorithms, better results would be possible by allowing the network to learn for 
a longer period of time. The results obtained here are less favourable than those 
reported by Platt and Faggin [16], who obtained around 20dB SNR for separating 
speech and music using the architecture shown in Fig. 2. In their case however, the 

These results were computed by normalizing the output signals yi (f) , ;g(r) to the same root-mean- 
squarc (RMS) value as the corresponding inputs. Thus, wc use ;/[(') = yi(')"ri. and y^t) = yi(()72 
where -yt = ii\ /.V2, and 72 = "2/.V1- The RMS value of j- is represented by x. Note that in the case 
presented here, the outputs arc reversed with respect to the inputs. 
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(a) (b) 

Figure 3: Input sources of two independent speakers taken while each speaker counted 
"One.. two.. three ..", (a) ul(t), (b) u2(t). Sampling was done at 8Khz. 

Mixtur*   X    (Coiv.) 

S>apl«a     (1D.4) 

(a) (b) 

Figure 4: Output from the mixture model, with each signal being a linear combination 
of both speech signals: (a) xl(t), (b) x2(t). 
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(a) (b) 

Figure 5: Outputs from the frequency domain network which estimate the original 
inputsignals: (a) yl(t), (b) y2(t). This test was performed without power normalization 
and the performance is similar to the original lime domain model. For the case shown 
here, the FFTs used N = 64. Learning commenced at the first sample, and occurred 
over the whole interval shown. Note that the order of the output signals is reversed 
from that of the input signals, due to the algorithm having no mechanism to sort the 
outputs in any particular way. Such an addition could be readily implemented. 

mixtures were such that one signal was attenuated; specific details were not given. 
This contrasts with the results presented here, the estimated signals were of similar 
magnitudes to the original ones (observe Figures 4(a) and 4(b)). Thus, the simulations 
presented arc not aimed at showing the best performance possible, but simply to verify 
the operation of the model. It would be interesting to compare the performance of this 
algorithm with one which uses only second order statistics, however this is not done 
here. 

CONCLUSIONS 
The algorithm developed by Juttcn and Hcrault for blind source signal separation has 
shown promising results for real signals. In many practical situations however, it is 
desirable to apply an algorithm to complex data. In this paper, we have derived a com- 
plex algorithm for blind source signal separation which uses higher-order moments 
as in the original approach by Jutten and Herault [21], but allows the use of complex 
coefficients and data. The adoption or this method results in a more efficient imple- 
mention of a blind source separation model for convolutive mixtures. Simulations 
have verified the use of the algorithm for separating real speech signals. 
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Abstract- The sensor array pattern is the spatial response of an array of 
sensors to an incident monochromatic plane wave. It is known to have a 
resolution which is a function of the number of sensors. In some applications 
the number of sensors may be small for technical or economical reasons. We 
here present and analyse a feedforward neural network structure which is able, 
by learning, to improve the resolution of the array pattern for a fixed and small 
number of sensors. 

1    INTRODUCTION 

Sensor array signal processing deals with the problem of extracting information 
concerning radiating sources from signals which are simultaneously received on 
M spatially distributed sensors . The information of interest is the number 
of sources and the directions of arrival (DOA) of the transmitted waves with 
respect to the array. Beamforming is the most usual method for dealing with 
this problem. It consists in weighting the sensor outputs and in constructing 
the variance of the resulting output signal as an estimator of the sources DO As. 
Beamforming therefore performs a kind of spatial filtering which produces 
beams in the direction of a number of possible DOAs among which the true 
DOAs can be found. The array pattern is the response of the beamformer 
to a monochromatic plane wave. The width of the main lobe in the array 
pattern which is an approximation of the resolution capability of the array, 
is an increasing function of the number of sensors. In some applications the 
number of sensors may be small for technical or economical reasons. However, 
there are other array processing methods with a higher resolution than the 
beamforming method [1]. Most of them come from a generalization of the 
spectral analysis methods. They all rely on the statistical properties of the 
received signals. Our aim is to design a feedforward neural network with 
sigmoi'ds able to produce beams with a higher resolution than the classical 
beamforming for a fixed and small number of sensors, and which is independent 
of the statistical characteristics of the received signals. The improvement of the 
array response to a monochromatic plane wave will only take into account the 
array manifold. This paper is also devoted to open new insights and viewpoints 
concerning the use of neural networks as an alternative to the classical DOA 
estimation methods. 
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In the following section, we recall the beamforming technique and the classical 
array pattern. In Section 3, we describe the two proposed neural networks 
structures and the learning process. In Section 4, the performances concern- 
ing both learning and generalization are presented and analysed for each of 
the proposed two networks. In particular, the choice of the number of hidden 
neurons and the choice of the learning set are investigated. Section 5 is the 
conclusion. 

2    THE CLASSICAL ARRAY PATTERN 

Consider an array of M sensors on which N incident waves impinge (M > N). 
At a given frequency and for a particular snapshot, the M - dimensional vector 
of the received signals can be written as 

x = As + n (1) 

where A = [a(0i),a(02)> • • • ,&{0N)] is the M x ./V-dimensional matrix of the 
steering vectors a(0„), 0n being the DOA of the source with respect to the 
normal of the array, s is the JV-dimensional vector of the complex amplitudes 
of the sources and n is a noise vector. Each steering vector is some multidi- 
mensional transfer function between the source signal and the signal received 
on the sensors. 
The steering vectors belong to the manifold of the possible wavefronts defined 
by A = {a(0),6 G 0} where 0 is the set of the possible DOAs. The definition 
of this manifold requires that the model of the propagation of the waves and 
the reception of the signals should be known so that this manifold only depends 
on the parameter 6. 
Beamforming consists in weighting the sensors outputs and in constructing 

FMO) = E[| at(0)x |2] (2) 

where f denotes Hermitian transposition. The beamformer performs a spatial 
filtering in the direction 6. 
Let us assume that the received signal x corresponds to a deterministic monochro- 
matic plane wave such that x = a((?o) in the noise free case. The response of 
the beamformer (2) denoted by 

^o(0)=|at(0)a(0o)|
2 (3) 

is called the array pattern. For example, in the case of a linear array of 
equispaced sensors for which the intersensor spacing is half the received signal 
wavelength, the vectors of the manifold A are of the form 

a(0) = nei»'S'n9
ei2irsin9eJ(A/-l)jrsinflVr i^\ 

The array pattern thus becomes 

_ sin(M*(sin(0) - sin(00))/2) 
M ;      Msin{Tr(sin{0) - sin{00))/2) K ' 

The width of the main lobe which is an approximation of the resolution capa- 
bility of the array, is a function of the number of sensors M. Figure 1 exhibits 
the array pattern for a linear array with A sensors steered in the direction of 
#o = 0. We can see that, the main lobe width is approximately 30 degrees. We 
can check that two sources spaced by less than 30 degrees cannot be resolved. 
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Let us depict in Figure 2 a neuronal system which consists of a single layer of 
quadratic units and which can construct the classical array pattern (2). The 
weights relating the input a(0) to the quadratic units are steering vectors a(0;) 
chosen in the manifold A. The response as a function of 9 of each unit i is the 
array pattern (2) (Figure 1) steered in the direction of 0;. 
We propose to replace the structure of Figure 2 by a two-layer feedforward 
networks (three layers with the input layer) implementing sigmoi'ds. 

3    THE PROPOSED NEURAL NETWORKS 

Two different structures are proposed. 
The first one is depicted in Figure 3. It consists of subnetworks, each of them 
having a single output constrained by learning to give a desired array pattern. 
Each subnetwork is assigned to one DO A and has its own hidden layer. As 
it is well-known, a two-layer network can approximate any regular function. 
We can then train the proposed structure to approximate a desired response 
for each output unit. 
The second structure is depicted in Figure 4. It consists of a single network 
with multiple outputs and with a single hidden layer shared by all the outputs. 
Each output is assigned to one DOA. The number of outputs is equal to the 
number of DOAs to which an array pattern is steered. 
In both structures, input i of the network receives the information delivered 
by sensor i + 1 of the array. We do not take into account the output of the 
reference sensor, which is a constant. Actually, the network inputs consist of 
the real and imaginary parts of the sensors outputs. The network therefore 
contains 2(M — 1) inputs. 
In order that the network finds out the DOAs 0; of the N underlaying sources 
impinging on the array, it is necessary to train it by supervised learning. The 
training set consists of vectors a(0) of the manifold A, corresponding to dif- 
ferent values of 9 in the range of [0, 60] degrees. 
The target vector t(0) stands for the desired output of the network. 
When vector a(0) is presented at the input of the network, the target tf,-(0) 
of the output neuron i assigned to a DOA 0,-, is a value of a desired pattern 
/0;(0). An example of a desired pattern corresponds to the combination of a 
Gaussian function with mean 0, and standard deviation 69, with a hyperbolic 
tangent function. Function /e;(0) is sampled according to the angles present 
in the training set. Note that learning a target equal to 1 as a desired response 
when a(0j) is present at the input of the network and equal to 0, when it is not 
present, was found to introduce oscillations during the generalization phase. 
Learning is based on the multidimensional minimization of the cost function 

C(W,B)=      J2     IK,B(0)-t(0)||2 

samples of 8 

where SW,B(0) is the response computed by the network when a(0) is at the 
input, and W, B stand for the weights and the biases of the network, re- 
spectively. Each neuron implements a sigmoid as an activation function. The 
minimization of the cost function and, consequently, the adaptation of the 
weights and the biases are performed by the Levenberg-Marquardt algorithm 
[2]. The weights and biases are randomly initialized within [-1, 1] with a 
uniform probability. 
Let us make some comments concerning the range of the angles present in the 
training set. Indeed, according to (4), the inputs of the network are of the 
form 
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fm(0) — cos(7r?7?sin 6)   gm(0) — sin(7rmsin 0) (6) 

These functions oscillate for 6 in the range of [0, 60], even for small values of 
m. Between two successive extrema of the oscillations, there is a linear part 
that we refer to as a "slope". We have observed that the network performs its 
response by linear combinations of these slopes. The more elementary slopes 
there are, the easier it is for the network to build intermediary responses in its 
hidden layer to fit the desired output. In the range of [60, 90], there are fewer 
oscillations. The networks under consideration were clearly found to converge 
more slowly than for the range [0, 60]. 
Another comment is that we need to use both real and imaginary parts of the 
input vector to avoid any ambiguous behaviour. 
The next Section is devoted to the analysis of the performances of the pro- 
posed networks. This is done with the help of computer simulations. 

4    SIMULATION RESULTS 

4.1     First Network consisting of subnetworks 
As the subnetworks are independent, we here investigate the performances of 
one of the subnetworks. 
The network has 4 input neurons corresponding to a 3-sensor array. The 
subnetwork consists of 6 hidden neurons. It is constrained to have an array 
pattern whose main lobe is 8 degrees. This resolution is much thinner than 
the resolution of the classical array pattern. 
First, the subnetwork is trained by presenting at the input a vector a(#) corre- 
sponding to a. single source with DOA 0 taking its value within the range of [0, 
60]. The DOAs which arc presented during the learning phase are represented 
by small circles in Figure 5a. The convergence of the network is obtained in 
150 epochs. We stop the algorithm when the total error is 0.09. Note that 
the input vector a(0) is normalized before being presented to the network in 
order to have the same response of the network, whatever the amplitude of the 
source. Figure 5a exhibits the array pattern obtained after learning. Clearly 
the network performs satisfactorily when inputs, which were not in the training 
set, are presented. 
Now let, us present at the input of the trained subnetwork, the vectors a((?) + 
«("int.) where 0mi is the DOA of an interference source and where 0 scans the 
range of [0, 60]. Figures 5b exhibits the response of the network steered in the 
direction of 20 degrees, for 0jnt = 0. It appears that the pattern in Figure 5b 
is deteriorated compared to the pattern of Figure 5a. 
In order to compensate for this deterioration, the learning of the subnetwork 
is performed by presenting two sources at the input. The training set now 
consists of vectors of the form a(#,) + a(0j), Ö, and 0j scanning [0, 60]. The 
input vector is still normalized before being presented to the network. As the 
subnetwork has a single output, we have to introduce a single target. The 
value of the target is computed as follows 

t2(0i)0j) = max(t(0,)J(0j)) 

where /((?,) = felt(0i) is the desired array pattern steered to the DOA QQ. This 
criterion which may not be the best one, especially allows us to take a decision 
when both 0\ and flj arc in the same lobe. 
There is a compromise to do between a thin sampling in order to avoid oscilla- 
tions of the response during generalization, and a larger sampling to decrease 
the convergence time.   We here make the following choice.   For angles in the 
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range of [16, 36], the sampling step is 2 degrees inside the lobe and 4 outside. 
The hidden layer of the subnetwork consists of 4 neurons. The training is 
achieved after 10 seconds CPU time on a HP 735 for a squared error of 0.1 

For angles close to 0 or 60 degrees, as the oscillations of fm(0) and gm(0) 
are scarce, we need more hidden neurons. In adding neurons, we observe sec- 
ondary lobes due to an interference. This requires a thinner sampling. We 
choose 2 degrees in the lobe and 1 degree outside it. CPU time is then around 
10 mn for the same error. 
Figure 6 exhibits the response of the subnetwork steered to 20 degrees when an 
interference source is presented. By opposition to Figure 5, the array pattern is 
found correct for every interference source. If the interference source is outside 
the main lobe, the array pattern keeps its form when 0 scan the range of JO, 
60]. See, for example, the case 0int = 0. When the interference source is inside 
the lobe the subnetwok computes a value as close as possible to feo(0\nt- For 
example, in the case of 0int = 20, the response of the subnetwork remains 
approximately 1 as 0 scan the range [0, 60]. Note that the generalization to 
the case where the two sources presented at the input of the subnetwork have 
different amplitudes failed. 
Figure 7a illustrates the response of the entire network containing all the sub- 
networks, when one source is presented at the input with DOA 0 scanning the 
range of [0, 60]. The training set included two parts. The first one consisted 
of the presentation of two sources and the second part consisted of the pre- 
sentation of only one source. The second part is redundant but seems to have 
stabilizing effects on the generalization. We can see the 16 output neurons 
responses plotted together on a same graph. The overlapping of the lobes is 
such that the output neuron recognizes the DOA to which it has been assigned 
when its response is larger than 0.7. Note that the learning might have been 
pursued at the cost of an increase in complexity and convergence time. 
Figures 7b-c exhibit the network response when two sources are presented dur- 
ing the generalization phase. In the first case, the interference source belongs 
to the training set while, in the second case, it does not belong to it. In both 
cases, the network performs satisfactorily. 

4.2     The second network consisting of a single network 
This network has a number of outputs equal to the number of DOAs for which 
we want to design array patterns. During the training, output neuron i is set 
to one when a source with DOA 0; is presented at the input of the network, 
and zero when the source has DOA 0,- with j ^ i. 
As shown in Figure 8a, the network creates its own lobes. A bad choice 
of the number of hidden neurons may be balanced, to a certain extend, by 
constraining the response of the network to have a desired shape around 0,-. 
This constraint helps the network to converge when the number of hidden units 
is too small and it does not prevent the network to converge when the number 
of hidden units is sufficient. The desired shape of the response is a part of the 
hypertangent-Gaussian function as already used for the first network. 
An experimental result is that the number of hidden neurons is approximately 
JVh = -Cjf = ^ where N0 is the number of outputs. The responses of all the 
outputs of°the network to the presentation of one source the DOA of which 
scans [0, 60], are plotted together on the same graph in Figure 8a. 
As for the first network, the generalization capacity of this network fails when 
two sources are presented at the input. It is therefore necessary to process 
the learning with two sources presented at the input. In this case, the number 
of neurons in the hidden Layer was found to be approximately Nh = gC^. 
Note that, in both evaluations of Nh, CP

N which is the number of different 
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combinations of p elements among N elements, is the length of the training 
set. The coefficient 1/2 or 1/3 characterizes symmetries that the network 
seems to create for the corresponding training set. 
In order to avoid oscillations in the generalization response, it is necessary as in 
the previous case to constrain the responses of the outputs to a desired shape 
around the DOA to which they are steered. To facilitate the convergence we 
introduce an additive sensor, i.e. an additive network input. 
Figure 8b exhibits the behaviour of the network output when a source with 
DOA ranging over [0, 60] and an interference source with fixed DOA 0int are 
presented at the input. The network here has 6 outputs. For example, when 
0int = 5, the response of the output neuron assigned to the DOA 5 degrees is 
almost 1 when the DOA of the other source is scanning the range of [0, 60], 
whereas the responses of the other outputs have the form of the desired pattern.' 

5    CONCLUSION 

The present paper is a preliminary work of a more general study of the pos- 
sible use of neural networks as an alternative to the classical DOA estimation 
methods. The first advantageous consequence of the present work is that the 
necessity in the classical approach of increasing the number of sensors to reach 
a desired resolution is replaced by the use of feedforward neural networks and 
by the learning of a desired pattern with a given resolution. This can be of 
great interest when the use of a great number of sensors is not possible for 
economical or technical reasons. Another advantage of our approach is that, 
once the neural network is matched to a given manifold of possible received 
signals, the detection of sources and the DOA estimation can be performed 
in real time which is actually not the case with the classical high resolution 
methods. 
In this paper we have presented two structures of feedforward networks to 
localize sources. We have experimentally investigated the choice of the number 
of hidden units and the choice of the training set in order to not only improve 
the resolution of the array pattern, given the number of sensors, but also 
to make the network behave satisfactorily during generalization. The design 
and the convergence of the first network consisting of subnetworks were found 
much simpler than those of the second proposed network consisting of a single 
network. In the second case, the convergence quickly becomes very slow, and 
we need, for example, more than one hour of CPU time on a HP 735 to have 
access to networks with more than ten outputs. 
In order to further improve the capacity in generalization of the proposed net- 
works, it is required to include in the training set examples of combinations of 
an arbitrary number of sources with different amplitudes. 
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Figure 1: The classical array pattern.     £ 
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Figure 2 : The neuronal representation of the beamformer. 
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Figure 6 : Array pattern of a sub-network steered in the direction 
Learning is performed with 2 sources at the input, 
a) eint=0, b) eint=18. c) 8jn,=21 , d) 6mt=25 . 
6=21   and 6=25 do not belong to the training set. 

50 

20 dec 

582 



Figure 7 : Array patterns of all the sub-networks plotted together. 
Learning is performed with 2 sources. 
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Figure 8 : Array patterns at the ouput of the network. 
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Abstract - The problem that arises in a neural network with many 
inputs is being able to eliminate the irrelevant ones. In the particular 
case of short-term weather forecasting, there are variables that may 
have little or no impact on the forecasts. A technique of sensitivity 
analysis of outputs over inputs has been applied to the trained network. 
Thus the most relevant inputs have been determined, as have less 
important inputs that can be eliminated. By employing this technique, a 
smaller sized neural network is obtained which also has a greater 
capacity for generalization. 

1. INTRODUCTION 

Neural networks have proven their effectiveness in predicting the future 
behaviour of time series [5, 7]. In this paper, the time series traces the 
behaviour of a meteorological variable. Many studies have been conducted 
on weather forecasting in this century. Highly complex statistical models, 
such as those by Box and Jenkins [1], have come up with the best results in 
wide area weather prediction, employing a large amount of different data 
from satellites, ground stations, weather balloons, etc. 

Our research has centred on forecasting one meteorological variable, 
using data collected at one ground weather station. Values of this variable 
and other complementary variables collected beforehand are used to this 
end. This complicates the already complex weather forecasting problem still 
further as local data are used. The meteorological variable selected for 
forecasting was temperature. 

Several training sets were selected, where the number of days' 
recordings supplied to forecast the following day's observations varied. The 
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sets also differed as to the number of meteorological variables they 
contained. Several network structures were tested as part of a multilayered 
perceptron. The number of hidden layers, the amount of neurons and the 
interconnection schema were varied. The learning process was carried out 
using the gradient backpropagation algorithm [2, 6]. 

Having observed that the various models receiving different information 
led to similar results, an empirical study was undertaken to determine the 
minimum number of necessary variables that had to be supplied to a neural 
network to get similar performance. The determination of the minimum set 
was to offer two major advantages. The first is the increase in efficiency and 
in the capacity for generalization produced by using a smaller sized 
network. The second benefit is the result of studying the relationship 
between the different variables, which may bring out knowledge that is 
possibly hidden by surplus information. 

The technique employed to conduct the sensitivity analysis is based on 
the calculation of the partial derivative of the outputs over inputs to the 
network. This method of analysing the inputs to a neural network has been 
successfully applied to discriminate the relevant variables in modeling the 
behaviour of a nuclear power plant [4]. 

The derivative of the output of the network over the inputs is determined 
taking a description of the activation calculation of any neuron in the 
network: 

i 

where Ojn, Ojn_1 are outputs of the jth neuron of layer n and the ith neuron 
of layer n-1 of the network, respectively, f is the activation function and \V;J 
is the weight of the connection between the ith and the jth neurons. 

To develop the expression of the partial derivative of the output of the 
network over the inputs: 

do] _    do] a>r 

a>\   far a>\ (2) 

The first term of the second member of the equation can be solved using 
equation (1): 

*; _. 
do. n-\ ^Wßfinelj) (3) 
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Thus the first term can be calculated from the known data at the level of 
neuronj of layer n. On the other hand, the second term can only be solved 
recursively by successively applying the formula: 

The calculation process ends when the partial derivative of layer 1 over 
layer 0 (input) has been found. This is calculated using the expression: 

|1=/(>^K (5) 
dok 

Thus, the partial derivative of output over input would be calculated 
beginning with layer 1 and applying equation (5) and would be propagated 
to subsequent layers employing equation (3). 

The process would work as follows. A pattern is presented to the 
network and is forward propagated, calculating the input derivatives for all 
the neurons. Then, the values of the partial derivatives are forward 
propagated for each neuron of the input layer until the desired output is 
obtained. This consists in the partial derivative of each unit of the output 
layer over that unit of the input layer. The values thus obtained are averaged 
out to an absolute value for all the outputs to obtain the importance of the 
input as compared to all the outputs. 

2. DESCRIPTION OF THE DATA AND THE NEURAL NETWORK 
USED 

The data employed in this study were collected at Barajas airport 
(Madrid). They were in MET AR format, the code used to encode ordinary 
meteorological observations for aviation. The following five meteorological 
variables were chosen form the great abundance available: pressure, dry 
temperature, visibility and wind direction and speed. The observations were 
made every half an hour and data covering seven years were available, of 
which six have been employed in learning and the remaining year was 
reserved as a test set to check learning quality. The choice of this number of 
years, as well as the cadence of observations, amounting to a total of 48 
observations a day per variable, give some idea of the huge size of the 
training sets. 

The data were standardized taking the maximum and minimum values 
over the whole period and linearly mapped to the interval [-1, 1]. The 
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variable chosen for forecasting was temperature. Indeed, the aim was to 
forecast the 48 observations for one day, on the basis of the values of given 
meteorological variables, including temperature. The different observations 
matched a given number of days (1 to 3). Different combinations of the 
variables were tried, whereby at least three and at most the five of above- 
mentioned variables were always taken. 

The architectures employed ranged from networks with no hidden layers 
to partially connected four-layer networks. 

As regards the activation function used, different functions were 
assessed in this case too in order to compare their performance. These three 
functions were: 

• Systole   2:   This   function   discussed   in    [3]    is   defined   as 

f(x) =2.5xe~x . It has the advantage of considerably reducing 
the number of iterations needed for the network to converge on a 
valid solution. 

• Sijjmoidal function, defined as: 

• Wide sigmoid, with a wider output range  [-1.71. +1.71].  It is 
defined as: 

'(x)=1-71T^i7 <7> 

The model's error was measured in two ways. The first of these is the 
mean square error: 

where ET is the total error for all of the patterns P. Ej is the error for the ith 
pattern. N is the length of the output layer, and dj and Oj are the desired and 
real outputs, respectively. Standardized data were measured. The second of 
these measures is the percentage of the forecasts that are no further than 
0.02 from the real value, also in the case of standardized data. This 
deviation, translated to the dynamic temperature range, represents a 
difference of at most half a degree centigrade. 

The neural networks were trained using the gradient backpropagation 
algorithm. Learning was considered to be complete when test set 
performance was found to fall parallel to a fall in learning set error. The 
intention here was to maintain the network's generalization capacity. 
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A three-layer multilayered perceptron was selected from the networks 
providing higher performance, as it had a higher number of input variables 
and a more general structure. The sensitivity analysis was applied to this 
network in particular. The size of the input layer was 720 neurons 
(48*3*5), as it received three days' data on the five variables, and it was 
fully connected to the intermediate and the output layers. The intermediate 
layer had 20 neurons, fully connected to the output layer. The output layer 
was made up of 48 neurons, the same number as the temperature 
observations to be forecast per day. 

The activation function that performed best was the above-mentioned 
Systole 2. Thanks to this function, fewer learning iterations were needed to 
obtain a mean square error level of 0.011671 in learning and 0.013014 in 
testing. These values are equivalent to a success rate of 94.57% and 90.08% 
for the learning and test sets, respectively. The above values were the best 
obtained under the stoppage criterion established to prevent the neural 
network's generalization performance from falling. The sensitivity analysis 
was applied to the network trained thus. 

3. SENSITIVITY ANALYSIS RESULTS 

The first study conducted on the basis of the sensitivity analysis was to 
determine the relative importance of each meteorological variable in 
forecasting temperature. The results are shown in Figures 1 to 5. These 
graphs plot the variable observations over the three days on record along the 
abscissa axis, the third day being the most recent. The variable's influence 
is represented along the ordinate axis. Note that all the graphs have been 
drawn to the same scale. 

The results to be inferred from the analysis of the graphs would appear 
to be contrary to intuition, as the importance of atmospheric pressure 
(Figure 1) is negligible, for example, the visibility variable being more 
important (Figure 3). 
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Figure 2. Lnportance of Temperature 

Figure 3. Importance of Visibility 
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Figure 5. Importance of Wind Speed 

The most important variable by far is temperature (Figure 2), though it 
is found to be of maximum importance in the later observations of the 
period. 

As regards wind, it should be pointed out that wind direction (Figure 4) 
has little influence on forecasting and is of similar importance to 
atmospheric pressure. Wind speed (Figure 5) is considerably more 
influential, being of relatively significant importance in the later 
observations of the period. 

The analysis of the graphs provides a guide for proceeding to eliminate 
given variables. They could have been eliminated manually, but the use of 
an automatic procedure to eliminate the less significant variables was 
preferred. The inputs were ordered on the basis of their importance, without 
taking into account the variable in question. Two networks have been 
generated on the basis of this classification, eliminating the less influential 
inputs and the connections between these and other neurons. Sixty per cent 
of the inputs were eliminated in the first and 85 % in the second. The 
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remaining network structure was maintained, as were the weights of the 
best performance obtained. The thresholds chosen led to the effective 
elimination of given variables, such as pressure. 
The performance of the networks built thus was assessed in comparison to 
the original network, and it was found to fall. Bear in mind that the 
elimination of inputs and the resulting loss in connections produces an 
imbalance in the trained network. This phenomenon was solved after a 
short process of adjustment of the original weights (5 learning iterations 
using backpropagation) to obtain much improved performance. The 
comparison between the three neural networks is shown in Table 1. The 
performance of the learning set (Tr) and the test set (Tst) of the original 
network arc shown, as is the performance of the nets after 60 % and 85 % 
of their inputs had been eliminated, both before and after the above- 
mentioned adjustment. It should be pointed out that network performance 
with 60 % elimination of inputs is fairly good compared with the original 
network. This gives some idea of just how unimportant the eliminated 
inputs arc: 

NETWORK EAN SQUARE ERROR FITNESS % 
First Net (Tr.) 0.011671 94.57 

First Net (Tst.) 0.013014 90.08 

60% Net (Tr.) 0.015557 77.96 

60% Net (Tst.) 0.015178 80.72 
60% Net (5 It., Tr.) 0.011733 92.62 
60% Net (5 It.. Tst.) 0.011563 92.84 
85% Net (Tr.) 0.025433 30.84 
85% Net (Tst.) 0.024396 36.36 
85% Net (5 It.. Tr.) 0.012983 88.58 
85% Net (5 It.. Tst.) 0.012847 92.01 

Table 1. Neural Network Comparison 

In view of the performance offered by the less complex networks, it can 
be said that the process of eliminating inputs to forecast the temperature 
variable has been a success. The networks obtained using this method are 
an improvement on the original network in terms of generalization 
capacity, while there is a slight fall in learning set performance. This 
phenomenon can be explained by the smaller size of the network, which 
means that it does not concentrate on the peculiarities of the learning set but 
on the useful features that are repeated. 
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4. CONCLUSIONS 

In this paper, a technique for forecasting an atmospheric variable is 
presented, which eliminates given input data and improves network 
generalization, leading to savings in computing time and the number of 
connections. 

These results may also be applied to the other atmospheric variables, 
and data from other stations may be used to confirm the relative importance 
of given variables over others for one area or application field. 
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identification* 

R. Rico-Martinez, J. S. Anderson and I. G. Kevrekidis 
Department of Chemical Engineering, Princeton University, 

Princeton NJ 08544 

Abstract 

Artificial neural networks (ANNs) are often used for short term dis- 
crete time series predictions. Continuous-time models are, however, re- 
quired for qualitatively correct approximations to long-term dynamics 
(attractors) of nonlinear dynamical systems and their transitions (bifur- 
cations) as system parameters are varied. In previous work we developed 
a black-box methodology for the characterization of experimental time 
series as continuous-time models (sets of ordinary differential equations) 
based on a neural network platform. This methodology naturally lends 
itself to the identification of partially known first principles dynamic mod- 
els, and here we present its extension to "gray-box" identification. 

1    Introduction 
Artificial Neural Networks (ANNs) have proven to be a valuable tool in nonlinear 
signal processing applications. Exploiting ideas common to nonlinear dynamics 
(attractor reconstruction) and system identification (ARMA models), method- 
ologies for the extraction of nonlinear models from experimental time series 
have been developed (e.g. [1, 2]) and applied to experimental data. In previous 
work, we have discussed some inherent limitations of these techniques (based 
on discrete-time schemes) in characterizing the instabilities and bifurcations of 
nonlinear systems depending on operating parameters. 

An alternative approach, resulting in continuous-time models (sets of Ordi- 
nary Differential Equations (ODEs)), also based on a neural network platform, 
was devised and implemented [3, 4, 5]. The approximations constructed in that 
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work can be described as black-box; no insight from first principles modeling of 
the system was incorporated in them. 

In this work we extend the approach to cases where portions of the algebraic 
forms of the set of ODEs describing the dynamical evolution of the system are 
known. We attempt to capture the behavior of the overall system by "hard- 
wiring" the known parts and approximating the unknown parts using a neural 
network (gray-box identification). 

In what follows we first briefly outline our black-box approach for the identi- 
fication of continuous systems. This discussion naturally leads to the extension 
to gray-box identification. Finally, we illustrate its use through an application 
to the modeling of a reacting system with complicated nonlinear kinetics. 

2    Black-box approach 

Consider the autonomous ODE 

x" = F(X;p) (1) 

X   e   TV,       p   e   TV,        F : TV x TV t- TV 

where X is the vector of state variables, p is the vector of operating parameters 

and X is the vector of derivatives of the state variables with respect to time. 
In previous work we showed a way of constructing such a set of ODEs from 
discrete-time experimental measurements of the state variables only ([3, 4, 5], 
see also [6]). We embedded the training of a neural network that approximates 
the function F(X;p) in a numerical integrator scheme. Both explicit and im- 
plicit integrators can be (and have been) used. In addition, we illustrated how 
the approach can be used when time series of only a single state variable are 
available. 

Consider the simple implicit integrator (trapezoidal rule) formula for Eq. 1: 

Xn+i =Xn + ^[F(Xn;p) + F(Xn+1;p)] (2) 

where h is the time step of the integration, Xn is the value of the vector of states 
at time t and Xn+i is the (approximate) result of integrating the set of ODEs 
to time (t + h). Figure 1(a) schematically depicts a neural network constructed 
using this numerical integrator as a template. The boxes labeled "neural net- 
work" represent the same neural network evaluated with two different sets of 
inputs for each training vector. Given the implicit nature of the integrator, 
the "prediction" of the integration depends on itself. Training was therefore 
done using standard recurrent network training ideas [7, 8]. Alternatively, a 
nonlinear algebraic equation solver can be used, coupled with the training, to 
solve exactly for the predicted value at every iteration and for every training 
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Figure 1: (a) Schematic of the evaluation of a neural network embedded in the 
implicit integrator (trapezoidal rule) of Eq. (2). The implicit dependence of the 
prediction of the state on itself results in a backward (recurrent) connection, 
(b) Schematic of the evaluation of a neural network for the gray-box approach. 
The known part of the model (G(X;p)) is evaluated along with the unknown 
part (F(X;p)), approximated by a neural network. In order to calculate errors 
(for training) the contribution of the known and unknown parts are combined 
using the integrator to give the state of the system at the next sampling time. 

vector. Further details can be found in references [4, 5]. The use of explicit 
integrators is discussed in [3]. This identification procedure has been tested for 
experimental systems exhibiting complicated dynamics (see e.g. [3, 4]). 

3    Gray-box approach 

The approach discussed aljpve can be combined with first principles modeling 
for cases where the full state vector is known while the understanding of the 
modeling of the system is only partial. Such an example is encountered in 
modeling reacting systems, when the kinetics of the reaction are not known a 
priori while inflow and outflow or heat transfer are well understood and easily 
modeled. 

As in the case of black-box approximations, we embed the training of the 
neural network in a numerical integrator scheme. For gray-boxes, the known 
part of the right-hand-side of the ODEs is explicitly calculated ("hardwired") 
and the neural network is trained to approximate only the unknown parts. 

Let us assume for the purposes of the illustration presented here that the 
first principles model of a given system takes the simple form: 

X = G(X;p) + F(X;p) (3) 
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where G(X;p) represents the known part of the model and F(X;p) is the un- 
known part. Note that the methodology is not restricted to models of the 
additive form of Eq. (3). 

Figure 1(b) schematically depicts the training procedure for an implicit in- 
tegrator. A "global" network is used to predict the state at the next time step. 
Some of the weights and nodes in this network are fixed because of the "known" 
part of the model; some are fixed because they pertain to the integration scheme 
and its constants. A neural "sub"-network is also contained in the scheme, which 
will upon training approximate the unknown parts of the right-hand-side of the 
system ODEs. We again use the implicit integrator of Eq. (2) as the basis for 
training this network, which - due to the implicit nature of the integrator - has 
recurrent connections and therefore requires multiple evaluations. 

4    An illustrative example 
In order to illustrate the capabilities of the gray-box approach we will make use 
of simulated data from a model reacting system [9]. It consists of a well-stirred 
reactor in which a single irreversible reaction A -» B occurs on a catalytic 
surface. The mass balances for species A on the catalytic surface and the gas 
phase take the general (dimensionless) form: 

^    =    KaIL(l-e)-Kd0e-L--rB1-KR9e   - 
CLT 

™   =   i-n + u'[Kdee-L^tsl -KaIl(l-e)] (4) 
dr 

where 9 is the fractional coverage of the catalytic surface, II is the partial pres- 
sure of the reactant in the gas phase, 7 is the dimensionless temperature, T is 
the dimensionless time and Ka, KR, Kd, a*, ß and IT are constants. This has 
been suggested as one of the simplest models that can give rise to oscillations in 
isothermal catalytic reactions; its main characteristic is the coverage-dependent 

desorption activation energy (the e" V term in Eq. (4)) caused by adsorbate- 
adsorbate interactions. 

To illustrate the dependence of the dynamics on an operating parameter, 
we obtained time series from this system for several values of the dimensionless 
temperature 7 (keeping the remaining parameters Ka = 35, a* = 30, Kd = 350, 
II* = 0.36, KR = 8.5 and ß = 0.2 constant). Depending on the value of 7, the 
system may evolve towards a steady state, towards oscillatory behavior, or to 
either of the two depending on the initial conditions. The variegation in long- 
term dynamics makes this example a good test of the approximating capabilities 
of the neural network. 

Figure 2 shows the bifurcation diagram for this system: a branch of steady 
states undergoes a subcritical Hopf bifurcation to oscillatory behavior for 7 « 
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Figure 2: Bifurcation diagram for the single species surface reaction system with 
respect to the dimensionless temperature 7. Solid lines denote stable steady 
states, dashed lines unstable steady states, open circles unstable limit cycles 
and filled circles stable limit cycles. The maximum 6 of the periodic trajectory 
at each value of 7 is marked. 

2.941. There is a small range of values of 7 where a stable large amplitude oscil- 
lation coexists with a stable steady state (starting at about 7 ss 2.9076). As 7 is 
increased the system exhibits, as its sole long-term attractor, a large amplitude 
limit cycle that disappears at 7 « 3.841 via another (now supercritical) Hopf 
bifurcation. 

Figure 3 shows phase portraits of the system for several values of 7 in the 
range of the bifurcation diagram of Fig. 2. 

5    Network construction and results 

Using data representative of the periodic phenomena described above, we tested 
the neural network ODE-gray-box algorithm for identification. The training set 
included several time series (0 and II vs T) for values of 7 before the subcritical 
Hopf (including the region of bistability), after the subcritical Hopf (limit cycle 
behavior), as well as after the supercritical Hopf at high values of 7. 

For our illustration we assume that all terms in Eq. 4 are known except for 
the term representing the rate of desorption of the reactant from the catalytic 

surface. That is, we replace the term Kd0e~ " T
+
 , with an unknown function 

f(6,7) to be approximated through a neural network. The gray model we seek 
to construct is of the form: 

dO 
TT    =    KaU(l - 6) - f(9,j) - KR0e- 
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Figure 3: Long term attractors for 7 values in the range of the bifurcation 
diagram of Fig. 2. Top row: phase portrait of the stable limit cycle at 7 = 3.0 
along with segments of the two corresponding time series. For the stable steady 
states (7 = 2.9 and 7 = 3.85) phase portraits of transients approaching the 
steady state are shown. In the regions of bistability (7 in the range (2.925,2.94)) 
the unstable (and thus experimentally unobservable) limit cycle in the interior 
of the large amplitude stable limit cycle is also drawn. 
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Figure 4: Predicted desorption rate as a function of surface coverage (9) and 
dimensionless temperature (left) and relative prediction error (right). The plot 
on the right shows the difference of the predicted minus the actual desorption 
rate normalized by the actual rate. 

™    =    l-U + W[f(6,y)-KaJl(l~e)] (5) 

The (feedforward) neural sub-network, embedded in the numerical integrator 
of Fig. 1(b), involves two inputs [6 and 7), one output (f(6,7)) and six neurons 
with sigmoidal (tanh-type) activation function in each of the two hidden layers. 
The derivatives of the error measure (energy function) with respect to network 
parameters needed for the training algorithm are obtained using the chain rule 
and (due to the recurrence) the implicit function theorem. 

The training set consisted of a total of 2950 points allocated in the following 
manner: 250 points for 7 = 2.9, 450 for 7 = 2.91, 500 for 7 = 2.925, 500 for 
7 = 2.94, 250 for 7 = 3.0, 250 for 7 = 3.0, 250 for 7 = 3.2, 250 for 7 = 3.4, 
250 for 7 = 3.8 and 250 for 7 = 3.85. The time step of the integrator was 
0.06 dimensionless units for all the time series used (roughly one twentieth of 
the period of the oscillation observed at 7 = 3.0). More points are included 
in the region of multistability in an effort to capture accurately the hysteresis 
phenomena. Training was performed using a conjugate gradient algorithm with 
frequent restarts (see [4, 5] for a discussion). Convergence was achieved after 
approximately 300 network parameter updates. 

The sub-network succeeds in capturing the basic form of the behavior of the 
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Figure 5: Predicted bifurcation diagram for the single species surface reaction 
system with the gray-box neural network approximation of the desorption rate. 

rate of desorption with respect to 6 and 7 (surface coverage and temperature). 
Figure 4 compares the actual desorption rate (as a function of (6,7)) with the 
network predictions. More importantly, the dynamic behavior (including the 
infinite-time attractors) of the system (Eq. 5) also compares favorably with the 
original system (Eq. 4). Figure 5 shows the predicted bifurcation diagram using 
the form of the desorption rate given by the network. The network correctly 
predicts a subcritical Hopf bifurcation at low 7, as well as a supercritical Hopf 
bifurcation at higher values of 7 (at a slightly lower value of 7 than for the 
original system, Fig. 2). 

The neural network gray-box approximation can be used to extract impor- 
tant mechanistic information pertaining to the fitted step - and thus possibly 
discriminate among rival candidate first principles models. For example, Fig. 6 
shows that the network predicts a linear dependence of the logarithm of the 
desorption rate versus — at constant 0, in agreement with desorption being an 
activated process. Fig. 6 shows also that the predicted slopes of these plots (and 
thus, the activation energies) vary linearly with 8, consistent with an assumption 
of attractive adsorbate-adsorbate interactions (as was indeed the case). 

6    Summary 

We have extended a previously developed black-box neural network methodol- 
ogy for the characterization of experimental systems as continuous-time models, 
so as to allow the identification of unknown parts of first principles models. Such 
modeling efforts incorporate the insight obtained from the first principles mod- 
eling (algebraic forms of the ODEs describing the dynamical evolution of the 
system) in a neural network framework capable of approximating (after training) 
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Figure 6: The linear dependence of the natural logarithm of the desorption 
rate with respect to A at constant 6 is correctly captured by the neural network 
gray-box approximation (left); furthermore the predicted slope of the lines varies 
linearly with 9 (right), in agreement with the assumption of adsorbate interac- 
tions used to generate the training data. 

unknown parts of the model. 
The capabilities of this gray-box approach were illustrated using a single 

species surface reaction system. In this illustration we assumed that the expres- 
sion for the rate of desorption of the reactant is not known and approximated 
it through a neural network. Both the short- and long-term dynamic behavior 
of the system is well approximated by the hybrid model resulting from training. 
Furthermore, a study of the properties of the fitted desorption rate may yield 
insight in the physical mechanisms underlying it, and thus possibly assist in 
discriminating among rival first principles models. 

Discrete-time models (based on neural networks) are trained to predict the 
result of integrating the model equations over some time period. It is difficult to 
"unravel" the contribution of known parts of the model to this result from the 
contribution of the unknown terms. When, on the other hand, the equations 
themselves are approximated (as opposed to the result of integrating them), the 
procedure naturally lends itself to incorporating processes whose modeling is 
established to the gray-box model. 

The type of overall network presented here (with some parts of its architec- 
ture available for training, and some other parts fixed by either the known parts 
of the model or the integrator scheme) may prove to be a valuable tool towards 
understanding the dynamics of experimental systems. The particular choice of 
recurrent nets templated on implicit integrators presented here is motivated by 
the anticipated stiffness of chemical kinetic equations. Feedforward implemen- 
tations based on explicit integrators are also possible. We are currently working 
on variants of training algorithms for recurrent nets and their implementation 
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on parallel computers. 
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Abstract —-We have used a multilayer perceptron to estimate the evoked 
potentials, masked by the EEG signal. The problem was studied on synthetic 
signals, generated as given in ([10]) and error criteria other than standard L2- 
norm were taken into account. We showed experimentally that, as suggested 
in ([2]), better results could be obtained this way, if the parameters were 
properly adjusted. An average performed on a few ensembles strongly 
improves the result and the number of ensembles is lower than quoted in other 
approaches. We have also studied the influence of the window length and of a 
different number of hidden units upon the convergence speed and test error. 
Though good results were obtained in this quantitative study, the trained 
network which resulted should be tested on real data, in order to get a 
complete outlook upon this problem. 

INTRODUCTION 

In the research of brain's electrical activity, the spontaneous and evoked 
activities were intensely studied, from both clinical and experimental points of 
view,. An important tool is the electroencephalogram (EEG), a recording of the 
brain's electrical activity. If there is no observable intervention, the EEG activity is 
called spontaneous ([11]). This background activity can be changed by central or 
peripheral stimuli, allowing the study of the evoked activity. 

The evoked potential (EP) is an anwer to a stimulus and it can be noticed 
using microelectrodes, macroelectrods plased on the cortex or using electrodes 
placed on the skul. When using the third method, an extraction of the EP from the 
EEG signal, which masks it, it's necessary and one encounters a well-known case 
in biomedical signal processing,, when a physiological signal has its components of 
interest obscured by much larger signals due to different processes ([11]). 

A classical approach to enhance the EP's signal components, is based on 
filtering the data ([11], [1]), while another one takes into account artificial 
intelligence (AI) methods, including expert, neural and fuzzy systems ([1]). One 
should remark that: a) the EP is a very low amplitude signal, compared with the 
0-7803-2026-3/94 $4.00 © 1994 IEEE 606 



EEG; and b) the EEG signal is nonlinear. Neural network capabilities, as 
nonlinear models, ([7], [4], [10]), drove to good performances, when the signal 
characteristics were not known, though the results strongly depended on the neural 
architecture and the learning strategy ([5], [13]). 

In this paper, we have considered the problem of EP estimation, using a 
feedforward network. A multilayer perceptron was chosen, trained with the 
standard backpropagation algorithm and some some of its extensions, 
concerning different error criteria. Changes in the structure of the network were 
also experimented, in order to improve the results and the convergence speed. The 
purpose was analysing from a quantitative point of view the performance of this 
structure in solving the EP problem. In the following, by network we are going to 
refer to a multilayer perceptron. 

THEORETICAL APPROACH 

The EP problem 

The problem we approach is that of estimating the values of the evoked 
potential signal from the given data samples. The signal is present, but it is buried 
in the background EEG, which is obscuring it. This activity may be considered as 
noise, additive to the clean signal: 

xnoisy(t) = xclean(t) + n(tX „      . .     °i 
where Xclean(t) is the correct evoked potential, n(t) is the EEG activity and 
Xnoisytf)is the measured s'g"31- We assume t*131 ^ EEG and EP si8nals are not 

correlated. The problem is finding an estimation x~(t) so that X(x) is minimized, 
where K is a general norm: ||xclean(t) - x~(t) || ([8], [12]). Many times, this is the 
L2-norm. 

The Multilayer Perceptron 

Among the neural networks, the multilayer perceptron has the most frequently 
encountered applications. It is widely used in biosignal processing, too. The results 
are promising, as long as the data were adequately preprocessed ([11]). In solving 
nonlinearly separable problems, at least two active layers are needed ([7], [4], [9]). 

The architecture shown in Figure la consists of an input layer, which passes 
forward the input values, the hidden layer, which is responsible of an internal 
encoding during the learning process and the output layer, also active, like the 
hidden one. The layers are made up of nlnput, nHidden and nOutput nodes, 
respectively. 

The Learning Rule in its standard form uses a gradient search method, which 
updates the weights in the network for each input vector ([13]). The 
backpropagation algorithm (BKP) was built on the basis of the least-squares error 
(Euclidian or L2-norm) criterion ([2]), which is a first-order descent method. 

Let the network be as depicted in Figure la, with x(t) the input vector, where 

Xj=x(k-r), r = 0,nlnput-l, are its components, given by a   tapped delay line, 
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ÄSf £S   H   T" VeCt°rS fr°m "* Wdden and *e out layer respecüvely^Qne should make an assumption regarding the relationship  between 
x(k) wih the "»dex  "k"  and  time   V.   The usua 

x(k-nlnput+l) 

nlnput       nHidden     nOutput 

Figure la:The network architecture 

. —       . .   *..v usual 
technique«    k=t ([5]) and it was adopted 

1n\!2°We   shaI1 /ollow   the notation: 
Äin-n,d=rw.h] and jjhid-outj     , for ^ 

weight vectors, where the neurons in the 
layeü_ arc: 

i = l,nlnput, h = l,nHidden, j = l.nOutput. 
Each neuron in the active layers yields its 
output by forming the weighted sum of the 
outputs of the neurons in the immediately 
preceding layer, adding the bias and passing 
the result through its characteristic nonlinear 
activation function.  For example,   in  the »de„ .aye,, fc * »,alion ^T'» S^S 

nlnput 
net   =    Z 

n      i=l 
w. *x. + ih     i 6.     ;    f(mt)=a*-~exp(-S*m\ 

1+      (- ^ 

JÜÜ",TSTi »  '*"" *• S'eePneSS **"£"£ 'a- value is a constant, x, is the l-th component of the input vector and »ft» ic    »v.»    u- 
value. When passing from hidden to the output vlltSv'ues are calc^ ated Tn 
the same way. Once the output values y-t are available, for S^JS^ 

can be evaluated, comparing the actual value with the desired value dj. The error 

function ([2]) may be selected from Table 1, where e: n = d     - v •      Tknallv 
JP      jp    Jjp.   usually, 

nOutput 
2 

j=l 
3(ejp) (3) 

nPat nOutput 
=   2       2 

P=l     j=l 
3(ejp) 

(4) 

1 nPat nOutput 
~^ 2       S nOutput * nPat p=l     j=i 3(ejp) (5) 
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The weights are updated backpropagating the error, in order to find the 
optimum weight vector that minimizes it. The gradient of E is calculated and the 
weight vector at iteration "t" is adjusted in the direction of the steepest descent 
([7], [2], [9] et.al), with Ep given by (3) and r\ a learning constant: 

w(t+l) = w(t) + Ti(-VE   ) 
P (6) 

The calculus of the gradient yields ([7], [2], [9]) eq. (7) for any two neurons "q" 
and V, for a pattern "p", 8r is node's V error and yq is node's "q" output value, 

given by eq. (8) for the output nodes j = l.nOutput, and by eq. (9) for the hidden 
nodes, with index "k" over all the nodes in the previous layer, the error is 
propagated from. 

Table 1: ERROR FUNCTIONS 

Error function |e. |<ß 
JP 

|e.  |>ß 
JP 

LI - norm 3(ejp) = |ejp| 3(ejp)Hejp| 

L2 - norm 3(ejp) = 0.5 * e2p 3(ejp) = 0.5*e2p 

Huber's error 
function 3(ejp) = 0.5*e2

p 3(ejp) = ß eJP -0.5*ß2 

Hampel's error 
function 

ß2             7teiD 
3(ejp) = — (1-cos—^-) 

7t                           ß 

ß2 
3(ejp) = 2-^— 

7t 

Logistic 
function 

3(e: ) = ß2ln[cosh( J£-)] 
JK                          ß 3(ej ) = ß2ln[cosh(^.) 

iV                                  ß 

Wqr(t + 1)-Wqr(t) = -T1 qrv 
dEn 3E      dymt   Snet . 

P -_- P PJ Pi        s --r\ =   riö   y 
3wnr fl out   dnet .   dw r   Q 'qr dy 

PJ PJ qr 

(7) 

-out 
PJ 

5E„    dy out 
PJ 

dE 

öyp? 9net PJ dy 

p   J, l 53(eip) 
BuTfj(netpj) = fj(netpj)—^f- 
PJ 
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8phd=f!h(netph)pPkwkh (9> 

There are several approaches to increase the convergence speed and to avoid 
the algorithm getting stuck in local minima. One could mention adaptive 
parameters (bias, momentum a, slope of the activation function) and other error 
criteria than L2-norm ((2], [9]). With a momentum term, 0 < a < 1, (7) becomes: 

wqr(t + l)-wqr(t)=   Tl5ryq+ot(wqr(t)-Wqr(t-l)) (10) 

and a could be adaptively adjusted, too. This holds also for the bias, a relation 
similar to (10) can be written if one considers the bias as a weight value for a 
suplimentary node in the structure, having always as an input the "1.0" value. 
Remark: in the equations (7), (8), (9), (10), which  give the adaptation for both 

hid 
hidden - output and input - hidden weights, with yq = y^   , h = l,nHidden and 

y = = x-, i = l,nlnput, when taking into account the error criteria in Table 1, only 

the expression for 80ut changes ([2]). 

EXPERIMENTAL RESULTS 

We used synthetic evoked potentials, generated as ([10]) quoted from literature: 
the "clean" signal consisted of one full sine wave, followed by a half attenuated 
sine wave. Noise resulted after filtering random numbers with uniform 
distribution, with the 11-point smoothing filter ([10]): 

nj = (-36 z i_5 + 9 z {A + 44 z j_3 + 69 z j_2 + 84 z M + 89 z j + 84 z i+1 + 
+ 69 z i+2 + 44 z i+3 + 9 z i+4 - 36 z i+5)/429 (11) 

There are plotted in Figures: lb.) the unfiltered noise, 2.) the filtered noise (200 
samples), 3) the clean and noisy EPs, 200 samples and 4) the clean and noisy EPs, 
576 samples. We have considered N number of samples, and a window of length 
W (W odd). Each pattern consisted of W samples, read as the window was sliding 
one step (sample) to the right and a set of N input patterns resulted. The desired 
output value was always considered to be the correct value placed in the middle of 
the window. Experiments shown in Table 2 were carried out: 

1. An 11-7-1 network was trained (see Table 2). The influence of N is given in 
Table 3, for N = 200 and N = 576. For a number of patterns N = 576, the 
training error decreases more rapidly to a lower value than for N = 200 (when 
error= 0.011 was the minimum we could achieve with this structure and N = 200). 

2. The learning curves for the experiment 2 (Table 2) are shown in Figure 5. It 
was clear that adaptive biases and slopes speeded up the convergence. 

3. We trained the network (see Table 2), requiring a maximum training error 
= 0.00066 for different nlnput (odd) values. As nlnput is the window length W, 
Table 4 shows its influence on the convergence speed and test error. If W is too 
small, the nonlinear relations between the current data sample and samples outside 
the window cannot be learned by the network ([13]). For nlnput = 5 and 7, the test 
error is lower because the network is not making any encoding, as nlnput < 
nHidden, but still, the network performs a poor noise removal. If W is large, too 
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many correlations can be unexpectedly captured by the system    ([13]). 
nInput=W=13, the test error is higher as compared to other experim. cases. 

Table 2: EXPERIMENTS 

For 

Constant 
parameters 

Ex 
P 

nr. 

ninp. 
(=W) 

nHid nPat 
(N) 

nEpochs Bias Err. 
crit. 

Train 
EP 

• a = 0.1 
• s = 0.5 
• nOutp= 1 
• a = 0.5 
• f(net) as 

(1) 
• desired 
sign=clean 
EP 
• test sign 
=noisy EP 

1 11 7 200 variable ct. L2 clean 

11 7 576 variable ct. L2 clean 

2 11 7 576 variable ct. L2 clean 

11 7 576 variable adapt L2 clean 

3 
5 79 
11,13 7 576 variable adapt L2 clean 

4 11 6,7,8 576 variable adapt L2 clean 

5 11 7 576 1050 adapt L2 
Hub. 
Hamp 
Log. 

noisy 
other 
than 
train. 

Table 3: THE INFLUENCE OF N (NUMBER OF 
PATTERNS) UPON THE TRAINING ERROR 

Nr. of 
patterns 

Epoch 
s 

Total number 
of samples 

Training 
error 

200 512 102,400 0.0110 

576 153 88,128 0.0011 

4. The influence of the 
number of hidden units on 
the training error 
(experiment 4, Table 2) is 
shown in Figure 6. 
Adding a hidden unit did 
not improve the test error, 

Table 4: THE INFLUENCE OF THE WINDOW LENGTH 

nlnput nHidden nOutput Epochs Total nr. of patt. Test error 

13 7 44 25,344 0.1199 

11 7 69 39,744 0.1118 

9 7 87 50,112 0.0802 

7 7 10 5760 0.0597 

5 7 10 5760 0.0378 

on the contrary, though the convergence speed increased. There are methods given 
in literature, to determine, the number of hidden units, but our concern here was 
not finding an optimal structure. One could find out, though, following the 
suggestion of ([13]), whether the number of neurons in the hidden layer was too 
high, by checking the rank of the autocorrelation matrix of the output hidden 
units. This matrix would have had rank deficiency if at least one hidden unit's 
output would have been linearly dependent on the rest of the hidden units. 

After these tests, we decided to use an 11-7-1 network, which proved to be a 
tradeoff between the convergence speed and performance in the test phase, in the 
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cases studied above. Training the network on a clean EP (input signal and desired 
output signal) and testing it on a noisy EP, as we did, showed what one could have 
told in advance: the network wasn't able to cope with the noisy input signal 
satisfactory. The output signal (test phase) vs. the desired one, is shown in Fig. 7. 

5. This experiment (Table 2) took into account various error criteria. Training 
was performed for 1050 epochs (i.e. 604,800 input patterns), with input weights 
randomly chosen, but the same for all phases of the experiment. The output 
signals in the test phase, for the mentioned error functions are plotted in Figure 
9,10,11,12. Better performance was obtained, for the same training conditions, if 
we considered other error criteria than the L2-norm. For the resulting networks, 
the mean square error when testing with noisy EP is given in Table 5. 

Also, this experiment checked the assertion made in ([2]) regarding the strong 
dependance of the new error criteria on the value of the controlling parameter ß. 
For a large value of ß, the learning algorithm is practically equivalent to the 
standard BKP algorithm ([2]) and it may show a learning curve as given in Figure 
8. On the other hand, if ß is very small, then the first derivative of the error 
function closely approximates the signum (hard limiter) function ([2]). If ß is too 
low, the network may not learn (for example, if ß < 0.1, the network is not able to 

Table 5: THEMSE ERROR FOR THE RESULTING NETS     pass the flrst steP'    the 

output signal may be as 
given in Figure 12). 

It is also well- 
known, that average 
evoked potentials have a 
reduced variation in the 

framework of a specific stimulus ([11]). In ([10]), a strong improvement of the 
performance was shown, if average on a small set of ensembles was considered. 
We argue that, due to better results obtained when using other error criteria than 
standard L2-norm, performance is improved when averaging on a few ensembles 
(Figure 11, for the logistic function, 5 ensembles). 

Experiment 5 (Table 2) was repeated, chosing the desired value at a specific 
moment of time, as the next value following the window, i.e. if the input values 
were noisy x1; XJJ, the desired value was the correct x12, etc. There was no 
evident improvement due to this new context learning. The only apparent 
advantages were, the possibility of selecting the nlnput value either odd or even, 
and the intuitive predictive quality of the network, as being able to give the 
following value, based on the past 11 input values. 

CONCLUSION 

Experimentally, we have chosen to use a multilayer perceptron with the 
structure 11-7-1. When trained on a clean EP signal and tested on noisy EP, it 
showed out poor performance, as the network did have in the training phase no 
information about the noise from the real EP so, we further trained it on nosiy EP 
and tested on other noisy EPs. Five experiments were carried out, which led us to 
the conclusion that for the same training parameters and number of patterns, better 
performance could be achieved when using error criteria other than the standard 

612 

Training error function MSE test error 
L2-norm 0.09040 
Huber, ß = 0.01 0.08912 
Logistic, ß = 0.001 0.08705 



L2-norm. We argue that, selecting such a new criteria and adjusting the 
parameters, an average of the results obtained in a few tests could be made, as 
usual in this particular problem, but the number of ensembles is lower than in 
other cases. Our results can be improved if further carefully chosing the ß 
parameter. The influence of the window length and of a different number of 
hidden units upon the convergence speed and test error were also studied. 

Our future work would have to take into account the idea of finding a 
minimum structure by one of the available methods. Also, we are aware of the fact 
that studying the performances on synthetic data, gives only a part of the overlook 
upon this matter, so it is necessary to test the obtained network on real data. 
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Abstract. A feed forward neural net is trained to invert a simple 
three compartment model describing the tracer kinetics involved 
in the metabolism of [18F]flourodeoxyglucose in the human brain. 
The network can estimate rate constants from Positron Emission 
Tomography sequences and is about 50 times faster than direct 
fitting of rate constants using the parametrized transients of the 
compartment model. 

INTRODUCTION 

Positron Emission Tomography (PET) is an important tool for mapping of 
brain metabolism and functionality [2]. The primary target of PET is recon- 
struction of concentrations of certain radioactive tracers. The usefull tracers 
emit positrons that are locally annihilated to produce two 511 keV gamma 
rays propagating in opposite directions. The 3D distribution of the tracer 
can be reconstructed from the geometric constraints of coincident counts, 
using standard techniques (filtered backprojection). An important class of 
tracers are chemically equivalent to compounds that enter the basic brain 
metabolism. By reconstructing such tracer distributions important aspects 
of brain metabolism have been revealed. Furthermore, by investigating the 
transient response to tracer injection, it is possible to identify fundamental 
kinetic rate constants. In this study we investigate the latter approach. The 
basic kinetic model was proposed by Sokoloff et al. [1]; in subsequent stud- 
ies the model was used to estimate rate constant in lumped regions. In the 
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work of Kanno et al. [3] pixel by pixel estimation of the rate-constants was 
introduced. This scheme has, however, not found wide spread use due to 
the complexity of the task of fitting the kinetic model transient to the large 
number of individual pixel transients. In this work we show how a neural 
network may substitute for such tedious parameter fitting procedures. The 
neural network system is trained to produce a smooth map relating a given 
transient with its most likely rate constants. This will provide a much faster 
estimation time for the individual pixel rate constants 

SOKOLOFF's KINETIC MODEL 

We consider here the kinetics of the compound [18F]flourodeoxyglucose (FDG). 
The kinetics of this tracer is similar to glucose in the initial metabolic steps. 
It passes through the blood-brain barrier (BBB), and is phosphorylized in a 
process past the BBB analogous to glucose. Then it ceases to react further 
and is effectively trapped. The kinetics can be modelled by a compartemental 
model involving one compartment representing the tracer density in the ar- 
terial blood outside the BBB, Cp; one compartment representing the socalled 
precursor pool, Cgj and finally a compartment representing the phosphoryl- 
ized fraction behind the BBB, C^; see figure 1. In current experiments the 
arterial concentrations are measured continuously along with the scan, hence 
the concentration Cp can be considered a control parameter for the compart- 
ment model. 

BBB 

Blood plasma Brain tissue 

Precursor pool Metabolic products 

FDG 
% % 

FDG-6-PO, 
9 

FDG 
- #*. \ 

c; 

Figure 1: Sokoloff's three compartment model applied to phosphorylization of 
[18F]flourodeoxyglucose (FDG). The star on the concentrations signifies that we 
consider tracer amounts and constants 

Following the injection of the tracer, hence, the rise of the arterial blood 
concentration Cp, the flow through the BBB starts. The measured PET tracer 
activity is the sum of the activities of the two compartments to the right of 
the BBB c.f. figure 1, 
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c; = cE + c*M (l) 

The dynamics of the three compartment model is given by: 

dc; _dc%   dc^ 
dt ~ di +  dt {l] 

with 

^f = KC'E, (3) 

and dC* 
-Ji = )cic*P-kW*E-k;c'E. (4) 

The reverse reaction rate constant (k^) corresponding to k^ is neglected. 
These equations are straightforward to integrate providing the two time de- 
pendent concentrations, 

C*E(t) = kle-^+k^t f e^+k'^'Cp{t') dt' 
Jo 

(5) 

dt' (6) c*M{t) = k*1ki f [e-(**+^(' / e(*;+*3*)«"c^(f") dt" 
Jo   l Jo 

Following injection these solutions describe the transient activity in terms 
of the measured Cp(t) and the three rate constants. Conversely, for a given 
transient Cp(t) and for given measured sum of concentrations C*(t) we may fit 
the three rate constants. An example is shown in figure 2. We use a simple 
least squares cost function for the fit, hence implicitly assuming Gaussian 
residuals. Optimization over the three parameters was carried out using a 
second order Newton scheme1 

There are two different approaches from here. Up til now most studies as- 
sume that the rate constant arc homogeneous in regions, see e.g. [1, 2], and the 
rate constants are fitted from the regional average activity transient. Alterna- 
tively we can fit individual rate constants for each pixel in the reconstructed 
volume [3], and analyse for homogeneity. However, since it is quite tedious to 
fit the kinetic model, the latter approach has not found widespread use. In 
the upper panel of figure 3 we show the result of such a pixel by pixel fit. The 
artifacts outside the elliptic area of the brain are due to the reconstruction 
scheme used (Filtered backprojection). 

The database used for these experiments arc PET data collected at the 
PET center at Rigshospitalet, Copenhagen. The subject described in this 
paper is a 43 year old woman with multiple sclerosis. Data are aquired on a 

'Based on the solution to the kinetic model it is straightforward to compute the second 
derivatives. 
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GE4096 plus (General Electric Medical Systems), sampling 15 slices simulta- 
neously. The dynamic scans after injection of 200 MBq F-18 labelled FDG are 
performed over 60 minutes, yelding 34 contiguous time frames of increasing 
duration in order to provide a reasonable sampling of the C* curve: (10@6 
sec; 3@20 sec; 8@60 sec; 5@120 sec; 8@300 sec). A single such curve is shown 
in figure 2. Images were reconstructed in 128a;128 matrices (2mm2 pixels) by 
standard Filtered backprojection (Ramp filter with Hann window). Correc- 
tion for attenuation is based on a separate transmission scan with a rotating 
Germanium pin source. For further introduction to PET scan techniques see 

e.g. [2] 

Figure 2: C*(t) as measured by PET for a single pixel, as produced by the kinetic 
compartment model with the fitted rate constants, and as estimated by the neural 
network. 

To avoid the tedious fitting procedure we here investigate the possibility of 
identifying the inverse modeloithe kinetics: we search for a map that provides 
an estimate of the three rate constants for a given observed transient. Our 
basic vehicle will be a simple feed-forward network. 

What should be used for inputs?. The PET transients depend, c.f. equa- 
tions (5-6), on the rate constants and on the time dependent arterial concen- 
tration (Cp). If we want to generalize from one set of pictures to another set 
(possibly another subject) we would need to provide both the observed PET 
transient and Cp(t). This will be pursued in future studies. In this work we 
tentatively train the network to predict the rate constants for pictures of a 
single sequence of PET images, hence, Cp is the same for all pixels and we 
need not provide it as input. In particular we train the network on transients 
from a small subsample of one slice of the PET volume scan Subsequently we 
apply the trained network to get the rate constants for the (large) remaining 

set of pixels. 
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«vJ ™<3^r'  -1 

20 40 60 80 100 120 

Figure 3: Image (slices) showing the k* rate constant as determined by fitting the 
kinetic model (pixel by pixel) using a second Newton scheme (upper panel) and 
as determined by the neural net operating as inverse model for the kinetics (lower 
panel). The artifacts outside the elliptic area of the brain are due to the "Filtered 
backprojection" algorithm used for reconstruction. 
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Figure 4:   Comparison of time developments for the training process of standard 
Backpropagation and the BFGS scheme. 

NETWORK DESIGN 

The network considered is a standard feed forward net with a single layer of 
hidden units. The activation function of the hidden units are hyperbolic tan- 
gents, while the output units are linearly activated. The particular network 
for this study had 34 inputs corresponding to the activity transient of a given 
pixel. The net had ten hidden units and three output units. We trained the 
network by a pseudo second order scheme, the Broyden-Fletcher-Goldfarb- 
Shanno (BFGS) algorithm see e.g. [4]. This algorithm is a variable metric 
method that constructs a sequence of matrices approximating the inverse 
Hessian. Using BFGS instead of e.g. standard Backpropagation [5] provides 
a significant speed-up. This is quantified in figure 4, showing the time devel- 
opment of the training process with backprop and with the BFGS method 
respectively. Note the scale is in arbitrary CPU time units not iterations, 
since a backprop iteration is faster than a BFGS iteration. 

For most adaptive systems the objective is not to learn the training set, 
but rather to perform well on a much larger set of conceivable inputs, i.e., 
generalization. The generalization ability depends on architecture and on size 
of the training set. Hence, for a given architecture, it is important to estimate 
the necessary number of training cases (pixels) to obtain good generalization. 
This relation is quantified by the so-called learning curve of the architecture 
as shown in figure 5. We note that a mere 4000 pixels are needed to obtain 
the asymptotic level of the test error. 

Finally we apply the trained network to produce a full estimate of a "slice" 
of the PET scan as presented in the lower panel of figure 3. It is quite 
remarkable that the image quality of the rate constants reconstructed by the 
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Figure 5: Learning curve for the feed forward net trained by BFGS, approximately 
5000 pixels are needed to reach the asymptotic generalization level (about a quarter 
of the pixels in an image (slice)). 

networks inverse model is less noisy than quality obtained from the fitting 
procedure. The reason is that the network capacity is limited by the inherent 
constraints of the network architecture, while the Newton fit can lead to 
arbitrarily (wrong) rate constants for a given pixel if the transient is very 
noisy. We also note that the execution time for the feed forward network is 
about two percent of the average time needed to obtain the kinetic constants 
by fitting the transients with the Newton method. 

CONCLUSION 

We have shown how a feed forward net may be used for identification of the 
inverse model for three compartment PET tracer kinetics. Not only is the 
use of the feed forward net significantly faster than fitting the kinetic model, 
but our tentative results seem to indicate that the rate constant distribution 
is regularized by the constraints imposed by the network architecture. 
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Abstract - Auditory segmentation is critical for complex auditory 
pattern processing. We present a generic neural network 
framework for auditory pattern segmentation. The network is a 
laterally coupled two-dimensional neural oscillators with a global 
inhibitor. One dimension represents time and another one 
represents frequency. We show that this architecture can in real 
time group auditory features into a segment by phase synchrony 
and segregate different segments by desynchronization. The 
network demonstrates the phenomenon that auditory stream 
segregation critically depends on the rate of presentation. The 
neuroplausibility and possible extensions of the model are 
discussed. 

1. INTRODUCTION 

At any time a listener is being exposed to acoustic energy from many 
simultaneous auditory events. In order to recognize and understand such dynamic 
environment, the listener must first disentangle the acoustic wave and capture each 
event. This process of auditory segmentation is referred to as auditory stream 
segregation or auditory scene analysis [1]. It is a critical part of auditory 
perception. 

Auditory segmentation was first reported by Miller and Heise [6] who noted 
that the listeners split the signal with two sine wave tones into two segments. 
Segmentation could be obtained with as little as a 15% difference in frequency and 
throughout the entire frequency range from about 150 Hz to 7000 Hz. Bregman 
and his collaborators have carried out a series of studies on this subject. In one of 
the early studies [1], subjects were asked to report the temporal order of the six 
tones in the sequence. Three of them were in a high frequency range, and the other 
three in a low frequency range. This situation is simplified into Figure 1. The 
results showed that at high rates of presentation, subjects perceived two separate 
sequences corresponding to the high and low frequency tones respectively, and they 
were able to report only the temporal order of the tones within each sequence, but 
not across the two sequences. This basic phenomenon of stream segregation was 
repeatedly verified in different contexts [4] [1], In general, if auditory patterns are 
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displayed on a spectrogram, the results are consistent with Gestalt laws of 
grouping that have been expressed in the visual domain. 

Frequency 

Time 

Figure 1.   Six alternating high and low frequency tones as displayed in a 
spectrogram. 

von der Malsburg and Schneider [9] proposed perhaps the only neural network 
model that addressed the problem of auditory segmentation. They described the idea 
of using neural oscillations for expressing segmentation, whereby a set of features 
forms the same segment if their corresponding oscillators oscillate in synchrony 
and oscillator groups representing different segments desynchronize from each 
other. Using a fully connected oscillator network, they demonstrated segmentation 
based on onset synchrony, i.e., oscillators simultaneously triggered (a segment) 
synchronize with each other. Generally, a fully connected network indiscriminately 
connects all the oscillators which are activated simultaneously by different objects, 
because the network is dimensionless and loses critical geometrical information. 
Because of this, their model could not extend very far. For example, the model 
cannot demonstrate stream segregation which requires an account of frequency 
proximity. Computer algorithms have been developed to separate two speakers on 
the basis of different fundamental frequencies [7] [12]. The success of these models 
is quite limited, and it is not clear how the models could be extended to handle 
sound separation beyond two talkers speaking voiced sounds. 

In the following, we will present a model for auditory stream segregation. 
Similar to the model of von der Malsburg and Schneider [9], our model is based on 
the idea of oscillatory correlation, whereby phases of neural oscillators encode the 
binding of sensory components. However, both the single oscillator model and the 
neural architecture are fundamentally different from those used by von der Malsburg 
and Schneider. Simulations show that the model demonstrates the basic 
phenomenon of stream segregation. The framework proposed here promises to 
explain a variety of experimental observations and to provide an effective 
computational approach to auditory segmentation (see also [11]). 

2. NEURAL ARCHITECTURE 

The building block of an oscillator network model is a single oscillator, which 
in this model is defined as a feedback loop between an excitatory unit and an 
inhibitory unit 
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~J = -xi + 8x(xi ~ ß>'i + S{ + // + pj (la) 

dt = -Ayi + gy(axi) (lb) 

*'W = l+exp[.fv-e^7T re{X'y] (1C) 

where a and /} are the coupling parameters between the two units. 5(- represents 
input from the other oscillators and /,- represents external stimulation. A is the 
decay parameter, and p denotes the amplitude of a Gaussian noise term, g/v) is a 
sigmoid gain function with threshold 6r and parameter T. Eq. 1 is essentially a 
simplification of the Wilson and Cowan model [13], and the oscillations are driven 
(induced) by external stimulus. 

Inspired by the idea of dynamic links [9], we recently introduced a mechanism 
called dynamic normalization [10]. In this scheme, there is a pair of connection 
weights from oscillator j to i, one permanent r,-.-, and another dynamic 7(/-. 
Permanent links reflect the hardwired structure of a network, while dynamic links 
quickly change their strengths from time to time, depending on the current state of 
the network. More specifically, dynamic normalization ensures that each oscillator 
has equal overall dynamic connection weights (/,•.-) from all its input oscillators. 
With this mechanism, we showed that when triggered by a stimulus, a network of 
oscillators with just local connections exhibits emergent synchrony across the 
stimulated regions in the network [10]. Contrary to fully connected ones, locally 
coupled oscillator networks preserve geometry of input patterns. 

The fact that auditory segmentation depends on the rate of presentation calls 
for a representation of time. In this model, time is treated as a separate dimension. 
In the simplest form, the segmentation network is a two-dimensional matrix: rows 
represent frequency (pitch), and columns represent time. This architecture is shown 
in Fig. 2. The input entering the network always stimulates the left end and the 
activity of the entire plane shifts towards the right end after a certain time delay, D. 
In other words, the value of the excitatory unit (*,-) of an oscillator, except the 
leftmost ones, is set equal to that of its left neighbor every shift step D. Thus, the 
duration of a tone is represented by the number of consecutive oscillators excited 
by the tone along its corresponding frequency channel. 

There is a common inhibitor y which receives excitation from every oscillator 
of the network, and sends inhibition back to it: 

d = -xy+sy(jrlxi) (2) 

Where A. is the decay parameter of the inhibitor as defined in Eq. lb.   Nx = 

X h(x0, a normalizing parameter equal to the number of active oscillators.  The 
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global inhibitor prevents different segments from accidentally grouping together. 
Intuitively, when the oscillators of one segment reach the peak of their 
oscillations, they cause the inhibitor to fire strongly. This in turn exerts strong 
inhibition on other oscillators, and thus prevents them from reaching their peaks of 
activities. 

Frequency 

Input      /      C 
Channel 

Global Inhibitor 

Figure 2. Two dimensional time-frequency matrix for auditory segmentation. 
The thin arrowheads indicate the direction of activity shift. 

In addition to the shift connections, we assume a priori (genetically 
determined) permanent connectivity between oscillators in the segmentation 
network (Fig. 2), which, except for the self connection, takes on a two 
dimensional Gaussian kernel. Assume that the two dimensional indices of 
oscillator i are (r;,/j-)> representing the time and frequency coordinates respectively. 
Oscillator i connects to oscillator j with strength 

T{j = Exp[ 
(tj-tj)2   -Ml 

]. (3) 
a f 

where the parameters at and <x- determine the widths along the time axis and the 
frequency axis of the Gaussian kernel, respectively. The self connectivity Tu = 0. 
In sum, internal input S,- to oscillator i is (cf. Eq. la): 

Si' I 
J 

J--X- -py (4) 

where ß is a parameter. 
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3. SIMULATION RESULTS 

The above architecture for auditory stream segregation has been simulated 
using a matrix of oscillators with six rows representing distinct frequency 
channels, as shown in Fig. 2. A sequence of alternating tones HLHLHL is used as 
input, and it is presented to the network in real time. All H tones are assumed to 
trigger the same frequency channel, and so are all L tones. The two triggered 
channels are three rows apart (see Fig. 2). When an oscillator in the left end is 
triggered, a random phase is generated for it. After a fixed time interval, the 
activities of the network shift one column to the right. The sequence is repeatedly 
presented to the network, as in the psychological experiments. 

In order to relate to real time, it is assumed that a basic step in simulation 
corresponds 0.05 ms. The shift time interval is 80 ms. In the time-frequency 
domain, the presentation rate of a tone corresponds to the number of oscillators 
occupied by the tone along the time axis. We conducted three groups of 
simulations with presentation rates 160 ms, 240 ms, and 320 ms per tone, 
corresponding to fast, medium, and slow presentations, respectively. Thus, for fast 
presentation each tone occupied two oscillators, for medium presentation three 
oscillators, and for slow presentation four oscillators. 

When the presentation rate was fast (2 oscillators per tone), a network of 6x12 
oscillators was simulated. Except a brief beginning period of each column (shift 
interval), all active oscillators of the H channel quickly reached synchronization, 
and so did the oscillators of the L channel. The oscillators of one channel 
desynchronize with those of the other channel. This phenomenon was particularly 
stable after the first cycle of sequence presentation was finished. Figure 3 shows 
the combined activity of the frequency channels for a typical interval after the entire 
sequence was presented. The top panel of the figure depicts the stimulation 
pattern, showing that one tone occupies two oscillators, while the middle and the 
bottom panels show the combined activities of the H and L frequency channels 
respectively. Synchronization within the same frequency channels and 
desynchronization across the two channels are clearly illustrated in this form of 
display. Relating to the experiments, stream segregation occurred for this rate of 
presentation, and two streams were segmented apart in real time. 

When the presentation rate was medium (3 oscillators per tone), a network of 
6x18 oscillators was simulated. Similar to Fig. 3, the top panel of Fig. 4 
illustrates the stimulation condition. The lower two panels show the combined 
activities for the H and L channels, respectively. As shown in the figure, the 
oscillators within each channel did not synchronize, but instead exhibited two 
distinct phases after an initial transient. Actually, two neighboring H tones formed 
one segment, two neighboring L tones formed another segment, and one H tone 
and its neighboring L tone formed yet another segment. As can be seen from the 
display, there were three distinct phases in total. In sum, for the medium 
presentation rate, phase synchrony was not reached across the entire same frequency 
channel. Rather, partial stream segregation, e.g. among two consecutive H or L 
tones, was exhibited in the simulation. 
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Figure 3. Top panel: a snapshot of the stimulus pattern in the H and L 
channels. Middle and bottom panels: The combined activities of all the 
oscillators in the H and L channels, respectively. The parameters a = 0.6, ß 
= 2.5, p = 0.01, X = 1.0, 9X = 0.6, Qy = 0.15, T = 0.025, Ot = 2.75, oy = 1.8, ß 
= 0.5, Ii = 0.7 if oscillator i is externally stimulated, and /,- = 0.0 otherwise. 

Finally, when the presentation rate was further slowed down to 4 oscillators 
per tone, a network of 6x24 oscillators was simulated. Again, the top panel of 
Fig. 5 shows the stimulation pattern. From the combined oscillations in the 
lower two panels, one can easily observe that there are three distinct phases within 
each frequency channel. Each phase corresponds to one tone. In other words, there 
was no phase synchronization at all between different tones of the same frequency. 
Rather, one tone was grouped into one segment with a neighboring tone of the 
other frequency. This can be seen by comparing the lower two panels with respect 
to time. In sum, with this rate of presentation, one tone formed a segment with 
one neighboring tone of another channel, and the six tones were segregated into 
three segments. 

From these simulations, we can conclude that tones can be grouped together 
based on their similarities in frequency, and segmentation critically depends on the 
rate of presentation. Stream segregation is best for high rates of presentation, 
absent for low rates, and is intermediate for medium rates of tone presentation. 
Why does such behavior occur? The behavior can be explained by competition and 
cooperation in the network.   The neighboring oscillators representing the same 
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tone always synchronize because they are strongly coupled with each other [see 
(3)]. For the fast presentation, neighboring tones of the same frequency are 
separated by only two oscillators (the top panel of Fig. 3). Thus, strong coupling 
among them group them into the same segment. With every thing else the same, 
slowing down the rate of presentation increases the distance between the 
neighboring tones of the same channel, and thus reduces their coupling. Recall 
that each oscillator has the same overall amount of incoming dynamic links. So 
the reduced coupling will increase the relative coupling across the different 
channels. That explains why with slower presentation, neighboring tones in time 
are more likely to be grouped together. In the case of Fig. 5, only neighboring 
tones in time are grouped into the same segments. The global inhibitor serves to 
segment the stimuli on the entire network into different segments. 

o c 
3 
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ooo ooo ooo 

Time 

Figure 4. Top panel: a snapshot of the stimulus pattern in the H and L 
channels. Middle and bottom panels: The combined activities of all the 
oscillators in the H and L channels respectively. The parameter values are the 
same as in Fig. 3. 

4.   DISCUSSION 

There is ample evidence suggesting the existence of neural oscillations in the 
brain. It has been observed that local field potentials in the visual cortex and the 
sensorimotor cortex show stimulus-driven synchronous oscillations [3] [8]. The 
range of the frequencies of these oscillations is between 20 and 80 Hz, often 
referred to as 40 Hz oscillations. 40 Hz oscillations of auditory evoked potentials 
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Figure 5. Top panel: a snapshot of the stimulus pattern in the H and L 
channels. Middle and bottom panels: The combined activities of all the 
oscillators in the H and L channels respectively. The parameter values are the 
same as in Fig. 3. 

were also observed by Galambos et al. [2]. These oscillations can last for several 
cycles after the stimulus presentation is over. The observation was later confirmed 
by Madler and Pöppel [5], who further found that these characteristic oscillations 
were absent from the patients with deep anesthesia. 

An important element of the architecture of the model is the use of shift 
circuits with delay lines. Time delays of neuronal responses have been found at 
various levels of the visual pathway, and it appears that delays become longer in 
higher auditory structures. In the cat auditory cortex, electrophysiological 
recordings identify up to 1.6 second delays in response to identical tones separated 
by certain periods or a sequence of different tones. 

Although Sect. 3 shows only the preliminary simulation results of auditory 
stream segregation, the model is not limited by the stimuli used. For example, the 
three high (low) tones do not have to trigger the same frequency channel. As long 
as they trigger nearby frequency channels, auditory segmentation based on 
frequency similarity will occur. This is because synchronization of oscillators 
depends on the connection strengths between them, and oscillators with similar 
frequency coordinates have relatively large mutual connection strengths according 
to the Gaussian kernel (3). By the same token, each tone need not be a pure tone. 
A tone with frequency modulation will work similarly. In essence, the priori 
connectivity pattern of a Gaussian kernel strongly biases towards the grouping of 
sounds that have continuous frequency transitions, which is consistent with the 
analysis of speech perception [1]. Of course, the basic architecture of Fig. 2 must 
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be extended in order to incorporate other qualities of auditory stimuli, such as 
amplitude, rhythm, harmonics, timbre, etc. However, the basic principles of this 
model should remain the same. 

ACKNOWLEDGMENTS The preparation of this paper was supported in 
part by ONR grant N00014-93-1-0335 and NSF grant IRI-9211419. 

REFERENCES 

[I] A.S. Bregman, Auditory Scene Analysis. Cambridge MA: MIT Press, 1990. 
[2]    R. Galambos, S. Makeig, and P.J. Talmachoff, "A 40-Hz auditory potential 

recorded from the human scalp," Proc. Natl. Acad. Sei. USA, vol. 78, pp. 
2643-2647, 1981. 

[3]    CM. Gray, P. König, A.K. Engel, and W. Singer, "Oscillatory responses in 
cat visual cortex exhibit inter-columnar synchronization which reflects global 
stimulus properties," Nature, vol. 338, pp. 334-337, 1989. 

[4]    M.R. Jones, "Time, our lost dimension: toward a new theory of perception, 
attention, and memory," Psychol. Rev., vol. 83, pp. 323-355, 1976. 

[5]    C. Madler and E. Pöppel, "Auditory evoked potentials indicate the loss of 
neuronal oscillations during general anesthesia," Naturwiss.. vol. 74, pp. 42- 
43, 1987. 

[6]    G.A. Miller and G.A. Heise, "The trill threshold," J. Acoust. Soc. Am., vol. 
22, pp. 637-638, 1950. 

[7]    T.W. Parsons, "Separation of speech from interfering speech by means of 
harmonic selection," J. Acoust. Soc. Am., vol. 60(4), pp. 911-918, 1976. 

[8]    J.N. Sanes and J.P. Donoghue, "Oscillations in local field potentials of the 
primate motor cortex during voluntary movement," Proc. Natl. Acad. Sei. 
USA, vol. 90, pp. 4470-4474, 1993. 

[9]    C. von der Malsburg and W. Schneider, "A neural cocktail-party processor," 
Biol. Cybern., vol. 54, pp. 29-40, 1986. 

[10] D.L. Wang, "Modeling global synchrony in the visual cortex by locally 
coupled neural oscillators," in Proc. of the 15th Ann Conf. Cognit. Sei. 
Soc. Boulder CO, 1993, pp. 1058-1063.  For a more extended version, see 
D.L. Wang, "Emergent synchrony in locally coupled neural oscillators," 
IEEE Trans, on Neural Networks, in press. 

[II] D.L. Wang, "A computational theory of temporal pattern segmentation," in 
Neural representation of temporal patterns. H. Hawkins, T. McMullen, and 
R. Port, Ed. New York: Plenum, to appear, 1995. 

[12] M. Weintraub, "A computational model for separating two simultaneous 
talkers," in IEEE ICASSP. Tokyo, 1986, pp. 81-84. 

[13] H.R. Wilson and J.D. Cowan, "Excitatory and inhibitory interactions in 
localized populations of model neurons," Biophys. J.. vol. 12, pp. 1-24, 
1972. 

632 



APPLICATION OF NEURAL NETWORKS FOR 
SENSOR PERFORMANCE IMPROVEMENT 

S. Poopalasingam, C.R. Reeves and N.C. Steele 
Control Theory and Applications Centre, Coventry University, 

Priory Street, Coventry CVl 5FB, U.Kingdom. 
Tel: +44 203 838972, Fax: +44 203 838585. 

email : NSTEELE@uk.cov.ac. 

Abstract. Sensor technology has developed in parallel with advances 
in the fields of electronics and computing. Beyond obtaining a suit- 
able sensing element, stringent demands on accuracy has led to con- 
tinued developments in the improvement of compensation and cali- 
bration techniques. Typically, signal conditioning would attempt to 
minimise the effects of zero offsets and nonlinear temperature and 
pressure effects. Conventional analogue compensation methods have 
been phased out in favour of digital methods which provide a lower 
cost solution due to the reduction in test and calibration time. How- 
ever, digital methods currently employed have been deemed to be in- 
sufficiently accurate or highly memory intensive, thus there is a need 
for an alternative approach that provides a compromise between the 
above. The use of neural networks may offer this compromise, with 
the added advantage of possessing certain characteristics that could 
contribute to the development of a smart transducer 

Introduction 

Classical transducers relied on analogue circuitry to store compensation and cal- 
ibration data. Typically, analogue 'storage' components such as laser-trimmed 
resistors and potentiometers were used. With the advent of digital technology, 
non-volatile memory components such as EPROMs and RAMs were phased in 
to take the place of analogue components. The practice adopted was then to 
obtain sensor calibration data during the manufacturing process. Based on data 
provided, a table of correction coefficients is derived and stored in memory, thus 
making memory requirements an issue to be considered. In an attempt to reduce 
memory requirements, reduced density look-up tables with linear interpolation 
have been implemented. 

Another widely used approach has been to use compensating algorithms. In 
this approach, the sensor output surface is modelled using polynomial fitting 
techniques. The memory requirements are dramatically reduced because only 
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the polynomial coefficients need to be stored. It has been found, however, that 
such an approach is incapable of producing the required accuracy even when 
using high order polynomials. 

In an attempt to find a compromise between the memory requirements of the 
look-up table approach and the poor accuracy for the polynomial fitting method, 
the possiblity of using neural networks in this application has been investigated. 
The work reported in this paper has been based on pressure transducers that 
have wide-ranging applications from consumer applications to the aerospace 
industry. The accuracy required is application dependent and ranges from 0.01% 
to 2.0% of the full scale output (FSO). The added advantage of using neural 
networks is the ability to realise a generic mapping for a specific type of sensor, 
thus eliminating the need to obtain individualized sensor data. It is also likely 
that the neural network based calibration module can be implemented within 
the sensor housing, eliminating the need for external hardware support and in 
line with the aims of developing a smart transducer. Initial work concentrated 
on compensating for temperature and pressure nonlinearities. The accuracy 
level after linearizing the temperature and pressure effects will be limited by 
the hysteresis effects and time-related stability. 

A multilayer perceptron (MLP) based compen- 
sation module 

Data from two types of devices were used. The first device was used in a 
feasibility study and was selected due to its relatively good temperature stability, 
however no validation data was available for this device. The second device, also 
a silicon based transducer, was then used to obtain sufficient data for validation 
and to realise a generic mapping for that particular type of sensor. This paper 
concentrates to a larger extent on the feasibility study carried out, although the 
findings from this study have been applied to the second device. 

The ability of a neural network to realise an arbitrary nonlinear mapping 
is well established [1], [2]. The mapping to be realised was the inverse sensor 
characteristics. The training data consisted of calibration data obtained under 
controlled laboratory conditions. The response of the first device within a spec- 
ified pressure range for different temperatures is shown in Figure 1. The sensor 
response readings were the output of an analogue to digital converter. 

Training was carried out using the backpropagation learning algorithm. As 
a first approach, optimal network parameters were heuristically found. The 
required error specification for this transducer is an error range of within 0.1% 
of the FSO. The error based on the FSO is referred as the full scale error (FSE). 
As a network approximation ability measure, the average of the integral of the 
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Figure 1: Characteristics of first device for different temperatures 

squared full scale error measure (AIFSE) was used. Using single and two layer 
networks, very similar results were obtained. Analysis of the performance of 
the single layer network was carried out and the error distribution within the 
input space was plotted. From the results, it was apparent that the worst cases 
occur at the edges and in high temperature regions of the input space, this is 
shown in Figure 2. The error criterion for this plot has been increased to 0.3% 
to clearly illustrate where the points of poor approximation lie. The symbol '*' 
indicates cases classified as 'good' and V the poor. 

In an attempt to improve performance at the edges of the input space, sev- 
eral approaches were investigated. The first method was to use nonlinear scaling 
of inputs. It was hoped that this method would improve the edge effects as well 
as reduce the amount of nonlinearity the network was required to learn. How- 
ever, this method fared very poorly. As a next step, redundant information 
was introduced. Although by no means conclusive, it was discovered that intro- 
ducing fewer cases a larger number of times tended to produce better results. 
The introduction of redundant information gave an improved performance of 
approximately 10% but resulted in longer training times due to the larger train- 
ing set. Due to the fact that both the above approaches did not give much 
improved results, it was conjectured that if the training set contained data over 
a wider region than the operating region of the sensor, the poor approximation 
at the edges of the input space could be improved. To test this, as data over 
a wider operating region were not available, the existing data set was reduced 
by removing cases lying on the edges of the input space. The network trained 
with the reduced data set produced cases exhibiting large errors at the edges 
of the reduced input space. The cases at the edges of the reduced data space 
previously lay on the centre of the original input space and exhibited low er- 
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Figure 2: Distribution of cases within the input space 

ror values. Thus, the above conjecture would appear to be supported by these 
findings. 

Optimization of network structure using Genetic 
Algorithms(GA) 

To confirm that optimal network structures were being utilised in the above, 
a GA was used for the full training set. Using an appropriate performance 
measure, found by the GA was a single layer network which resulted in an 
improvement of 10% over the previous findings obtained using the single layer 
network. Although this finding is comparable to that of the best result found 
by introducing redundant information, it is more efficient in terms of training 
set size, and thus training times. The results obtained using different MLP 
architectures are summarised in Table 2. With only 41% of the test cases 
lying within the error criterion at best, attention was focussed on an alternative 
learning paradigm. 

The Radial Basis Function (RBF) approach 

Due to the long training times required by the backpropagation and the poor 
match to the error criterion, the RBF network was implemented. As discussed 
by Poggio and Girosi in [3],[4], RBF networks have the best approximation prop- 
erties. Moreover, the higher degree of local computation results in faster training 
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Table 1: SUMMARY OF MLP RESULTS 
NETWORK % OF CASES < 0.1% FSE 

2-7-1 
100 training cases 

31 

2-9-1 
100 training cases 

37 

2-15-1 
100 training cases 

32 

2-7-1 
154 training cases(18*3) 

41 

2-8-1 
100 training cases 
(selected by GA) 

40 

2-5-3-1 
100 training cases 

38 

times. The kernel function used in the RBF was a Gaussian nonlinearity. Se- 
lection of the Gaussian centres was carried out using the fc-means algorithm in 
the initial phase of implementation [5]. The scaling parameters in the Gaussian 
were set to unity. The number of centres were then chosen to obtain the best 
fit. The networks with centres found using the clustering algorithm fared poorly 
compared with the those with regularly spaced centres. This can be explained 
in terms of the distribution of the data within the input space. Using the RBF 
there was an improvement of 39% over the results obtained using the best MLP 
network, i.e. that found by the GA. 

The choice of scaling parameters for a given application can be carried out in 
numerous ways. In [6], some possible approaches are discussed. For the problem 
of sensor calibration, the optimal scaling parameters values were selected using 
a GA [7]. Compared to the most favourable result obtained using the RBF 
networks with unity parameter values, similar results were obtained but with a 
reduction of hidden unit numbers by approximately 80%. Thus, with optimal 
kernel function parameters the RBF network outperformed the MLP network of 
comparable size in terms of both mapping accuracy and efficiency. A summary 
of the results obtained using the RBF network is given in Table 2. The three 
figures appearing in each block in the second and third columns of the table 
correspond to a measure of the AIFSE, the percentage of test cases lying within 
0.1% of the desired response and those lying within 0.4% respectively. 
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Table 2: SUMMARY OF RBF RESULTS 
No. of centres fc-means regular spacing 

13 6.356 6.282 
(<T=1) 4 4 

14 15 
30 0.176 0.021 

(*=1) 18 52 
69 99 

50 0.008 0.011 
(«7=1) 79 69 

100 100 
10 0.008 - 

(a = 4.32) 79 - 
100 - 

Validation of inverse model and obtaining a generic 
model 

Due to the lack of data, severe limitations were placed on the ability to validate 
the model obtained for the first device. Data from the second device was used 
to model the inverse behaviour, and as was the case with the first device, the 
network approximation was good over the entire operating temperature range. 
This is shown in Figure 3. The dotted line in the figure represents the mapping, 
the solid line represents the network approximation. 

Validation of this model is currently being carried out. The next step would 
be to attempt to realise a generic inverse model for this particular sensor type 
as opposed to individual sensor model. Data from three sensors of this partic- 
ular type is available to realise this general model. Analysis of the data seems 
to indicate that the bridge resistance readings may be critical as an input in 
training the network. 

Hysteresis Effects 

Having considered issues pertaining to temperature and pressure nonlinearities 
and because hysteresis imposes a limit on the attainable sensor accuracy, some 
consideration needs to be given to the elimination of hysteresis. Hysteresis 
effects exist for both pressure and temperature variations. The data was ob- 
tained under laboratory conditions for pressure and temperature ramped across 
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Figure 3: Characteristics of second device for different temperatures 

the operating range of the sensor. Only pressure hysteresis is being considered 
currently due to constraints in time available for testing. The data was treated 
as a time series and a recurrent network with a Widrow delay network at the 
output was used. Using a method proposed in [8], the <5-test, the minimum 
embedding dimension of this series was found to be two. Using this information 
to design the network configuration, the hysteresis time-series was successfully 
reproduced by the neural network. The next stage of this work will involve 
obtaining data from the transducer based on the outcome of an experimental 
design as it is a realistic assumption that the pressure excursions that a sensor 
is subjected to in a practical application will not range from minimum to maxi- 
mum in a regular fashion. As such, these issues need to be carefully considered 
in order to obtain representative data for purposes of training the compensation 
module to minimise the hysteresis effects. 
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Abstract A novel, fast and accurate neural network tool is proposed for effi- 
cient technology independent implementation of the interface between device 
modelling and circuit simulation. Modified backpropagation, conjugate gradi- 
ent and Levenberg-Marquardt optimization algorithms are applied in network 
teaching. Simulations show fast convergence and an excellent fit of recalled 
characteristics to the measured device data. The utilized algorithms are robust 
and capable of presenting the entire device characteristics unaltered even with 
largely reduced amount of the teaching material. The good monotonicity of the 
neural network generated device data facilitates the usage of the method in cir- 
cuit simulation purposes. Possible further applications of implementing circuit 
level macromodels with this technique are discussed. 

INTRODUCTION 

The integration of measured semiconductor device behaviour or data from numer- 
ical device simulators into a circuit simulator has been a long standing problem for 
the integrated circuit design. For digital circuits the requirement of accurate func- 
tional modelling includes knowledge of device currents together with the internal 
and external RC-products to facilitate proper timing simulations. For analog circuit 
designs the simulation has proven more difficult. The linear circuit gain is governed 
by the small-signal parameters, transconductance and output conductance, and their 
frequency behaviour. Therefore, accurate and continuous models for small-signal 
parameters over the complete operation region are required. Precision modelling of 
analog circuits requires accurate presentation of the substrate effects in dc- and ac- 
operation, as well. Other inaccuracies have been attributed to poor or non-existent 
modelling of the subthreshold region, non-linearities in device operation and voltage 
dependent capacitances. 

Typical approaches for the device modelling interface to circuit simulation have 
included analytical, parameterized semiconductor device models [1,2], table look- 
up models with various interpolation techniques [3,4], and a more atypical method 
of tensor product splines [5]. 

The most widely applied approach of using parameterized analytical models for 
presenting electrical characteristics of a device has been troubled with several diffi- 
culties. The parameter extraction presents a difficult problem even if the models are 
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physically sound and include every possible physical phenomena that completely 
describes the device. Two approaches can be utilized in the device parameter extrac- 
tion. First, the parameters for physically based models can be defined from the time 
consuming extracting measurements for the device. Second, the extracted inaccurate 
set of parameters can be fine-tuned in a general non-linear optimizer to fit the model 
to the measured or numerically simulated device data [6,7,8]. This approach is, how- 
ever, capable of producing highly unphysical interpretations of the device parame- 
ters with unexpected and detrimental effects during circuit simulation. 

To overcome the difficulties in parameterized models, a variety of table look-up 
methods with different interpolation techniques have been used [3]. These models 
typically store the device current in a table. For a four terminal device such as MOS- 
FET or MESFET, a 3D table is formed as a function of gate, drain and substrate po- 
tential. The table size, therefore, grows as the third power of the number of input 
vectors, and becomes the limiting factor in the modelling accuracy. 

NETWORK STRUCTURE AND METHODOLOGY FOR MODELLING 

The neural network that is implemented in this study is a three-layer feedforward 
perceptron network that consists of input, hidden, and output layers. Each layer con- 
tains several processing elements with sigmoidal nonlinearities. Cybenko [9] has 
shown that this network can be used to approximate arbitrary functions, i.e. it can 
model any continuous nonlinear transformation. The network is feedforward in the 
sense that each unit receives inputs only from the units in the preceding layer. The 
network converts input signals according to connection weights. During learning, 
connection weights are adjusted in a direction to minimize the sum of squared errors 
between the desired outputs and the network outputs. 

In the following, the subscripts kj and i refer to any unit in the output, hidden, 
and input layers, respectively. The total inputs to unity in the hidden layer or unit k 
in the output layer is 

netr = yL(lLWrs0s\ r = k>r>   '=*'■: (') 
S yi,j,k J 

where wrs is the weight from the .9th unit to the rth unit and Os represents the output 

of unit s in the hidden and input layers. A sigmoidal nonlinearity is then applied to 
each unit r to obtain the output as 

O   = ■ — or O   = tnnhfnet -6 ), (2) 
'    exP{-{«fr-er)} 

r        y    r    r) 

where 9,. serves as a threshold of unit r. Hence, each layer communicates with all 
successive layers. There is no feedback within the network between layers of indi- 
vidual units and no communication with other units in the same layer. 

In the learning process, the network is presented with a pair of patterns, an input 
pattern, and a corresponding desired output pattern. Learning comprises of changing 
the connection weights and unit thresholds to minimize the mean squared error be- 
tween the actual outputs and the desired output patterns with the gradient descent 
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method. The activity of each unit is propagated forward through each layer of the 
network by using (1) and (2). The resulting output pattern is then compared with the 
desired output pattern, and an error for each output is calculated. 

We have minimized the error in the network using three different gradient based 
optimization algorithms. These include the modified back-propagation algorithm 
[10], the conjugate gradient [11], and Levenberg-Marquardt algorithms [11]. 

To accelerate the convergence of the standard back-propagation algorithm, we 
have used the modified back-propagation method presented by Vogl et.al. [10]. This 
algorithm includes three main modifications. The first modification is that the net- 
work weights are not updated after each learning pattern. Instead, the weights are 
modified only after all input patterns have been presented. The changes for each 
weight are summed over all of the input patterns and the sum is applied to modify 
the weight after each iteration over all the patterns. Other modifications include the 
altered learning rate r\ which controls the step size and the momentum factor a. The 
learning rate r] is varied according to whether or not an iteration decreases the total 
error for all patterns. If an update results in reduced total error, t| is multiplied by a 
factor <|) > 1 for the next iteration. If a step produces a network with a total error more 
than a few percent above the previous value, all changes to the weights are rejected, 
r| is multiplied by a factor ß < 1, a is set to zero, and the step is repeated. When a 
successful step is taken, a is reset to its original value. For a successful step a re- 
sembles momentum as it tends to favour the change of weights to the earlier suc- 
cessful direction. 

The conjugate gradient algorithms are standard optimization algorithms [11] 
which apply information from second order Taylor-series approximation to choose 
the search direction more carefully than the steepest descent algorithm. The search 
is chosen in a conjugate direction which means that the new search direction is or- 
thogonal to all the previous directions. This makes the method faster than the steep- 
est descent method with a line search optimized step size to provide a direction that 
is orthogonal only to most recent iteration. In our implementation no line search 
was performed to optimize the step size but a constant step in the new conjugate gra- 
dient direction was chosen. The information from the numerical estimate of the sec- 
ond derivative was used to modify the size of the step to be taken to the previous 
conjugate direction and this together with the present gradient direction provided the 
new conjugate direction. 

The Levenberg-Marquardt optimization algorithm [11] applies, similarly as the 
conjugate gradient method, numerically estimated information from the second de- 
rivative of the cost function. In addition, the diagonal elements of the second deriv- 
ative matrix are assumed to contain information on the scale of the problem. This 
information is used to optimize the step size. The Marquardt parameter, which is al- 
tered according to the success in optimization, is summed to diagonal elements of 
the Hessian matrix. The Levenberg-Marquardt method changes, therefore, from the 
inverse Hessian type method far from minimum to the steepest descent method close 
to the minimum. Both the conjugate gradient and the Levenberg-Marquardt meth- 
ods were used in a batch mode to update the network weigths. Similarly, as for the 
modified back-propagation algorithm, the weigths were modified only after all input 
patterns were presented to the network. 
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RESULTS, COMPARISONS AND DISCUSSIONS 

For the circuit simulation several characteristic data from the devices are required 
to facilitate the variety of analyses of interest, namely the operation point, transient, 
dc- and ac-analysis. The required data, for example for FET-devices includes the 
terminal currents versus bias voltages and terminal non-reciprocal non-linear rela- 
tionships of capacitances versus bias voltages. Typically, these models also present 
small-signal parameters analytically for the FET. In Fig. 1 we present the method- 
ology for providing these data to the circuit simulation environment by using a per- 
ceptron network that was described above. 

Processing Element 

Neural Network 

' Neural Networic 
Device Model 
in Circuit 
Simulation 

Interface to 
Neural Network 

Interface to 
Circuit Simulation 

Figure 1: 
Neural network device modelling methodology. 

As the targets of our neural network device characteristic modeller, we have cho- 
sen a GaAs MESFET data and short channel device modelling data from BSIM 
MOSFET model. The GaAs MESFET data serves as a fairly difficult task because 
the simulation accuracy of analog GaAs circuits has consistently been worse than 
for comparable Si MOSFET technology owing to less evolved device models. The 
BSIM model data was chosen to study the effects of device geometry on the model- 
ling accuracy. In Fig. 2 a) we present the modelling results for the drain current 
curve family of GaAs MESFET with a geometrical form factor W/L = 50\imJ2\im 
(data from [12]). The modelling output from the network is marked with 'o' and it 
is superimposed on the training data that is marked with V. A very good fit with an 
average relative error of 1.41 per cent was reached. The precision modelling of the 
dc-curve family for GaAs MESFET has been difficult with the analytical models be- 
cause of the complicated second order phenomena in device physics. These device 
anomalies include backgating or sidegating effects from adjacent devices, impact 
ionization triggered leakage current to substrate and gate terminal, drain potential 
induced barrier lowering for short devices, and deep level trapping dependent leak- 
age current and subthreshold characteristics [12]. Therefore, even with a set of op- 
timized model parameters the above scale of modelling error has been unavailable. 

A more demanding test for the network is performed by reducing the amount of 
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training material to one half of the original data by removing every other gate bias 
value from the data set and calculating the network weights again for the remaining 
data. These weights are further used to recall the original data set to interpolate the 
curves for every other value of gate bias. Fig. 2 b) presents the result of modelling 
the interpolation of data. The measured data in this particular test is marked with V 
and the learnt data for the trained points of data set with '*'. The interpolated, re- 
called data corresponding measured points is marked with 'o' and the recalled mesh 
data with '.'. The interpolated data points show 6.25 per cent residual error in mod- 
elling, compared with 1.81 per cent for the data that was used in teaching. The sub- 
stantial reduction of the teaching material has not lead into a catastrophic modelling 
failure. Instead, the network is still able to present the intermediate data points with 
reasonable and adequate accuracy. 
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Figure 2: 

a) Measured and neural network generated characteristics for GaAs 
MESFET drain current versus drain and gate voltages, V: measured 
data, 'o': simulated data, b) Interpolation capability of the neural 
network, V: measured material, '*': learnt data corresponding teaching 
points, 'o': interpolated data,'.': mesh data. 

The evolution of the modelling error for the above data is presented in Fig. 3. Here 
we have shown the modelling error from 0 to 500 epochs, where each epoch repre- 
sents one update for the weigth vector. The conjugate gradient method requires larg- 
er number of epochs than the Levenberg-Marquardt method. On the other hand, the 
Levenberg-Marquardt algorithm uses an order of magnitude more CPU-time for one 
epoch updating than the conjugate gradient method. Both algorithms are capable of 
finding a better minimum with considerably less epochs than the standard and mod- 
ified backpropagation method. 

Next, we present an example of small-signal parameter modelling, namely the 
GaAs MESFET output conductance and transconductance. The output conductance 
modelling with analytical models has suffered from discontinuous models between 
regions of device operation. In comparison, the neural model provides fully contin- 
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uous and monotonous modelling (Fig. 4). The network learnt the teaching material 
with the final relative error of 2.26 per cent. In comparison the typical accuracy for 
analytic output conductance modelling with optimized model parameters has re- 
mained at 5-10 per cent for analog CMOS technologies [7]. The result of the 
transconductance modelling is presented in Fig. 5 with the temperature and gate po- 
tential as input variables. The residual relative error in Fig. 5 is 4.6 per cent. 

Residual absolute error 

200       250       300 
Epochs 

Figure 3: 
Evolution of the sum of squares error with the used algorithms. 

For transient and ac-analysis the device capacitances will have to be accurately 
modelled. In Fig. 6 we present the measured [13] and recalled gate to source capac- 
itance modelling with the network. The nonlinear relationship of capacitance wrt 
gate bias is accurately reproduced. 

In order to provide a useful and fast device modelling interface neural network 
will have to be capable of modelling device data with more than two input dimen- 
sions. The 3D table look-up models allow presentation of the FET device data with 
respect to all three terminal potentials differences (Vgs, Vds, Vsb). We demonstrate 
the similar modelling by adding a third processing element for the 3D input data- 
vector in our network. In Fig. 7, recalled GaAs MESFET drain current characteristic 
is presented for the subset of learnt gate bias regime, from 0.0 to 0.3 V. The average 
relative error for the network was 2.28 per cent. Previously, a 3-4 per cent relative 
error for short-channel Si MOSFET had been demonstrated with 3D table look-up 
technique [3]. 

To estimate the capability of the network to present variable device geometries, 
we have generated device length and width dependent small geometry MOSFET 
data using BSIM-model with realistic model parameters [1]. The device channel 
length and width were varied from 2|im to 8[im. Nine different device geometries 
were used in teaching the network. We used a two-stage network where the first 
stage implements the electrical dependences and the second stage the geometrical 
factor of the device. The representative modelling results are given in Fig. 8 for de- 
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vice size of W/L=4|J.m/4p.m with Vbs=0. The overall relative sum of squares error 
after the second stage for all data was 7 per cent with the average error of 0.8 per 
cent. The teaching was performed using the Levenberg-Marquardt method with 
1000 epochs. 

Drain bias, Vds[V] 

Figure 4: 
GaAs MESFET output conductance modelling with the neural network. 
Solid lines as measured data, 'o': data recalled by network. 
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Figure 5: 
GaAs   MESFET  transconductance   modelling   wrt   gate   bias   and 
temperature. Solid lines as measured data, 'x': data recalled by network. 

We have also implemented the perceptron network in SPICE circuit simulator, 
and tested the operation in dc- and transient analysis. There is no convergence prob- 
lems in simulating the NeuroDevice since the modelling functions are smooth and 
continuous. In our example, the perceptron network device modelling interface for 
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one device size of Fig. 2 requires total of 21 network weights for two dimensional 
data and two bias units. If the third input dimension is included in network with five 
hidden layer elements, total of 26 weights are required. For more than five process- 
ing elements in the hidden layer, the number of weights will be higher. These 
weights will have to be stored in memory for each presentation of data. The amount 
of stored weights presents a remarkable saving of memory when it is compared to 
the table look-up method. About 500-1000 datapoints will have to be saved for each 
channel length for the table to attain the same accuracy. Therefore, we use only 3-5 
per cent of the memory that is used in a typical implementation of the table look-up 
method. 

In terms of the CPU-time the implemented neural network interface can be more 
efficient for circuit simulation than analytical models if only one device size and one 
stage of network is used. The device modelling task is required to be performed only 
once and circuit simulation is performed sequentially with fast recollection of the 
model from the stored weight-vector. Therefore, the implemented neural network 
device modelling interface is also capable of reducing the time-consumption of cir- 
cuit simulations. 

T:Vgs = 0.0V 

Q:Vgs = 0.3V 

Sidegate bias [VJ "*    " Drain bias[V] 

Figure 6: 
3D drain current modelling as a function of drain, gate and substrate 
(sidegate) bias for GaAs MESFET with a feature size of W/L = 50um/ 
2\im. Solid lines as measured datapoints, dashed lines as data recalled by 
network for gate bias values 0.0 and 0.3 V. 

CONCLUSION 

The method of realizing the interface between device modelling and circuit simu- 
lation using neural network algorithms has been shown to produce excellent fit to 
the measured data. The objective of presenting a general device characteristics in 
circuit simulator environment can be reached. Any kind of circuit element can be ac- 



curately modelled and represented, and a standard automatable neural network can 
be set up for the construction of these representations. 

The implemented algorithms combine a fast learning rate with efficient and accu- 
rate recall of the learnt material. The method is especially suitable for applications 
where physically justified analytic device models lack the required accuracy. These 
include deep submicrometer devices and novel device structures with as of yet un- 
clear physical phenomena. Also, the technology independent approach for the mod- 
elling facilitates quick adjustment to the new device structures, materials and 
technologies. 

The macromodelling of complex circuit structures with easy neural network pa- 
rameter presentation vastly simplifies the required simulations for large systems. It 
reduces efficiently the required memory for the circuit presentation and simulation. 
The proposed NeuroDevice facilitates and encourages the user to model complex 
topologies. In simulation it promotes the inclusion of desired behavioural informa- 
tion of general phenomena with easy to extract neural network weights, which are a 
fully compact and ideal form to present, save and transfer knowledge. 
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Figure 1: 
GaAs MESFET gate to source capacitance wrt gate to source bias with 
neural network. Solid lines as measured data [13], V: data recalled by 

network. *um x 4um. Vbs=0 

O 

c o 
t 
o 
c 
"a 
D 
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Figure 8: 

Neural network device modelling with device geometry dependent input 
vector. Recalling of device data W/L=4u.m/4nm, with no body bias. 
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Abstract 

In this paper we present preliminary results on the applica- 
tion of Labeling RAAM for encoding pyramids. The LRAAM 
is a neural network able to develop reduced representations 
of labeled directed graphs. The capability of such representa- 
tions to preserve structural similarities is demonstrated on a 
pyramid. We suggest to exploit this skill in data compression 
and/or to discover scale affine autosimilarities. 

INTRODUCTION 

A model frequently used in image analysis is the quadtree, a hierarchical da- 
ta structure based on the principle of recursive decomposition of space [10]. 
Different instances of quadtree can be obtained depending on the type of 
data represented, the decomposition principle, and the resolution (variable 
or not). In this paper, we discuss how a new type of neural network, the 
Labeling RAAM, seems specially suited to code it. Specifically, we consider a 
complete quadtree implementing a pyramid, a data structure used to repre- 
sent a multiresolution version of an image using nonoverlapping 2 by 2 blocks 
of pixels (see Fig. 1). The aim is twofold: to get a compressed representation 
and/or to discover scale affine redundancy in the image represented by the 
pyramid. Firstly, we introduce the LRAAM model. Then, preliminary results 
obtained on pyramids are presented and discussed. 

LABELING RAAM 

The Labeling RAAM (LRAAM) [12, 15, 16, 17] is an extension of the RAAM 
model [9] which allows one to encode labeled structures. The general structure 
of the network for an LRAAM is shown in Figure 2. 
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Figure 1: A pyramid implemented by a quadtree. 

The network is trained by backpropagation to learn the identity function. 
The idea is to obtain a compressed representation (hidden layer activation) of 
a node of a labeled directed graph by allocating a part of the input (output) 
of the network to represent the label (Ni units) and the rest to represent one 
or more pointers. This representation is then used as pointer to the node. To 
allow the recursive use of these compressed representations, the part of the 
input (output) layer which represents a pointer must be of the same dimension 
as the hidden layer (NH units). Thus, a general LRAAM is implemented by 
a N] — NJJ — N[ feed-forward network, where N[ = NL + TINH, and n is the 
number of pointer fields. 

Labeled directed graphs can be easily encoded using an LRAAM. Each 
node of the graph only needs to be represented as a record, with one field for 
the label and one field for each pointer to a connected node. The pointers only 
need to be logical pointers, since their actual values will be the patterns of 
hidden activation of the network. At the beginning of learning, their values 
are set at random.   A graph is represented by a list of these records, and 

Output   |        NL        I   NH  I   NH  1   • • • •   |   NH 

Hidden 

Input      I       NL I   NH  1   NH  I   • • • •   1   NH 

Decoder 

Encoder 

Figure 2: The network for a general Labeling RAAM. 



Figure 3: An example of a labeled directed graph. 

this list constitutes the initial training set for the LRAAM. During training 
the representations of the pointers are consistently updated according to the 
hidden activations. Consequently, the training set is dynamic. For example, 
the network for the graph shown in figure 3 can be trained as follows: 

input 

(Li Pn2(t) P„3(t)) -»• 
(L2 Pns(t) Pni(t)) -)• 
(Ls Pni(t)  Pns(t)) -» 
(Li nily(t) nih(t)) —¥ 
(Ls Pn4(t) nil3(t)) -»• 

hidden 

P'nM 

-> 

-»■ 

output 

(L'{(t) PXa{t) P^(t)) 
(LUt) P^(t) P»4(t)) 
(L'i{t)  PnM PnM) 
(L'l(t) nil['(t) nil2\t)) 
(LUt) Pn4(t) mim)) 

where Li and Pm- are the label of and the pointer to the ith node, respec- 
tively, and t represents the time, or epoch, of training. At the beginning of 
training (t = 1) the representations for the non-void pointers (Pn,(l)) and 
void pointers (nik (1)) in the training set are set at random. After each epoch, 
the representations for the non-void pointers in the training set are updated 
depending on the hidden activation obtained in the previous epoch for each 
pattern: Vi Pni[t + \) = P„ (t). The void representations are, on the other 
hand, copied from the output: niUit + 1) = nil'^t). 

If the backpropagation algorithm converges to zero error, it can be stated 
that: 

U = L'{ L2 = L2 L3 = L3 Li — L4 

Ls = L& 

P    — P" 
p   - p" 
nili = nil" 

P     - P" 1 713 — L 713 

nil'i = nil" 
P    - P" 
nils — nils 

Once the training is complete, the patterns of activation representing 
pointers can be used to retrieve information. Thus, for example, if the ac- 
tivity of the hidden units of the network is clamped to Pni, the output of 
the network becomes (Li,Pn2,Pn3), enabling further retrieval of information 
by decoding P„2 or Pn3, and so on. In order to decide whether a pointer is 
void or not, one bit of the label is allocated for each pointer field to repre- 
sent the void condition. This convention allows us to avoid a commitment 
to any predefined representation for the void pointer. Consequently, copying 
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Figure 4: An example of label encoding of a pyramid for an 8 x 8 image. 

the representations for the void pointers from the output of the network to 
the training set results in a faster training, where multiple representations for 
the void pointer are developed by the network itself. For more details on this 
issue the reader is reffered to [15]. Note that multiple labeled directed graphs 
can be encoded in the same LRAAM. 

ENCODING PYRAMIDS 

Since a pyramid can be represented as a labeled tree, it can be easily encoded 
by an LRAAM. The aim in using an LRAAM is to obtain a compact represen- 
tation of the pyramid where the same pattern at different scales is uniquely 
represented, i.e., without affine redundancy [1]. The definition of the label 
for a pattern in the training set of the LRAAM can proceed from the leaf 
level to the root of the pyramid (see Fig. 4). One drawback of this approach 
is that the number of patterns in the training set grows exponentially in the 
dimension of the image. Given a 2" x 2" image, if the scale factor is 1/2, 

the total number of patterns in the training set is ^"-TQ
1
 ^ ■ Thus, it is clear 

that images of large dimensions are difficult to handle with a single LRAAM. 
For example, the training set for a 256 x 256 image would be composed by 
slightly less than 22,000 patterns. One possible solution to this problem, that 
we have to verify, is the use of a modular LRAAM, where every module is 
responsible for the encoding of a given subtree. Another solution is to start 
learning with a training set representing the lower resolution levels of the 
pyramid and, after convergence, augmenting the training set to the complete 
one. 

Once the training set has been generated, the LRAAM is trained until 
it can decode successfully the pyramid. We have observed that, with this 
stopping criterion, and under the condition of affine redundancy in the image, 
learning converges rather early. For example, using the encoding scheme 
shown in figure 5 on an 8 x 8 version of the Sierpinski triangle, the mean 
number of epochs employed by the corresponding 12 — 2—12 LRAAM was 
slightly more than 100. 

We verified faster learning using the descending-epsilon heuristic tech- 
nique [18]: during the learning phase we maintain a list of the patterns hav- 
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ing a decoding error higher than a specified value. The backpropagation 
is performed only on the patterns of the list: when all patterns are below 
the threshold, we lower the threshold and resume the backpropagation. The 
procedure stops when we obtain the perfect decoding. 

Analysis 

An important property of the LRAAM model is the capability to develop sim- 
ilar hidden representations for pointers to similar labeled trees. An example 
of this capability is given by the hidden activation deviced by the 12 — 2 — 12 
LRAAM encoding the Sierpinski triangle. In figure 6 we show, on the left 
side, the label map obtained by decoding a set of points sampled from the 
pointer space, and on the right side, the vector fields obtained by transform- 
ing the same set of points through the children transformations. A vector 
field is represented by plotting the sampled points (domain points) and their 
transformed results (image points) as vectors starting from the domain (dots) 
and arriving to the image points. Note how the network exploits the same 
pointer transformation for pointer fields encoding the same set of subtrees. 
This allows the LRAAM to decode correctly this image at a resolution higher 
than the one used in the training set. This property, however, must be verified 
on images which are not so regular. 

The pointers' dynamics is the subject of figure 7: in this representation the 
application of the same pointer transformation is repeated until convergence 
to a fixed point. The gray scale denotes the number of steps to reach the fixed 
point where darker areas mean a higher number of iterations. Note that the 
network places the fixed points in the vertices of the [—1,1]^ space. This 
property can be explained by probabilistic arguments concerning the stability 
of the decoding (for a discussion on stability properties of the LRAAM see 
[16]). 

Another example of pyramid (Fig. 8) with the corresponding label map, 
children vector fields and pointers' dynamics maps are shown in figures 9 and 
10. 

From our analysis of the decoding of the label and the pointers' dynamics, 
the fractal approximation developed by the LRAAM seems to have a close 
relationship with the hierarchical iterated function system model [3, 4], where 
a graph of hierarchical IFS generates the image. In our case, nodes of the 
graph represent fixed points of the pointers' dynamics. Each node is labeled 
by the label obtained by decoding the corresponding fixed point. Arcs of the 
graph represent pointer transformations of the fixed points (see Figure 11). 

It must be stressed that the construction of these graphs can be done, in 
this case, only because any fixed point is actually transformed in another one 
(or in itself) in just one transformational step. In general, however, this may 
not be the case. We are currently investigating under which conditions the 
graph construction scheme holds. 
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Figure 5: The pyramid coding the Sierpinski triangle. 
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Figure 6: Representations devised by an LRAAM encoding an 8 x 8 Sierpinski 
triangle; left: label map on the pointer space; right: vector fields for the 
children transformations. 

Figure 7: The pointers' dynamics maps for the Sierpinski triangle. 
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Figure 8: The pyramid coding the simple triangle. 
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Figure 9: Representations devised by an LRAAM encoding an 8 x 8 triangle. 
left: label map on the pointer space; right: vector fields for the children 
transformations. 

Figure 10: The pointers' dynamics maps for the simple triangle. 
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Figure 11: The graphs, derived by the LRAAM, generating the Sierpinski 
triangle pyramid (left) and the triangle pyramid (right). Each node represents 
a fixed point in the pointers' dynamics and its label is the label obtained by 
decoding the fixed point. Arcs represent pointer transformations. Node x is 
connected to node y by an arc labeled i if Ti(x) = y, i.e., if the fixed point 
associated to x is transformed to y by the pointer transformation TJ(). 

Applications 

There are two possible applications of encoding pyramids by Labeling RAAM: 

• data compression; a set of pyramids can be described by the set of 
pointers to the roots plus the decoder part of the LRAAM; 

• affine redundancy discovery; the likeness among pointers can be used 
to establish similarities among patterns at different scales, so to device 
an efficient fractal compression. 

Using an LRAAM for data compression requires a careful choice of the 
number of units in the hidden layer. More units in the hidden layer guar- 
antee a better reconstruction of the image represented by the pyramid, but 
the compression factor decrease because the number of parameters (weights) 
grows as a quadratic function. Specifically, given pointers of dimension NH 

and label of dimension NL, we have 

4NJ, + {NL+5)Nn + NL 

parameters. In fact, the dimension of the hidden layer affects the number of 
different labels that the LRAAM can encode. Having an insufficient number 
of hidden units constrains the network to find the minimal approximation 
with the most used label present in the image at every scale, which is the 
simplest fractal approximation allowed by the pyramidal representation. We 
are still working on the evaluation of the best trade-off between quality of 



the image and data compression. Note that pruning techniques like OBD [7], 
and OBS [6] can be used to reduce the number of weights in the network. 

Classification of fractal images by a neural network was explored in the 
paper [5]. The feed-forward network used in that work, where the pyramid 
is explicitly represented into the topology of the network, can be considered 
as a special case of our model. In our case, however, we are not interested in 
classification, but in discovering scale affine autosimilarity. The ability of the 
LRAAM to represent similar patterns by similar pointers can be exploited to 
identify a fractal approximation of the image [1, 2, 11, 8]. 

CONCLUSIONS 

The LRAAM model seems ideal to code a pyramid representing an image 
with scale affine redundancy. The hidden representations developed by the 
LRAAM seem to capture redundancies present in the image at different s- 
cales. The LRAAM can be used either to compress the pyramid or to discover 
autosimilarities which can be exploited by a fractal compression method. The 
compression rate can also be improved by coding the image into an incomplete 
pyramid using a decomposition principle based on statistical regularities. In- 
complete pyramids can be encoded without problems by an LRAAM which 
can represent every kind of tree. 

Besides the present line of research, it is likely that all areas utilizing 
quadtrees for different applications could use the interesting characteristics 
of the subsymbolic coding developed by the LRAAM. 
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ABSTRACT: A nonlinear AR model is derived from the reconstructed 
dynamics of a signal. The underlying system is assumed to be nonlinear, 
autonomous, and deterministic. In this formulation, the output error scheme 
is shown to be more suitable than the equation error scheme in training a 
network as a NAR model of the signal. A method to incorporate the 
information of the dynamical invariants in signal modeling is proposed. 

1. INTRODUCTION 

Signal modeling in either time domain or frequency domain has a long history 
in the research of science and engineering. But, not until recently has this problem 
been studied based upon the underlying dynamics of signals 
[Crutchfield][Casdagli]. Under the assumption that the original system is 
nonlinear, deterministic, and autonomous, a state-space system trajectory can be 
reconstructed from its output signal [Packard][Takens]. Thanks to this 
reconstruction, the measurement of two important dynamical properties, namely 
dimensionality and Lyapunov exponents of a system attractor, becomes possible. 
The "uncertainties" observed in the signals of this class are originated by the 
system dynamics rather than some external random sources. A dynamical system 
with this unpredictable characteristics has been referred to as a chaotic system 
[Eckmann]. 

According to the assumption of the underlying system, the reconstruction 
suggests a nonlinear autoregressive (NAR) model of a signal [Casdagli][Kuo]. This 
NAR model can also be used to describe the underlying dynamic of the signal. In 
this approach, a nonlinear modeling tool is required. Through training, multilayer 
perceptrons (MLPs) can become an accurate nonlinear mapper [Hornik][Hecht- 
Nielsen]. In this work we train MLPs as NAR models of some test signals, which 
were produced by nonlinear, deterministic systems. We compare the results of two 
adaptation schemes in AR modeling, namely equation error and output error 
schemes [Shynk]. If the length of training sequences can be properly chosen, the 
output error scheme is shown to be more suitable in modeling signal dynamics than 
equation error scheme which has been adopted by most research groups 
[Lapedes][Casdagli][Mead]. In this paper, we propose a method to determine the 
length of training sequences based upon the dynamical measures of the 
reconstruction. 

In model validation, we show that using the mean squared one-step- 
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prediction error as the criterion, although of practical importance, sometimes is 
very misleading about how well the model approximates the underlying dynamics 
of a signal. We propose that the validation should include the comparison of the 
dynamical measures of the model output and the original signal 
[Principe] [Kuo] [Crutchfield]. 

2. RECONSTRUCTED DYNAMICS 

In the study of experimental dynamics, the delay coordinate method was 
proposed to reconstruct a state-space trajectory from a signal [Packard] [Takens]. 
Under certain conditions, the reconstruction is topologically equivalent to the 
state-space trajectory of the system that produced the signal. According to this 

method, the elements of a reconstructed state vector, y (t) , are signal samples and 
delayed versions, or 

T 
HO = [*(0 ;t(f + x) ... x(t + 2na)\        eq. 1 

where x(t) is the data sample at time t, x is a constant delay, and 2m+l is the 
dimension of the construction space. Takens showed that the sufficient condition 
for the equivalence of the reconstructed and the original system trajectories is 

2/n + 1 £ 2d + 1 , where d is the dimension of the original system attractor 
[Takens]. For most real-life problems, the dimensions of the underlying dynamics 
are usually unknown. Therefore, we need a method to estimate the minimal 
reconstruction dimension. Later, we will show that the estimation of 
dimensionality can be related to the order estimation of the signal model. 

By topological equivalence, we mean that two state-space trajectories have the 
same measures of dimension and Lyapunov exponents. The dimension of an 
attractor indicates the degrees of freedom of the system, while the Lyapunov 
exponents measure the growing or destroying rate of information in system 
dynamics [Eckmann][Parker]. To include the fractal case for chaotic dynamics, a 
generalized definition of dimensionality is required. In the paper, we adopt the 
correlation dimension because of its mediate requirement of computation time and 
memory size [Grassberger]. To estimate the correlation dimension of a state-space 
trajectory, we first compute the correlation integral, C(r), 

N     N 

„2 
c<£) =il  X "OHIHO -y 0)||)     eq.2 

N i = lj=l 

where N is the total number of the reconstruction state vectors, H(r) is the 

Heaviside function (=1 for r > 0 , and = 0 for r < 0 ), and e is the radius. For small 

e's, C(e)  is proportional to e°. Since the dimension of the underlying attractor 
is unknown, a common approach is to reconstruct state-space trajectories from a 



signal in spaces of different dimensions and plot the curves of log C(e) v.s. log e, 
which is referred to as correlation integral map or CIM for short [Principe]. When 
we increase the dimension of the reconstruction space to a certain value we may 
observe the saturation in the slopes of the CIM curves. The saturation value is the 
estimate of the correlation dimension. 

A positive (negative) Lyapunov exponent is the measurement of exponentially 
divergent (convergent) rate between two nearby trajectories along a specific 
direction. For instance, we start trajectories from an initial state and points on a 
sphere surrounding this state. The sphere may be deformed into an ellipsoid along 

the flow of a dynamical system. We can compute the ith Lyapunov exponent, \., 

as 

X. =   lim    log eq.3 

where  d (tQ)   is the radius of the sphere, and d{ (t)  is the ith principal axis 

of the ellipsoid as time evolves from tQ to t. In signal modeling, we are more 
concerned about how fast the model output will diverge from the original signal. 
In other words, positive Lyapunov exponents are of more importance. Because the 
largest Lyapunov exponent will eventually dominate the divergence [Sano], we 
propose to consider its measurement only. An algorithm proposed by Wolf will be 
used to estimate the largest positive Lyapunov exponent [Wolf]. According to this 
algorithm, two spatially neighboring segments of a reconstructed trajectory are 
treated as two nearby trajectories to compute the exponent. And, we compute the 
average of the right-hand-side expression in eq. 3 instead of taking the limit. 

3. SIGNAL MODELING 

We assume the underlying dynamics of a signal are smooth. Consequently, 

there exists a function F:R2m +! -» R2m +1, which maps the current reconstructed 
vector to the next one, i.e. 

X'+O = F(y(0) eq.4 

x(t+\) 
f " *(o T 

xO + 2) = F x(»+l) 

x(t+l+2m) V x(t + 2m) y 

Here, we use delay coordinate reconstruction method with x = 1. We note that 
the mapping actually includes several trivial filters and a predictor. Let us denote 

FL:R2m+1 the predictive mapping as R , which can be expressed by 
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[Kuo][Casdagli] 

x(t+l+2m)   = FX(jt (»).*(< + 1) x(t + 2m))   eq. 5 

or x(i+l)  = F^dO)) 

where *(;) = ^x(t-2m) ... x(i-i) x(t)\  ■ Since t     is assumed to be a 
nonlinear function, eq. 5 represents a NAR model of the signal x(t). From this point 
of view, signal modeling is equivalent to the modeling of the underlying dynamics. 
In conventional AR modeling, we construct a model that, in the average, fits only 
the local behaviors best. On the other hand, the dynamical measures provide global 
information of the signal dynamics. If we are able to incorporate these 
measurements into the model design, a better performance can be expected. 

The order of an AR model is defined as the number of the past data samples 
we use to predict the current data sample. In eq. 5, we note that the model order is 
equal to the dimension of the reconstruction space. Once we compute the 
correlation dimension of the underlying dynamics, Takens theorem already gives 
us a lower-bound estimate of the model order. In other words, the reconstruction 
dimension or the order of the AR model, 2m+l, must be equal to or greater than 
2D + 1. However, for experimental data we usually find two problems with this 
estimate. First, Takens theorem usually overestimates the minimal order of the 
model. Second, this estimate is sensitive to the selection of the sampling rate 
[Mead]. We have proposed to use CIM curves to estimate the lower bound of the 
model order [Kuo]. In the computation of the correlation dimension, we plot the 
CIM curves in reconstruction spaces of different dimensions. When we increase 
the dimension of the reconstruction space to a certain value, we can observe the 
saturation of the slopes of the CIM curves. This gives us a reconstruction space of 
the minimal dimension in which a topological equivalence of the original system 
dynamics can be established. This estimate of the minimal reconstruction 
dimension is also the estimate of the minimal model order. Our experimental 
results show that the minimal order estimate derived from this method is consistent 
with the minimal input temporal window (= sampling rate x model order) 
concluded in the work of Mead et al.[Mead]. 

In this paper, we would like to concentrate on how to apply the information of 
another dynamical measurement, the largest positive Lyapunov exponent, to signal 
modeling. Before we do that, we will discuss two possible schemes in training an 
MLP as a NAR model. 

4. NETWORK TRAINING SCHEMES 

For chaotic signal modeling, a common approach is as follows: a memory 
device, e.g. a delay line, is used to retain the data samples in the past. The 
parameters of the model are determined either analytically or adaptively to 
minimize the error between the model output and the current data sample. This 
approach is referred to as the equation error scheme in adaptive IIR filtering 



[Shynk]. It is well known that this scheme may introduce bias to the solution. This 
is because after adaptation we will connect the output back to the input of the 
memory device instead of clocking in the data samples of the original signal to 
make the next prediction. In this work, we choose the other adaptation scheme — 
output error scheme. A schematic diagram of this training is shown in Figure 1. 
Here, the input layer of the MLP is replaced with a delay line. This structure is 
referred to as Time-Delay Neural Network (TDNN) [Mozer]. We note that the 
network is trained as well as operated in the same manner. However, this training 
scheme requires a trajectory learning algorithm. 

signal                       .'*V«\e 

' 
TDNN   V •«  

G JOOO        0 0 ü If arnin * > 
Algoritf 

L-E3^Ö*HZKQ-' 

Figure 1. Output error training scheme 

In a trajectory learning, we need to decide the length of training 
sequences. On one hand, training sequences should contain enough information 
about the global picture of an attractor to be modeled. On the other hand, the 
computation complexity of a trajectory learning algorithm usually increases 
dramatically with the length of training sequences. If the signal is periodic, this 
decision is quite straightforward. The number of data samples that covers one cycle 
is usually the best choice. However, if the signal is chaotic, this decision becomes 
very involved. 

5. LENGTH OF TRAINING SEQUENCES 

In modeling chaotic signals, a long training sequence not only increases 
computation time but also induces stability problem. Since the underling system of 
a chaotic signal possesses positive Lyapunov exponents, two nearby trajectories of 
the system will diverge eventually. In the time domain, this implies that system 
output signals with small deviation initially will diverge eventually. Assume the 
model already captures the underlying dynamics. A tiny modeling error will be 
magnified by the system dynamics such that the output of the model will diverge 
from the desired sequence in a long run. If we try to reduce this error by changing 
the network parameters, we will not improve modeling accuracy. Instead, we may 
deteriorate the modeling result and create oscillations in the adaptation. To present 
enough global information of an attractor to the network during training and avoid 
using a long training sequence, we propose to train the network with different 
segments of the signal. The training procedure is as follows: clock an initial 
condition into the network input layer, iterate the network to produce a data 
segment, and then adjust the network parameters to minimize the distance between 
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the iterates and the corresponding target sequence. We apply the same procedure 
to all of training sequences once in each training epoch. 

The problem becomes how to choose the length of training sequences such that 
we can avoid the oscillation problem during training. To analyze this problem, let 
us assume we train a network with two data segments whose initial conditions are 
very close. They can be considered as two different segments of a reconstructed 
trajectory, say segment A and B, starting from the same neighborhood. When the 
network starts capturing the dynamics through training, the iterates of the model 
corresponding to these two training sequences can be used to reconstruct two 
trajectories around segment A and segment B respectively. This is illustrated in 
Figure 2. Instead of specifying the trajectories reconstructed from the outputs of 
the model, two uncertainty regions are delimited. They represent the possible 
divergence range between the model output and the signal due to the existence of 
the positive Lyapunov exponents. As time evolves, both uncertainty regions will 
grow and eventually overlap. When this overlap occurs, the training may become 
unstable. This is due to the fact that if the output of the model falls into the overlap 
region the model may be required to develop a map to follow the evolution of both 
segment A and segment B during training. Since segment A and segment B will 
diverge from each other eventually, it is not possible for the model to meet this 
conflicting requirement. 

uncertainty regions 
at i-th iteration 

segment A 

segment B 

Figure 2. State space representation in training 
a model with two sequences whose initial 
conditions are close. 

We assume the divergence occurs mainly along the direction corresponding 
to the largest Lyapunov exponent. The smallest number of iterations, / , before the 
overlap happens can be calculated according to the following inequality 

c. <2e.   = 2V 
X     iAt 

max s eq. 6 

where q. is the distance between the f^th points on both training segments, e. is the 
estimate bf the largest principal axis after i iterations, e0 is the mean square foot of 
one-step prediction errors, and Af is the sampling period. This estimation is based on 
the assumption that the largest principal axes of both uncertainty regions are in the 
same line but in opposite directions. To avoid training the model with a conflicting 



requirement, both training sequences should be smaller than i^. Therefore, we pro- 
pose to use the average of i 's computed from all pairs of neighboring training 
sequences as the length of the training sequences. 

6. EXPERIMENTAL RESULTS 
The test signal was obtained by integrating the Mackey-Glass equation [Mack- 

ey](with a = 0.2, b = 0.1, c = 10, and D = 30) with 4-th order Runge-Kutta method at a 
step size of 1. Then, the signal was downsampled by 6 and normalized to the range of 
[-1,1] for training. The resulting signal is given in Figure 3. This signal will be 
referred to as mg30. 

First, we train a TDNN with 8-14-1 (8 input units, 14 nonlinear hidden units, 
and 1 linear output unit) architecture using equation error scheme. In other words, 
the network is trained to be a one-step predictor of the mg30 signal. The training 
signal has 500 data samples. The learning rate is set to 0.001. The training was 
stopped after 500 epochs. We will refer to the network with the resulting weights 
as TDNN#1. The learning curve is given in Figure 4. We note that the change of 
the mean square error can almost be ignored after first 200 epochs. The final mean 

square error is 2.88xl0-4 . After training, we clock in the first 8 data samples as 
the initial condition and iterate the network to produce 3000 data samples. The 
waveform of the first 500 data samples is shown in Figure 3(b). Compared with th 
original signal, these iterates seem much more regular. 

Next, we train another TDNN of the same size using output error scheme. 
We compute the average of the i'5's for all pairs of nearby training sequences. The 
result is given in Figure 5. The average of these ig 's is 14, and this average is chosen 
as the length of the training sequences. Once we determine the length of the training 
sequences, each training pair, including an initial condition and a desired output 
sequence, is prepared from the signal every 3 points. In other words, two consecutive 
training sequences overlap 9 data samples. We use the Backpropagation Through 
Time algorithm to train the network [Werbos]. The learning curve is also given in Fig- 
ure 3. We note that the final mean square error (m.s.e.) of the equation error training is 
about half of the m.s.e. of the output error training. After training, the network, 
referred to as TDNN#2, is also used to reproduce a sequence of 3000 data samples. 
The waveform of the first 500 points is shown in Figure 3(c). We note that although 
the final mean squared one-step-prediction error of TDNN#1 is much smaller than 
that of TDNN#2, the output of TDNN#2 for this given initial condition looks much 
closer to the mg30 signal. To illustrate the oscillation problem, we increase the length 
of training sequences to 20 samples. The learning curve is shown in Figure 6. We note 
that after the m.s.e. drops to 0.06 the performance can not be improved any longer, 
and oscillations occur. 

To further compare the performances of TDNN#1 and TDNN#2, we com- 
pute the mean squared multi-step-prediction errors. The error curves are shown in 
Figure 7. We also plot Casdagli's conjecture curve, which indicates the divergence 
between the model output and the original signal due to the system dynamics [Casda- 
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gli]. We note that the error curve of TDNN#2 is very close to Casdagli's conjecture 
curve. This corroborates the fact that the TDNN trained by using output error scheme 
is a better dynamic model for the mg30 signal. 

mo        100       1*0       aoo       ±ha       *cc 4«C SCO 

(c) 

Figure 3. Waveforms of (a) mg30, (b) 
resulting signal with equation error training, and 
(c) resulting signal with output error training. 

We also compute the dynamical invariants for the original signal and the out- 
puts of both networks, the results are listed in Table 1. Based on these results we con- 
clude that the output error training method can yield a better model if we are able to 
select the training length properly. And, the mean squared one-step prediction error is 
not a reliable indicator about how well a model can approximate the underlying 
dynamics. 



Figure 4. Learning curves 
mse 

Figure 5. Estimates of i 's 
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Figure 6 Learning curve 
for long training sequences 
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TABLE 1.     Measurement of Dynamical Invariants 

dimension Xroa^nats/sec) 

mg30 2.70±0.05 0.0073 ± 0.0005 

iterates of TDNN#1 1.60±0.10 0.0062 ± 0.0005 

iterates of TDNN#2 2.65 ± 0.03 0.007410.0004 

7. CONCLUSIONS 

In this work, we assume the underlying system of a signal is autonomous, 
nonlinear, and deterministic. The uncertainty in the signal waveforms is created by 
system dynamics. In this framework, we propose to use the measures of dynamical 
invariants in signal modeling. The preliminary results show that this approach can 
really improve the model accuracy. And, the oscillation problem in modeling 
chaotic signals can be avoided. The output error scheme is also shown to be more 
suitable than the equation error in this framework. 

For some chaotic signals, the positive Lyapunov exponents may be very large 

such that the length estimate of training sequences may become very short ( = 1 ). 
In this case, the training sequences can barely provide the global information about 
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the signal dynamics. We have proposed another method to prepare the training 
sequences [Kuo]. The method yields some promising results in modeling Lorenz 
attractor. 
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Abstract 

A system for the detection of epileptic spikes and other tran- 
sients in the EEG will be described. It consists of a number of 
adaptive linear filters combined with a non-linear detection unit 
to control their operation. This has been implemented as a multi- 
layer perceptron. Configurations using different input preprocess- 
ing, initialization and network sizes will be presented along with 
a discussion on their corresponding results. 

1     Introduction 
The generation of feeble electrical signals by the brain was known since 
the end of last century, although their study with the primitive equip- 
ment of that time was not easy and the restricted understanding of their 
origins made interpretation difficult. With the establishment of neuro- 
physiology on a scientific basis and the advances in electronics in the 
1950's it became possible to record these time-varying signals on paper 
by attaching electrodes on the surface of the scalp. Nowadays, such a 
recording, called the electroencephalogram (EEG) can be taken in many 
hospitals following a harmless as well as inexpensive procedure. Features 
that relate to the age and level of consciousness and general indications of 
the mental activity are registered in the EEG, giving a profile of mental 
health. 

Despite recent advances in medical imaging, the EEG is still of great 
value in monitoring and screening patients suffering from neurological 
conditions or idiopalhic epilepsy, where the abnormality is only func- 
tional and transient[17]. 

In epilepsy the abnormal EEG patterns that characterize seizures of- 
ten occur isolated in "larval" form and are registered in the interictal 
clinical EEG. Spikes, so called because of their shape on a conventional 
recording are among the commonest patterns. Their presence, absense 
and frequency of occurrence are valuable clues in the diagnosis and the 
treatment of this condition[2]. Conventional EEG recordings are some- 
times too brief to be trusted for the assessment of patients in order to 
prescribe some effective therapy. Hence prolonged recording has been 
suggested as a more reliable alternative[6, 16]. Human interpretation, 
however, is hindered by the enormous volume of data and the difficulty 
in their collection from several ambulatory patients. On-line analysis by 
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a portable microcomputer-based unit was considered as a feasible solu- 
tion. Early methods were simple because of the limited capabilities of 
the computers of the timefl]. Despite the sophistication and speed of 
modern processors no method has been developed as yet to analyze the 
EEG with total success. This is mainly because the only reference for 
comparison are human experts, who learn by experience how to perform 
the highly qualitative and often subjective task of EEG analysis. No for- 
mal criteria seem to be followed and even the definitions of the various 
patterns[5] act as mere guidelines. Intra and inter-reader variability is 
not uncommon. 

The method for automatic EEG analysis described here attempts to 
combine some attributes of human decision making with the formalism 
of conventional signal processing tools to form a flexible, but consistent 
automatic system. 

2    Signal modelling and analysis 

2.1      A simplified model for the signal 

The behaviour of the EEG signal, varies with the level of consciousness, 
eye opening and closure, mental activity etc. Experts usually separate 
the EEG into background activity, which is the signal present at all times 
and on which transients are superimposed. These have been discrimi- 
nated into epileptic spikes, which are of medical interest, and other tran- 
sients. Noise is often present also. Therefore the recorded EEG may be 
represented as a composite signal: 

e(n)=b(n) + s(n) + t(n) + v(n) (1) 

where b(n) is the background activity, s(n) and t(n) are spikes and other 
transients, respectively, and v(n) is the noise component. Each one of 
these components was modelled as the output of an an all-pole sys- 
tem excited with either a sequence of impulses or a white uncorrelated 
sequence[12, 13, 14]. The components of the generating model of the 
EEG signal are shown in Figure 1. 

2.2    EEG signal analysis 

The analysis of the EEG signal was based on the inverse of the model 
The inverses of H(z), related to the background activity and G{z), re- 
lated to spike generation, are both transversal "linear predictor" filters[12, 
13] with transfer functions of the form P(z) = 1 + £L_ /i,z-\ H~l(z) 
was estimated using on-line linear optimization (adaptive filtering)[19]. 
It can also track slow changes in the signal behaviour[12, 13] as ex- 
plained in [18]. G~l{z) was estimated off-line from available spikes but 
on-line adaptation of G(z), in the neighbourhood of the optimal was 
carried out for better modelling of individual spikes[13]. 

Other transients may be treated in a similar way. Only one transient 
was considered this, having the form of an exponential decay with arbi- 
trary polarity, imitating interference potentials from movements of the 
recording electrodes on the scalp or of ocular origin. 
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When H~1(z) is applied to the (recorded) EEG signal e(n) the out- 
put, r(n), contains the white sequence, u(n), transients due to s(n) and 
t(n) and additive distorted noise. Similarly, the application of G~l(z) 
on e(n) would reproduce the sequence of impulses d(n), and other com- 
ponents in the output y(n). Likewise, application of the inverse transfer 
function of any other transient would produce its generating sequence in 
yi(n), among other components. 

Spikes are registered in r(n) a fact used by earlier systems for their 
detection[3, 4, 9, 11]. When other transients are present, they are also 
registered and the results are inconclusive. Impulses present in y(n) and 
in any of the y,(n) are not very reliable indications, because they are 
burried in non-random signals, caused by b{n). 

The proposed method[12, 13], depicted in Figure 2, detected tran- 
sients in r(n). Making an initial assumption about the origin of the 
transient, by inspecting t/(n) and j/,-(n) for all modelled transients and 
deciding which one is the most likely to have occurred it was possible 
to generate an excitation impulse to the appropriate generating trans- 
fer function (G(z) for spikes) whose output was subtracted from the 
recorded EEG signal, e(n) to produce a supposedly transient-free signal, 
e'(n). Processing this through H~1(z) and observing no disturbance in 
its output r'(n) confirmed the presence of the suspected transient. 

3      The need for decisions in signal classi- 
fication 

The reliability of the above scheme, is linked to the accuracy of the 
detection of transients in r(n) and r'(n) and the discrimination of their 
origin in either y(n) or one of the yi(n). 

Initially, simple statistical significance testing was employed for the 
detection of transients. Both r(n) and r'(n) are essentially random se- 
quences, consisting mainly of u(n) if the noise level is low. This follows a 
normal distribution with zero mean. Transients have amplitudes that are 
atypically large and may be detected with a certain degree of certainty, 
p% using the assumed probability distribution to derive a corresponding 
level of significance v. Usually the standard normal distribution is em- 
ployed, and hence the sample is normalized by the standard deviation of 
the signal. 

This method, however, did not discriminate between isolated atyp- 
ical samples, which are genuine transients and longer bursts which are 
related to certain extracerebral phenomena, like muscle artifacts. To 
overcome this problem, every time a new sample became available, a 
linear combination of the N most recent sample values was formed. 

/<->=s:*$3 (2) 
i--N/2 *K   ' 

where x(n) is either r(n) or r'(n) and al(n) is an on-line estimate the 
power (variance) of x(n), making f(n) independent of the signal level. 
The weights, {u>,} were positive for i £ [— M/2,M/2] where M is a small 
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number of samples (1,3 or 5) and negative otherwise. The statistical 
significance level, £ is implicitly included in the weights. By applying a 
threshold 9 on f(n), a binary detection, z(n) is formed. 

Z{n> ~ \ 0    f(n) < 9 (3) 

Two such elements applied on r(n) and r'(n) verified whether transients 
were present (zi(n) and z2(n)). Similar units were introduced to detect 
transients in y(n) and y^n) (z3(n) and z4(n)). The outputs of these 
units were combined to produce activation signals for the spike (zs(n) = 
zi(n)ANDz3(7i)) and for the other transient (zt(n) = zi(n)ANDz4(n)) 
as well as the "spike detected" output, z0(n) = 2](n)AND NOTz2(n). 
z,(n) and zt(n) were used as windows on y(n) and t/i(n) to generate the 
(presumed) impulse activation function of the spike or transient generat- 
ing filters, for example d(n) = z,(n)y(n). The logical operations required 
may also be implemented as weighted sums (e.g. f,(n) = Zi(n) + z2(n) 
and f0(n) = zi(n) - z2(n)) followed by thresholding (9, = 1.5 and 
S0 — —0.5). This scheme is an extension of an earlier method which 
considered only spikes[12]. Unlike its predecessor, which was quite suc- 
cessful, the performance of the extended system was only moderate. 
The problems associated with the generalized structure are believed to 
be associated with the selection of an appropriate set of weights for the 
elements that act on the inputs, rather than with the structure itself. 

4    A Multi-Layer Perceptron structure as 
a decision unit 

The layered fixed-weight structure of the decision unit had a logical 
interpretation. The function of any of its elements may be described 
in terms of a linear combination of its inputs (equation 2) followed by 
thresholding (equation 3). 

This bears a strong resemblance to the Multi-Layer Perceptron (MLP) 
neural network, originally described by Rumelhart and McClelland[15], 
as every layer receives inputs from the previous layer only. The only 
difference is that the intuitive system does not have all outputs of one 
layer connected to the next, but with the introduction of these with zero 
weights the two became equivalent. 

Because all the inputs to the MLP are all treated in the same man- 
ner, they loose their individual significance and they may be grouped to 
form a single input vector: x(n) = [\r(n + N/2) ...r(n- N/2)r'(n + 
N/2)... r'(n - N/2)y(n + N/2) ...y(n- N/2)yi{n + N/2) ...yi(n- 
N/2) ...]T. Describing the weights of the Jbth element of the /th layer in a 
similar way vrlk = [wlkowiki ■ ■ ]T the weighting operation may be defined 
as an inner product, fik(n) = v/Jkx(n). The bias weight, wljt0 is multi- 
plied by unity and plays the role of the threshold in the earlier system. 
The output of the element, ylk(n) = <r[flk(n)] is produced by applying 
a limiting function (non-linearity), <r[] on the linear output fik(n). The 
operation of the element of any layer may be described in terms of the 
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inner product fik(n) = w^y(_i(n) as described above, using the vector 
of the outputs of the previous layer, y/_i(n) = [ly;_i,i(«)j/f-i,2(n)...] . 

The function of the MLP description of the system is defined as a 
relation between its inputs and its desired output rather than by the 
behaviour of its individual elements, which was the basis of the ear- 
lier system. This is specified as a set of examples, consisting of pairs 
[x(n),d(n)], the training set, where d(n) is the desired output vector. 
An optimal weight vector may be found by minimizing the mean-squared 
error between the desired and the actual output vectors of the output 
layer £ = E{[d(n) - yz,(n)]2} according to the well-known generalized 
delta rule (backpropagation algorithm) [15]. Many variants of the basic 
algorithm exist [10, 7]. The one used in this application has a momentum 
term and updates the weight vector on every sample, according to the 
following recursive relation, where for notational convenience, yo(n) has 
been used to denote the input vector: 

wjt(n + 1) = aw,fc(n) + (1 - a)w,fc(n - 1) + 2/i«/t(n)y,_i(n)      (4) 

where 

yik(n) Hl = L ,g> 
)]HjM + lJ(n)w'+ijAn)    otherwise <- > 

_ J dk(n) - 
~ \ <r'[fik(n 

where a'(f) = y(l-y) is the derivative of the non-linear logistic function 
y = sigma(f) — '_y , a is a filtering factor defining the "momentum" 
and \i is the learning rate of the algorithm. 

5    Implementation and other issues 
Although the structure and the learning algorithm for the MLP are well- 
defined several details and problems in the implementation needed to be 
resolved. The main ones are discussed here. 

5.1    Forming a training set 

A training set consisting of input-output examples needed to be defined. 
This is not directly possible from the real EEG records available, because 
spikes and other transients considered are fairly rare and the exact lo- 
cation of their occurrence unknown. Some spikes that were identified 
by an earlier system were used but the training set consisted mainly of 
artificial data, generated according to the described model (section 2.1). 
For these the location of the excitation functions for the various tran- 
sients is known exactly. These were used to derive the desired output 
signals indicating the points of application of the excitation impulses for 
spikes, zs(n) and the other type of transients, zt(n), as well as a separate 
indication for the occurrence of spikes z0{n) (Figure 3). The real EEG 
training patterns were used as well, but their effect on the final weights 
was not visible. 
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5.2 Implementation of the MLP 
One of the problems encountered during the implementation was the fact 
that the MLP is embedded in the rest of the system and that its spike 
detection output depends indirectly on the spike excitation signal, which 
is also an output. In other words, there is feedback. Hence training 
the network cannot be done independently and as a result it was not 
possible to use many of the available tools for developing and training 
the network. 

It was therefore necessary to develop a library of functions that deal 
with the construction of networks of different configurations as well as the 
implementation of the backpropagation algorithm. The library, which 
was realized in the C programming language, like the rest of the system, 
also provides the means to read a network configuration and learning 
parameters from a file and save them in a format that is easily read by 
computers and humans alike. 

5.3 Preprocessing of the inputs to the MLP 
An important issue when using neural networks with natural signals like 
the EEG is the format of the inputs to the network. Although it is 
sometimes claimed that there is no need for preprocessing, it is obvious 
that performance may be affected by changes in the dynamic range of the 
inputs. To ensure that the input levels to the network are not affected 
much by such fluctuations, they were normalized in a way similar to 
the one described for the earlier system (equation 2). All inputs to the 
network were divided by the RMS value of r(n). This is a convenient 
measure, because it is also representative of r (n) and is not affected by 
modifications to the system by the extension or restriction of the number 
of transients considered. 

Preprocessing of the inputs using other operations to assist the net- 
work to learn or to simplify its structure were also considered. The latter 
is important if the system is to be implemented on a small portable mi- 
crocomputer with limited processing capabilities and resources. 

Two types of preprocessing were considered. The first consists of 
simply scaling all the elements in the input vector by <rr, as already ex- 
plained in the previous paragraph. The inputs to the network, Xi(n) are 
related to the corresponding "raw" inputs, Xi(n) by the simple relation 
Xi{n) = x'\n>. No information is lost during this operation, but the size 
of the network may be larger than other alternatives. 

Squaring the elements of the input vector prior to their application to 

the MLP, so that £,-(«) = g|
gv 

was another simple form of processing. 
This resembles the operation performed by equation 2, which has an 
intuitive interpretation (section 3). 

5.4 Initial conditions of the learning algorithm 
When training the MLP using the backpropagation algorithm the weights 
of the processing elements are usually initialized to small random val- 
ues. In this application the weights of the intuitive system of section 3 
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for which the performance was not perfect, but not unreasonable, were 
considered as a possible alternative, as they may be closer to an optimal 
solution than a random weight vector. Strictly speaking, these are only 
valid if the inputs are squared and normalized. 

The elements on the first (hidden) layer were made to detect whether 
a sample at a specific position in the sequences of the input signals, 
{r(n)}, {r'(n)}, {y(n)} and {j/i(n)} has an atypically large amplitude 
compared to the ones in its neighbourhood. The result was then fed into 
one more (hidden) layer, implementing logical AND operations between 
the outputs of the first layer, before they are combined by the logical 
OR elements of the output layer for the producton of z,(n), zt(n) and 
z„{n). 

6    Results 
The system was tested for a number of combinations of input preprocess- 
ing and weight initialization methods. Training was primarily carried out 
using synthetic data, because the available EEG signals did not contain 
substantial numbers of other transients. Tests, however, were carried 
out on real EEG records as well. 

Different MLP configurations were tested, either with normalized 
or with normalized-squared inputs, as explained in section 5.3. The 
convergence of the backpropagation algorithm for random and preset 
initial weight vectors (section 5.4) was also investigated. 

Tests were carried out on a simulated EEG record containing 25 
spikes and 20 other transients and a real EEG record containing 52 
spikes. The number of successful spike detections was noted for every 
network configuration, as well as the number of iterations required for 
the network performance to stop improving. Some networks were also 
tested with a different number of elements in the first hidden layer. The 
results are shown in Table 1. 

Net 
Config. 

Iterations 
to 

Converge 

60000 
80000 
60000 
10000 

* 

30000 

Detections 
Simulated EEG 

Spikes 
(25) 

25 (0) 
25 (0) 
25 (2) 
25 (2) 

25 (2) 

Transients 
(20) 

20 (0) 
20 (0) 
20 (0) 
20 (0) 

* 
20 (0) 

Real EEG 
Spikes 
(72) 

71 (5) 
70(5) 
70(5) 

* 

70 (12) 

Note: * indicates complete failure of the system 
Table 1: Results 

All tested configurations had 44 inputs (11 samples from each input 
signal) and 3 outputs. The first four had two hidden layers with 8 and 
5 elements respectively, and the other two had two hidden layers with 5 
elements each. Configurations 1, 2 and 5 were for normalized inputs and 
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3, 4 and 6 for squared and normalized inputs. 1, 3, 5 and 6 had random 
initial weights, whereas 2 and 4 had preset weights. 

Figure 4 shows a typical set of waveforms from the simulated EEG 
data records. The indications of spike detections under the input signal 
show the proper operation of the system, whereas the estimated spikes 
and transients in the third set demonstrate that zs(n) and zt{n) are 
generated correctly as well. 

7    Comments, observations and conclusions 
All but one of the configurations presented in Table 1 performed reason- 
ably well with both simulated and real EEG data. In spite of training the 
network mainly with synthetic data, its behaviour with real EEG signals 
was still quite good. Although the number of data records considered 
in this study was limited, results show that the MLP-based system is 
capable of performing well even when its inputs deviate from those used 
for its training. 

The number of iterations to obtain a satisfactory performance was 
considerably smaller for squared-normalized inputs, when the weights 
were initialized to those of the earlier system than when random ini- 
tial values were used. This indicated that the former were closer to an 
optimal, which was also apparent from the small distance between the 
initial and the final weight vectors. The final weight sets for the two dif- 
ferent initialization procedures were different, but this is not surprising, 
as there are many combinations of weights that give an optimal per- 
formance for a given network architecture[8]. For the normalized only 
input vector, this was not the case. It appears that starting from random 
weights produces faster convergence than when the weights of the earlier 
system were used. This is not surprising, because the latter corresponds 
to the weights for squared inputs, which is a completely different case 
with the preset initialization being perhaps far from the optimal. 

The loss of the polarity of the input signal with squaring as prepro- 
cessing was evidenced in the form of the two false spike detections, in- 
dicated in brackets for the simulated EEG record. These corresponded 
to spikes with negative polarity which were intentionally introduced. 
Real epileptic spikes always have positive polarity. These have not been 
detected by the systems 1 and 2, which maintain the polarity of their 
inputs. 

Finally, for configuration 6 with a reduced number of elements and 
the inputs squared, the system was still quite successful. This structure 
required a simpler network to produce a satisfactory output, because 
some of the burden of preprocessing was shifted to the the input. This 
was not the case in configuration 5, where the lack of an adequate num- 
ber of elements led to a poor performance of the MLP leading to the 
degradation of the performance of the system. 

The main advantage in using the MLP in this application lies in 
its ability to learn by example. This permits the inclusion of medical 
expertise which cannot be expressed in a set of rules. Hence the EEG 
analysis system presented may be trained by an individual expert to 
reflect his/her experience or by a group of analysts to act like a less 
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subjective analysis tool combining both medical experience and formal 
engineering methodology. 
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Abstract 

Earthquake prediction based on the Seismic Electric 
Signals usually employs statistical linear models. In this 
paper, an alternative scheme for earthquake prediction 
and modelling of the geophysical characteristics based 
on Artificial Neural Networks, is presented. Several net- 
work configurations are investigated and the results are 
discussed and interpreted in various ways. 

Introduction 

It has been reported that transient variations of the electrotel- 
luric field- called Seismic Electric Signals(SF,S) - are observed 
before an earthquake. The study of the physical properties of 
these signals is used for the determination of the parameters 
(epicentre and magnitude) of an impending event[l]. 

The occurrence of these precursors varies from a few hours 
to a few days before the earthquake and have a duration of 
one minute to a few hours. These signals appear as a tran- 
sient change of the potential difference measured between two 
electrodes (up to a few tens of/iV/m) (Figure 1) depending on 
the earthquake magnitude, Ms, the epicentre, local geophysical 
inhomogeneities, source characteristics and travel path.   The 
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components of the electric field are measured in two perpen- 
dicular directions (East-West and North-South) using dipoles 
with lengths varying from a few tenths of meters to a couple 
of kilometers. 

Very often, noise obstructs the clarity of SES. It can be 
classified into three categories depending on the nature of the 
cause: electrochemical, magnetotelluric and cultural. 

By using various techniques[9], [10] to eliminate the noise 
from the electrotelluric field measurements and by applying 
certain, well defined, criteria[2], the detection of SES is achieved. 

The study of the physical properties of SES and their corre- 
lation to the impending seismic activity leads to the construc- 
tion of an empirical selectivity map for a monitoring station. 
Selectivity is defined as the sensitivity of a station to signals 
from a restricted number of seismic areas while remaining in- 
sensitive to SES from other areas[3]. 

In this paper an alternative approach is suggested for the 
construction of the selectivity maps based on the use of Arti- 
ficial Neural Networks. 

Artificial Neural Networks 

The most basic function of Artificial Neural Networks (ANN) 
is the mapping of an N-Dimensional space to M Dimensions. 
By adjusting the weights of the internal connections of the net- 
work, through training, a transformation function is approxi- 
mated. 

The accuracy of the resultant mapping depends on the 
amount of output error at the end of the training process, as 
well as, whether the training set is a representative sample of 
the domain of the application. 

The problem was to find a suitable transformation which 
would map the two dimensional input data (the relative SES 
components [mV/m] in the directions East-West and North- 
South) collected by the monitoring station, into a three dimen- 
sional representation (the geographical location - longitude and 
lattitude - and the magnitude of the impending event), (Figure 
2). 

The XER.ION software package[16] was used to simulate a 



feed-forward Network. Several combinations of network archi- 
tectures and training algorithms were tested. The configura- 
tion that gave the most satisfactory results comprised of: 

• Two input nodes corresponding to the two components 
of the SES, 

• Fourty five hidden layer nodes, 

• Three output nodes corresponding to longitude, lattitude 
and magnitude information. 

The Delta-Bar-Delta[16] training algorithm was employed. 
The training data was collected by a monitoring station 

based at Ioannina (western Greece) and presented in [1 to 8]. 
Due to its small size, expansion of the original set was necessary 
by addition of a small amount of Gaussian noise to each of the 
training vectors. The size of the data set has been increased 
by a factor of five, (Figure 3). 

The mapping produced with the expanded data set works 
well since the network now has a better idea of what the in- 
put surface looks like and any misinterpretations due to re- 
stricted input data are avoided. Although the overall output 
error in this case increases, a continuous and smooth output is 
obtained, moreover, meaningless output values are avoided. 

After convergence, the network can be used to predict im- 
pending earthquakes and construct the selectivity map for a 
monitoring station. 

Interpretation of the Results 

The network has been tested using a small subset of the avail- 
able data which has not been presented to the network dur- 
ing the training process. The majority of the training vectors 
were associated with earthquakes from the geographical area 
20.0°£ - 21.50£,37.5°iV - 40.0°N. As a result the network 
prediction accuracy was higher in that area. The epicentre lo- 
cation can be predicted with an error of less than 0.3°, and the 
magnitude with an error of less than 0.5 Ms. The most success- 
ful of the methods used so far for the same purpose, based on 

683 



traditional statistical linear models have approximately twice 
as much error. 

Furthermore, by feeding the network with a data set occu- 
pying the whole input space, a surface related directly to the 
sensitivity properties of the station is obtained, thus, approxi- 
mating its selectivity map, (Figure 4). 

A possible way of investigating the travel paths of the SES 
and certain geophysical characteristics of the monitoring area 
is to present the network with a set of data as above and plot 
only the epicentre information, discarding the magnitude. The 
obtained curves or family of curves indicate paths where SES, 
sensitive to that station, possibly propagate, (Figure 5). Simi- 
larly, by discarding the epicentre information and plotting only 
the earthquake magnitude versus one component of the input 
vectors, while the other is kept constant, the correlation be- 
tween the magnitude of the earthquake and the SES may be 
obtained, (Figure 6). 

Comments and Conclusions 

The method presented here is superior to the classical statis- 
tical method for the prediction of earthquakes based on the 
SES. The construction of the selectivity map has become a 
relatively easy and accurate task. Once the network is trained 
with a large data set, the results can be considered sufficiently 
accurate for practical purposes. Furthermore the trained net- 
work can be used as a model for geophysical research. 

More work can be done to further investigate the behaviour 
of the Neural Net under unconventional conditions. Other net- 
work topologies, such as Self Organised Maps, could be em- 
ployed. It is also worth considering the idea of a network with 
inputs from more than one monitoring station. 

Despite the fact that so far a single network was employed 
assuming a strong correlation between the magnitude and epi- 
centre of the earthquake, it could be possible to use two sepa- 
rate networks. 

We would like to acknowlegde the help and advice of Mr. 
J.Makris, University of Athens. 
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Figure 1: Typical forms of Seismic Electric Signals. 

Figure 2:   Input  to  Output  Space transformation by 
means of ANN. 
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Figure 3: The input training vectors. 

Figure 4: Sensitivity map of a monitoring station. 



Figure 5: Epicentral location as a function of E/vs with 
Eßw constant. 

Figure 6: Earthquake magnitude as a function of E;vs 
with ~EIEW constant. 
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Abstract 

The experimental results in this paper demonstrate that a simple 
pruning/retraining method effectively improves the generalization per- 
formance of recurrent neural networks trained to recognize regular lan- 
guages. The technique also permits the extraction of symbolic knowl- 
edge in the form of deterministic finite-state automata (DFA's) which 
are more consistent with the rules to be learned. Weight decay has also 
been shown to improve a network's generalization performance. Simu- 
lations with two small DFA's (< 10 states) and a large finite-memory 
machine (64 states) demonstrate that the performance improvement 
due to pruning/retraining is generally superior to the improvement due 
to training with weight decay. In addition, there is no need to guess a 
'good' decay rate. 

1     MOTIVATION 

We propose a simple, destructive training method for improving the general- 
ization performance of recurrent neural networks trained to recognize regular 
languages. To our knowledge, no such techniques for recurrent networks has 
been previously published. In addition to improved generalization perfor- 
mance, we also demonstrate that the rules extracted in the form of determin- 
istic finite-state automata is superior to those extracted from larger networks. 
Good generalization results have also be reported using weight decay ([9, 11]). 
We will compare our pruning method with weight decay for different decay 
rates. 



2    PRUNING A RECURRENT NETWORK 

We incrementally trained discrete-time, recurrent networks with second-order 
weights Wijk to learn regular languages [2, 5, 12, 14]. The weights Wijk were 
updated according to a second-order form of the RTRL learning algorithm for 
recurrent neural networks ([15]). For more details see [5]. The heuristic we use 
for extracting rules from recurrent networks in the form of deterministic finite- 
state automata (DFA's) is described in detail in [5]. Different approaches are 
discussed in [2, 14]. The quality of the extracted rules has been discussed in 

Our goal is to train networks of small size with improved generalization 
performance and also to improve the quality of the extracted rules. We start 
by training a large network for a known regular grammar and apply our 
network pruning and retraining strategy to the trained network. Whenever 
the training is successful, the state neuron with the smallest weight vector 
is removed and the network is retrained using the same training set. This 
process is repeated until either a network with satisfactory generalization 
performance is obtained or until the retraining fails to converge within a 
certain number of epochs. When the current network fails to converge, we 
choose the network trained in the previous prune/retrain cycle as our solution 
network. 

3     SIMULATION RESULTS 

3.1     Experiments 

We trained recurrent networks on two different training sets: The first set 
was obtained from the randomly generated 10-state DFA shown in figure 
la. It consists of the first 500 positive and 500 negative example strings in 
alphabetical order with alternating positive and negative strings. Since this 
a second-order modification of RTRL, training can occur at the end of each 
presented string. The second training set was generated by, the DFA shown 
in figure lb. It accepts only strings which have an even number of 0's, l's and 
2's in it (triple parity). The initial training set consisted of 30 strings; the 
learning rate and the momentum were set to 0.5. We started training with 
a network with 15 state neurons and the weights were initialized to random 
values in the interval [-1.0, 1.0]. 

All networks were trained on the same training set. However, using an 
incremental training heuristic, none of the networks needed to be trained on 
all strings. The learning of the DFA states from short strings allowed the 
network to correctly classify longer strings without explicit training on these 
strings. 
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(a) (b) 

Figure 1: Inferred DFA's. (a) randomly generated DFA with 10 states and 
two input symbols, (b) the DFA for triple parity accepts only strings with 
an even number of 0's, l's and 2's. 

3.2     Generalization Performance 

For each (re)training/pruning cycle, we show in table 1 the number of state 
neurons, the (re)training time, the size of the training set necessary for suc- 
cessful training, the generalization performance of the trained network, the 
quantization level q used for DFA extraction, the size of a good minimized 
DFA extracted from the network and its generalization performance. 

The results for the randomly generated 10-state DFA are shown in table 
1. A network with 15 state neurons learned the training set relatively eas- 
ily (197 epochs) and only a fraction of the entire training set was necessary 
(142 strings). The generalization performance of the trained network on all 
strings of length up to 20 (2,097,150 strings) is fairly good with only 6.75% 
of all strings misclassified. For DFA extraction, we only considered DFA's 
that were consistent with the training set, i.e. the DFA's correctly classified 
all strings of the training set. As a good model of the regular language, we 
chose the consistent DFA extracted with the smallest quantization level q 
([6]). For the trained 15-neuron network, we were able to extract a consistent 
DFA for q=2; however, the minimized DFA had 382 states as compared to 
10 states for the DFA that generated the training set. The extracted DFA's 
generalization performance is impressive with only 0.41% of all test strings 
misclassified, thus outperforming the trained network (this is often the case, 
see for example [6]). 

After pruning the first state neuron of the network, the retraining time 
was negligible (7 epochs), indicating that the pruned state neuron did not 
contribute significantly to the internal representation of the learned DFA. 
The generalization performance of the pruned and retrained network and the 
extracted DFA were comparable to the performance of the larger network. 

The retraining got harder with fewer state neurons while the network gen- 
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eralization performance improved by an order of magnitude (0.14% for the 
7-neuron network). This improvement would come as no surprise if the max- 
imum size of the training set were also increasing; with more training strings 
used, one would certainly expect the network to perform better. However, 
the generalization improvement was achieved in most cases without additional 
new training strings. At each stage of the pruning/retraining process, the size 
of the training set was smaller than the size of the training set used to train 
the 15-neuron network. This clearly shows that the performance improve- 
ment is due to the reduced size of the network. 

Neurons    |    Time    |    Size    |    NN  Performance    |    q-level    |    DFA States    |    DFA  Performance 

15 197 142 6.75% 2 382 0.41% 
14 7 46 6.89% 2 484 1.57% 
13 98 99 2.61% 2 314 0.35% 
12 11 62 1.51% 2 10 0.00% 
11 14 67 0.97% 2 10 0.00% 
10 22 63 1.26% 2 135 0.05% 

9 111 157 2.95% 2 151 0.62% 
8 102 140 2.44% 4 505 1.21% 
7 104 118 0.14% 2 10 0.00% 

Table 1: Random DFA: Network performance after each pruning cycle; 
epochs; maximal size of the maximal training set; NN classification errors on 
test set; quantization level; size of extracted DFA; DFA classification errors. 

After retraining the 7-neuron network, we attempted to further reduce the 
size of the network. However, the 6-neuron network failed to converge within 
50,000 epochs. Thus, the 7-neuron network was our final network. Trained 
recurrent networks make generalization errors because the internal represen- 
tation of DFA states is unstable, i.e. with increasing string length, well- 
separated neuron activation clusters formed during training begin to merge 
together ([16]). The extracted DFA's do not share this problem and thus show 
consistently better generalization performance. The DFA extracted from the 
smallest network (7 neurons) was identical with the original DFA. The quality 
of the extracted rules also tends to improve with decreasing network size. 

The results shown for triple parity (table 2) confirm our findings that 
our pruning/retraining algorithm is an effective tool for improving the gen- 
eralization performance of both the trained network as well as the extracted 
DFA. Note that in this case the resultant 3-state neural network is the least 
size neural network for "representing" the 8-state DFA if the internal state 
representations of the network are confined to the rails of the sigmoid ([16]). 

Neurons    |    Time    |    Size    |    NN Performance    |    q-level    |    DFA States    |    DFA  Performance    J 

15 183 209 13.64% 3 3105 8.42% 
14 3 42 13.85% 3 2560 4.17% 
13 17 84 10.08% 2 128 0.00% 
12 22 99 9.62% 2 81 0.00% 
11 12 65 5.45% 2 6 0.00% 
10 23 92 3.87% 2 46 0.00% 

9 20 83 3.27% 3 124 0.00% 
8 23 91 4.07% 2 8 0.00% 
7 36 93 3.16% 2 S 0.00% 
6 29 96 3.98% 3 8 0.00% 
5 39 87 0.58% 2 8 0.00% 
4 29 85 2.08% 2 8 0.00% 
3 179 92 0.75% 3 8 0.00% 
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Table 2: DFA for Triple-Parity: Network performance after each pruning 
cycle; epochs; maximal size of the maximal training set; NN classification er- 
rors on test set; quantization level; size of extracted DFA; DFA classification 

errors. 

3.3    Comparison with Weight Decay- 

It has been observed in simulations that weight decay can improve the gener- 
alization performance of feed-forward networks ([9, 11]). Weight decay sup- 
presses irrelevant components of weight vectors by choosing a small vector 
that solves the learning problem. 

For networks trained using weight decay, the error function is expanded 
to include an error term which penalizes large weights: The weight update 
then becomes 

dE°        ^ 
dwijk 

The results in table 3 show a comparison of the performances of pruned 
networks with the generalization of networks trained with weight decay for 
varying decay rates A. The training set was the same as the one used above 
to learn the random 10-state machine. In all but one case, the pruned net- 
works outperformed the networks with weight decay. The training time for 
pruned networks includes the initial time necessary to train a 15-neuron net- 
work and the retraining time for each pruning step. The pruning always 
resulted in networks with 7 state neurons. The training times for pruned 
networks and networks with weight decay were comparable, although prun- 
ing causes fewer weight updates after each pruning/retraining cycle. The 
methods refer to plain training (none), training with pruning (pruning), and 
training with weight decay (A = 0.0001, A = 0.0005, A = 0.001). The pruning 
heuristic always improved both the network generalization performance and 
the extracted DFA, especially when the ideal DFA with 10 states was not 

already extracted in the original 15-neuron network. The convergence time 
for training with weight decay increases with increasing decay rate. None of 
the runs converged for values of A larger than the ones shown. In cases where 
the original network was not well trained (table 3a), weight decay improved 
network generalization and the extracted rules. However, in all other cases 
(tables 3b-d), networks trained with weight decay can show worse general- 
ization performance and DFA's were extracted that were consistent with the 
training data, but not identical with the ideal 10-state DFA. We can con- 
clude that our pruning heuristic generally results in better trained networks 
and smaller DFA's that explain the training data than weight decay methods. 
In addition we did not have the weight decay disadvantage of possible failure 
to converge to a good solution or the need to set the decay rate A prior to 
training. 



Method           1    Time    |    NN Performance    |    DFA States    ||    Method           |    Time    [    NN Performance    |    DFA States    | 

none 197 6.75% 382 none 175 2.76% 81 

pruning 666 0.14% 10 pruning 437 0.21% 10 

A = 0.0001 199 4.18% 10 A = 0.0001 141 1.32% 13 

A s 0.0005 257 3.18% 30 A = 0.0005 166 1.03% 10 

A = 0.001 401 2.20% 10 A = 0.001 362 2.92% 10 

(a)                                                                        (b) 

Method          |    Time    |    NN Performance    |    DFA States    ||    Method          |    Time    |    NN Performance    |    DFA States 

none 151 0.90% 10 none 161 2.14% 10 

pruning 375 0.00% 10 pruning 262 1.12% 10 

A = 0.0001 154 1.93% 87 A = 0.0001 172 0.61% 10 

A = 0.0005 169 0.97% 10 A = 0.0005 200 3.28% 72 

A = 0.001 305 1.74% 10 A = 0.001 351 2.49% 13 

(c) (d) 
Table 3: Comparison Pruning vs. Weight Decay for DFA: The meth- 
ods refer to plain training (none), training with pruning (pruning), and train- 
ing with weight decay rates (A = 0.0001, A = 0.0005, A = 0.001). 

4    FINITE-MEMORY MACHINES 

The example DFA's in the previous sections were small (< 10 states). Cur- 
rent learning algorithms based on gradient descent searches are useful tools 
for learning these small DFA's because they converge fast; however, they are 
currently inappropriate for learning larger DFA's because of problems with 
the propagation of error information - and thus state information - over long 
strings [1]. 

Method Time NN Performance DFA States    |{    Method Time NN  Performance DFA States    | 

none 189 1.10% 334 none 281 1.59 % 296 

pruning 641 1.45% 73 pruning 956 1.03 % 67 

A = 0.0001 200 0.29% 230 A = 0.0001 199 3.78  % 745 

A = 0.0005 309 0.76% 376 A = 0.0005 274 1.98  % 316 

A = 0.001 769 3.16% 65 A = 0.001 818 1.30 % 65 

(a) (b) 

Method Time NN Performance DFA States Method Time NN Performance DFA States   | 

none 257 1.69% 110 none 205 1.71% 409 

pruning 512 0.60% 71 pruning 536 0.33% 190 

A = 0.0001 234 1.97% 316 A = 0.0001 226 1.96% 197 

A = 0.0005 356 2.60% 78 A = 0.0005 387 1.07% 173 

A  = 0.001 - - - A = 0.001 - - - 

(c) (d) 
Table 4: Comparison Pruning vs. Weight Decay for FMM: The meth- 
ods refer to plain training (none), training with pruning (pruning), and train- 
ing with weight decay rates (A = 0.0001, A = 0.0005, A = 0.001). Training 
with weight decay factor A = 0.001 did not converge within 5000 epochs in 
all cases. 

There exists a subclass of DFA's called finite-memory machines [10]. For- 
mally, a finite-memory machine (FMM) is a DFA with finite memory input- 
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Figure 2: Inferred Finite-Memory Machine. This FMM with 64 states 
was generated with parameters m = n = 3. 

order m and output-order /,n i.e. m and n are the least integers such that the 
present state of a DFA can always be uniquely determined from the knowledge 
of the last m inputs and the last n outputs. We suspect that large FMM's can 
be learned more easily than large DFA's because the interval over which state 
information has to be propagated is fixed and small compared to the length 
of the training strings. A FMM with 64 states (m=n=3) is shown in figure 2 
We trained networks with 15 state neurons on the first 1000 strings (positive 
and negative strings) whose labels were determined by the FMM of figure 2 
We compared the training time, the network generalization performance and 
the quality of the rules extracted from trained networks for plain training 
training with pruning and training with weight decay for 4 networks with dif- 
ferent initial conditions. The results are shown in table 4. We observed that 
smallest network which for which the pruning/retraining method converged 
always had 7 state neurons.   The results confirm the observation we made 
earlier for the random DFA and the triple-parity DFA. 
The results in the above table show that network pruning can be an effec- 

tive tool for improving the performance of the network generalization and for 
reducing the size of the extracted FMM. We observe that the perfect FMM 
with 64 states was not extracted for any training method in any of the runs 
shown and one might thus conclude that the 64 state machine cannot be 
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successfully learned; however, this is not the case. When we chose all strings 
of length up to 11 (4096 strings) as the training set, we were able to extract 
the perfect DFA in all cases, regardless of the training method; since no sig- 
nificant differences in network generalization performance was found for the 
different methods when the larger training set was used, we chose to train 
with a smaller training set. 

5    CONCLUSIONS 

We have presented a destructive method for improving the generalization 
performance of recurrent neural networks, trained to recognize strings of reg- 
ular languages. Our simulation results demonstrate that pruning combined 
with retraining can significantly improve the performance of the networks 
themselves and also of the extracted symbolic rules. The pruning procedure 
is a repetitive cycle of reducing the size of the architecture and retraining 
the network. Our method is based on a simple heuristic which assesses the 
relevance of recurrent state neurons according to the magnitude of the in- 
coming weights. State neurons with small weights tend to contribute less 
to the overall computation and thus are promising pruning candidates. The 
pruned network needs to be retrained to achieve its performance prior to the 
pruning step. As to be expected, the retraining becomes harder as the size of 
the network decreases; the performance improves while generally using fewer 
strings than were necessary to train the original network. Our preliminary 
results where the generalization performance improves by an order of mag- 
nitude using a simple pruning heuristic are encouraging. The performance 
improvements of pruned networks are generally superior to networks trained 
with weight decay; training is faster due to the shrinking network size and 
there is no need for determining a decay rate prior to training. We found 
that these improvements also hold true for large finite-memory machines (64 
states) [10]. It would be interesting to compare our method with other weight 
pruning methods ([3, 8]). 

An open question is whether this pruning method produces the smallest 
network necessary to learn (or represent) the deterministic finite automata 
(DFA) to be learned. Certainly for the triple parity DFA, a 3-state neural 
network is the smallest possible if the neuron state activations are confined 
to the rails of the sigmoid. But the 10-state random DFA should have had 
a 4 state recurrent network. However, that did not occur; training failed to 
converge. It would be interesting to see if knowledge inserted into the network 
before or during training [4, 7, 13] aids or impedes the pruning process. 
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Abstract 
We present a novel method of detecting changes, such as erosion 

or deforestation, from time sequential pairs of remote images. After 
preprocessing the images and obtaining a difference image, we use a 
neural network-based system to adaptively threshold the difference im- 
age and resolve areas of pixel intensity with a terrain classifier which 
combines information in the original images. The result is that we de- 
tect precisely the types of changes in which we are interested, without 
being "distracted" by changes due to noise or natural within-terrain 
variability of pixel intensity. 

1     Introduction 

The objective of our research has been to design an automated system for 
detecting changes in the environment, based  upon time sequential remote 

'This work was supported in pail by Army Contract No. I)AC'A7t>-93-C-0005, under 
subcontract to SEA CORP and by the Office of Naval Research, ihe Army Research Office, 
and the National Science Foundal ion. 



sensor images of the same area. Our approach was to apply image processing 
techniques to the original digital images in order to compensate as much 
as possible for errors due to registration (i.e., a given pixel in the second 
image does not necessarily correspond to the pixel in the identical position 
in the first image), as well as variations in pixel intensity due to illumination 
changes, clouds, and certain natural variabilities inherent in certain types of 
terrain that are not of importance for analysis purposes. At the same time, it 
is recognized that preprocessing will not necessarily correct all of these errors, 
so the system was designed to be robust to errors due to registration or pixel 
intensity variability, as well as other types of noise. 
The basic premise is to take the two images and subtract one from the other, 
creating a difference image. Ideally, any non-zero pixel intensities in the dif- 
ference image would indicate that a change in the environment had occurred. 
Of course, the problems of registration and other types of noise will also result 
in contributions to the difference image. Also, there will be certain types of 
changes in the image that are characteristic of certain types of textural ter- 
rain (trees or grasses, for instance) that are not of much interest. Thus, the 
problem is to determine what features in the difference image are representa- 
tive of meaningful changes in the environment, such as deforestation, erosion 
or pollution; and which features are due to noise or various pixel intensity 
variabilities. 
Our system runs a window over the difference image and computes the average 
pixel intensity within the window. If the pixel intensity exceeds a given 
threshold, the corresponding windows in the two preprocessed original images 
are compared, through the use of a neural network based terrain classifier. 
As described in the following sections, this system determines if any change 
has occurred in the window based on the results of the terrain classifier. 

2     Overview of Algorithm 

This section outlines the basic steps of our algorithm. These steps are detailed 
in subsequent sections. 

• Preprocessing - image registration and normalization 

• Generate smoothed difference image 

• For each pixel above a fixed threshold, classify the texture in the cor- 
responding regions from both preprocessed images. 

• A pixel is interesting if the texture classifications differ. 

• If the ratio of interesting to uninteresting pixels in a given region is 
greater than some threshold, then the region is interesting. 
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3     Image Preprocessing 

This section describes the image preprocessing required to prepare the images 
for input into our classification algorithm. The goal of preprocessing is to 
bring the images into registration and to match local pixel intensities. We 
achieve this with the methods outlined below. 

3.1     Registration Algorithm 

Without registration, there may be little of no relation between the pixels of 
a one image and the corresponding pixels of another image. In particular, 
this will be the case when the camera is not in exactly the same location and 
orientation when each image is taken. One possible registration algorithm is 
outlined below. 

• 

• 

• 

Select several regions from one image to be used as fiducial marks. 
Ideally, 3 fiducial marks are sufficient for to adjust for any translation, 
rotation and linear scaling but more may be used to increase accuracy 
in noise environments. 

Find the best match in the second image for each fiducial region. It 
may be necessary to locally normalize the intensity of the image regions 
for an appropriate match to be found. 

Use the fiducial mark matches to determine the appropriate scale, rota- 
tion and offsets between the two images such that the following linear 
transformation holds between the pixel locations in each image. 

x'  \ _ ( a    0  W    cos(?      sinfl W x \      ( Ax 
V   )~ V  0     0 A  -si»"    cos0 ) [y )+{  Ay 

3.2    Normalization Algorithm 

In general, images will have varying degrees of illumination. If one image 
is taken at noon and another is taken at dusk, image subregions which are 
identical may have widely varying pixel intensities. Similar problems may 
arise from snow, ice, leaves, etc. To avoid these problems, we normalize 
each image such that they both have pixel intensities with zero mean and 
unit variance. In certain terrains where average illumination may vary over 
the image (e.g. shadows produced by mountains or tall bindings) it will be 
necessary to perform local normalization. 

4    Difference Image 

One fundamental aspect of our algorithm is the difference image which, in its 
simplest form, is the difference between pixel intensities in the overlapping 



regions of the two images. If the images are identical, the difference image 
should be all zeroes. We impose the constraint that the algorithm should be 
insensitive to the order in which the two images are presented; therefore we 
define the difference image as 

Dij = \Atj - Bij\ (1) 

where Ajj and Bij are the pixel intensities in the ith row and jth column of 
images A and B respectively. Note that it is necessary to map the images 
onto the same grid if any rotation or scale transform is used for registration.. 

4.1 Image Smoothing 

Difference images tend to be very noisy due to natural variations from image 
to image and "ghosting" that can occur due to poor registration. In order to 
ameliorate these problems, we convolve our difference images with a square 
indicator function. Thus the pixel value in the smoothed image is given by 

^smoothed = J2 k(i -l,j- m)D,m (2) 

/m 

where k(l,m) — 1 when |/| < r and |??j| <r and k(l,m) = 0 otherwise. We 
can adjust the amount of smoothing by varying the radius, r, of k. We can 
also approximate Gaussian smoothing by repeated convolution with k. Note 
also that this smoothing can be applied to the classifications given by the 
texture classifiers. 

4.2 Pixel Intensity Histograms 

The amounts of smoothing and thresholding needed for accurate detection of 
variations within an image can be suggested by examining histograms of the 
pixel values of a given image. We consider several histograms in our work, 
including histograms of the preprocessed, differenced, and smoothed images. 
In the preprocessed images, one typically has a smooth distribution of pixel ' 
values which are nearly identical for both images while difference images typ- 
ically have a bimodal distribution. Smoothing over difference images results 
in a main peak in the pixel histogram corresponding to zero difference and mi- 
nor peaks in the tails corresponding to more interesting pixels (See Figure 1). 

5    Adaptive Thresholding 

At the heart of our environmental change detection algorithm is an adaptive 
threshold which uses information from both the difference image and the 
texture classifier to filter out uninteresting regions of the images. 
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Figure 1: The left graph shows the pixel histogram of the difference image. 
The right graph shows the pixel histogram of the smoothed difference image. 
Useful information is contained in the tails of the histogram on the right. 

5.1     Algorithm for Detecting Differences Between Im- 
ages 

Heuristically, the decision criterion for flagging a windowed region as being 
interesting can be stated as follows: 

• If the average pixel intensity (API) of the difference image is very low, 
the difference is not significant/interesting. 

• If the API is high and the classifications from the different images are 
different, the difference is significant/interesting. 

• If the API is high but the classifications are identical, the difference is 
not significant. 

We can improve on the algorithm by including a sensor fusion center (neural 
net based) that will learn when the three inputs are significant and when they 
are not. Thus we can make our thresholding nonlinear and more robust. 
Ideally, we could say that for all pixels d{i e D, a level of intensity greater than 
zero indicates a change in the scene being imaged. However, due to natural 
variations in the imaged objects or terrain a certain level of pixel variability 
is expected. It is therefore necessary to identify an optimal threshold to 
determine whether a pixel value in the difference image is significant. We 
determine these values from images where known changes have been located 
and quantified. 

Because it is unlikely that every region of the image will have the same opti- 
mal threshold, we use a neural network approach to identify various classes 
of regions from a given corpus of images for which different optimal thresh- 
olds can be determined. The neural networks were used to determine which 
"terrains" in the difference image are interesting and which are not. Once the 
neural networks are trained, they are used to determine what terrain class 
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a particular region belongs to. With this information, we can use a special- 
ized threshold to determine whether an observed variation in the images is 
of significance. The advantage to this approach is that the system is more 
sensitive where small variations are important and less sensitive where they 
are not, resulting in more changes being detected and less "false alarms", or 
changes that are detected which have no importance. 

5.2    Pattern Classifiers 
In this section, we consider two image classifiers designed to identify ter- 
rain/texture class in subregions of the images: The KNN algorithm and the 
RCE algorithm. The training input to these algorithms are hand-labelled 
subimages of a fixed size. We refer to these subimages as data vectors. 
We note here that there exist other neural network algorithms which could 
also be applied to the task of terrain classification. 

5.2.1 The KNN Algorithm 

The K Nearest Neighbor (KNN) algorithm [Duda and Hart, 1973] functions 
by finding the nearest A" vectors from our previously labelled data vectors to a 
new data vector for which the terrain class is unknown. The classification for 
the new data vector is given by the majority class of the A' nearest neighbors. 
The distance metric that is used in this algorithm is not essential and for high 
dimensional spaces an /i-norm is generally sufficient as well as being faster to 
calculate than most other norms. 

5.2.2 The RCE Algorithm 

The Reduced Coulomb Energy (RCE) algorithm [Reilly et a!., 1982] creates 
networks of neurons with bounded activity function given by 

n,-(£)=l-e(||£-nii||2-ti) (3) 

where 0(-) is a step function. Thus the activity of RCE neuron i is 1 if the 
input is within a distance U of m,- and 0 otherwise. Classification of a given 
input is determined by choosing the class of memories which has the largest 
total output. In its simplest version, the RCE algorithm builds a network in 
the following manner. For each memory in the data set: 

1) If the classification is correct, make no changes. 

2) If the network activity is zero (no classification), add a new 
neuron to the network using the new memory as the center and 
set the neuron's threshold equal to the distance to the nearest 
memory of a different class. 

3) If the classification is incorrect or confused, 
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a) Shrink the thresholds of the neurons which were re- 
sponsible for the error. 

b) Pass the memory through the network again. 

This process is repeated until the network stops changing. Given enough 
resources, this algorithm can cover arbitrarily complex boundaries between 
classes for a deterministic classification problem. 

6     Application 

A version of the algorithm described in the preceding sections was imple- 
mented on real satellite images and the results are presented below. From 
Figures 2, 3, 4 and 5, it can be see that our algorithm can correctly select the 
regions of a photographed area which have changed. 
This research is continuing. Further results will be presented at the conference 
on different images and more elaborate classification algorithms. 

M^x.x<w:.:y:-:^^«sssftss 

™.,-,„,„„,. 

Figure 2: A small region of a real satellite photograph. 
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Figure 3: This image shows the same as the previous figure slightly offset 
to simulate registration error and with an orchard and field "planted" where 
houses and streets exist in the original image. 

[Reilly et ah, 1982] Reilly, D. L., Cooper, L. N., and Elbaum, C. (1982). A 
neural model for category learning. Biological Cybernetics, 45:35-41. 

707 



' t        I 
*■•■$ 

■mm 
: L 

'■{':. 
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Abstract: Laser Doppler flowmetry is a most advantageous 
technique for non-invasive patient monitoring. Based on 
the Doppler principle, signals corresponding to blood flow 
are generated, and metrics corresponding to healthy vs. 
patient samples are extracted. A neural-network based 
classifier for these metrics is proposed. The signals are 
initially filtered, and transformed into the frequency 
domain through third-order correlation and bispectrum 
estimation. The pictorial representation of the correlations 
is subsequently routed into a neural network based MLP 
classifier, which is described in detail. Finally, 
experimental results demonstrating the efficiency of the 
proposed scheme are presented. 

INTRODUCTION 

Laser-Doppler flowmetry (LDF) is a noninvasive method for semi- 
quantitative assessment of microcirculation currently applied in the 
fields of angiology, cardiology, vascular surgery neurology and 
physiology [1]. Its easy handling lead to its widespread clinical use 
in acquiring relevant information on the microcirculation. LDF 
appears to offer substantial advantages over other methods in the 
measurement of cutaneous blood flow. Studies have shown that it is 
not only highly sensitive and responsive to regional blood perfusion, 
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but also versatile and easy to use for continuous noninvasive patient 
monitoring. 

In principle, LDF is an optical technique for estimation of micro- 
circulation, based on the Doppler principle. When the laser beam is 
directed toward the issue, reflection transmission and absorption 
occur. Laser light backscattered from moving particles, such as red 
cells, is shifted in frequency according to the Doppler principle, 
while radiation backscattered from non-moving structures remains at 
the same frequency. Even though Laser-Doppler flowmeters are 
easy to use, sources of variation need to be known and taken into 
consideration. 

An interesting aspect in the processing of LD signals is the 
extraction of appropriate parameters and the classification of signals 
to categories, e.g. corresponding to healthy and patient samples. In 
this paper, we propose a classification scheme with bispectrum 
analysis for extracting useful features of the LDF signal, and neural 
networks for classification of the extracted information. 

BISPECTRUM ANALYSIS 

As an initial step for the LDF biomedical signals are subjected to the 
following preprocessing : 

First, the original signal is decomposed into three components, 
consisting of the trend (<20mH), component 2 
(«20m//-800m//) and component 3 (> 800m//). This step has 
proved more useful for the preprocessing of the signals and 
particularly bispectral analysis. A FIR low-pass Hamming filter 
(25-taps) was used for the detection of the trend, which allows 
attenuation of the artifacts or abrupt and brief changes in the signals. 
The second component is obtained through subtraction of the trend 
from the original signal and additional low-pass filtering. The effect 
of linear phase delay is subtracted from the resulting signal. 

Let x(t) be a real two-dimensional signal with support 
S, = [0...A7r-l]x[0...N-l]. Its triple correlation is defined as , 



X3(Tl,T2)=—2JLx(t)x(t + T1)x(t + T2) 
Nz s 

where T\>T2 are defined in 

S> = [_(AT- l),...,(N-1)] x [-(N- l),...,(N-1)] 

In general, we can move indistinguishably from the signal domain to 
the triple correlation domain without loss of information or, in other 
words, we can distinguish two signals by comparing their triple 
correlations. 

Third-order signal correlations and their Fourier transforms i.e. the 
corresponding bispectra are higher-order statistics with two 
important properties [2]. 

-> In contrast to second order correlations, triple correlations of 
deterministic signals have a one-to-one correspondence with the 
original signal ( except of a shift ambiguity). 

-> Third-order-correlations of zero-mean non-skewed noise (such as 
Gaussian or linear and symmetrically distributed) are zero in the 
mean, and furthermore, they tend to zero w.p. 1 as the size of 
the available data record tends to infinity. 

The first property generally yields a complete description of the 
signal, based on its triple-correlation. On the other hand, the second 
property can be used under certain conditions, to improve SNR in 
applications where the signal under consideration is corrupted by 
non-skewed additive noise. Based on their properties, third-order 
correlations can be very advantageous for image recognition, leading 
to invariant representation of the input images with respect to scale, 
rotation and translation. 

The bispectrum X^(u,v) of a signal x(t) is computed as 

X3 (u,v) = X(u)X(v)X(-u - v) 
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where X(u,v) is the Fourier transform of x(t). As a consequence, 
X3(w,v) can be computed as the triple product of FFTs using fast 
software or hardware implementations. 

The final step of pre-processing consists of computing the absolute 
values of the resulting bispectra. Sample plots of these values are 
shown in (Figure 1, Figure 2, Figure 3). The first one corresponds 
to a signal obtained from a healthy volunteer, whereas the other two 
to signals obtained from patients suffering from arterial occlusion. 

The volunteers bispectra appear to have frequency components 
coupled to a certain pair of frequencies. On the contrary, the 
patients bispectra do not include such regular structures and tend to 
have several mutually coupled frequencies. In this paper, we use a 
neural network architecture to classify the LD-images, based on the 
aforementioned observations. 

PROPOSED NEURAL CLASSIFIER 

Multilayer perceptrons have been widely examined in the neural 
network field, as a tool for signal classification, based on the 
extraction of appropriate features from signals [4]. Error-feedback 
supervised learning algorithms, such as backpropagation, are 
generally used to train a multilayer feed-forward neural network. A 
crucial aspect concerning the network performance is generalisation 
i.e. the ability of a network to classify correctly input data which 
were not included in its training set. Good generalisation is a result 
of appropriate network design; a small number of interconnection 
weights (i.e. free parameters during training) should generally be 
used for this purpose, and any a-priori knowledge about the problem 
should be included in the network architecture. Consequently, 
structured networks of small size are likely to have better 
generalisation. Our architecture consists of a multilayer feed-forward 
perceptron, whose inputs are described below. 



The LD signals bi-spectra are processed as grayscale images. Since 
the size of the images is quite large, we chose to decompose them 
into images of lower size, using a multiresolution decomposition 
scheme described below. 

Let XQ denote an NxN image representation. Using appropriate 

reconstruction FIR filters /^(n) and h/,(ri), where fy(«) generally is 

a low-pass and ly^ri) a high-pass filter, we can split the image into 

four [N/2 x N/2) images. Applying for example the low-pass filter 

Iy(n) in the horizontal and then vertical direction of the original 

image (we consider the separable case for simplicity ) we get the 

approximation image at the lower resolution level j = —\ denoted as 

N N 
xff (m, n) = £ Yk (2m - k)}y {In- l)x0 (k,l) 

k=V=l 

By applying all other possible combinations of the above FIR filters, 
we   get   three   lower   resolution   detail   images,   denoted   as 

J TJ TIT //// 
x_i ,x_i ,x_i . Moreover, if the above procedure is successively 
applied to the approximation images, we have a multiresolution 
approximation of the original image, providing images of 
continuously decreasing size. 

The resulting low-resolution (LR) approximation image is used as 
input to the classifier. Furthermore, in order to exploit useful 
information included in the detail images, we extract from them 
several features, especially the number of pixels with non-zero 
values at each detail level. These pixels generally correspond to non- 
zero frequency couples in the original image content. 

The LR images are fed to the first hidden layer MLP, which is of a 
receptive field type, while the extracted features as well as the 
output of the first layer are subsequently fed to a   second hidden 
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layer. The output of the second layer is fed to the final layer, the 
output of which constitutes the result of our classifier. 

After training with data obtained both from signals corresponding to 
healthy persons and patients, our classifier was fed with bispectra 
obtained by LD-signals. The results were most satisfactory,including 
a correct classification rate of 93%. Sample bispectra that were 
successfully classified are shown in (Figure 4, Figure 5). 

Further research and experiments are currently performed using 
extended data sets, as well as refinements to the pre-processing 
methodology and fine-tuning of the proposed neural network 
classifier architecture. 
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SAMPLE LD-plots 

-2 0 2 
Figure 1 (Volunteer/Healthy) 

Figure 2 (Volunteer/Patient) 



-2 0 2 
Figure 3 (Volunteer/Patient) 
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Figure 5 
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